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Abstract

In this paper, we first propose a modified model for traffic sig-
This paper first proposes a model of traffic signal control syga| control that resolves the above issues. The proposed model
tems for aVOiding traffic CongeStion in urban road network[:g, a linear System with p0|ytop|c uncertainties. We next ap-

The model is constructed so that it is ContrO”able, and dlﬁry the H° control method based on linear matrix inequa”ties
turbances of traffic flow and changes of traffic situations cgnmis) [1].

be taken into account. As a result, the proposed model is de- ) ) _ o
scribed as a linear system with polytopic uncertainties. NeXt)'S Paper is organized as follows: The model for traffic signal

a robust control method is applied to the proposed model cntrol is _dgscribed in section 2, irjcluding discussion of the
as to achieve robust stability and performance under the un&gotrollability of the model. In section 3, we apply the LMI-
tainties. The proposed control method gives a control law fBRS€d robust control technique to the model. Then, a numerical
real-time and network-wide traffic signal systems. A numer@x@mple is provided in section 4, which is followed by the con-
cal example is given to show the effectiveness of the proposatiSion:

method.

2 Model for Traffic Signal Control

1 Introduction The traffic signals are controlled mainly by three parameters

Traffic signal control plays a very important role for road safe%a"edcyd? time split, andoffset[4, 6, 8]. Roughly speaking,
and smoothness of traffic flow. Especially, in order to avoil€ CYcle time is a period of repeated signal cycles, the split is

traffic congestion in urban road networks, real-time control 8'atio of green time to the cycle time, and the offset is the time
traffic signals have been studied [2, 3, 4, 7, 9, 10]. difference between the beginning times of green signals at mul-

tiple intersections. Another elementlast timewhich means
Recently, Diakaki et al. [3, 4] have proposed a model for sughe of yellow and all red signal. A simple example of the
network-wide traffic signal control, and applied optimal linsignal cycle is shown in Figure 1. In general, it is difficult to si-
ear quadratic (LQ) control to the model. This research is vegyultaneously optimize these control parameters, and therefore,
promising for intelligent transportation systems. However thiany methods for individually optimizing each control param-
model and the control method proposed in [3, 4] have the f@lter have been studied [6, 8]. In this paper, we concentrate on
lowing problems. control of the split parameter as well as in [3, 4].

e The model to be controlled is usually uncontrollable dUdow we describe a model for traffic signal systems. An urban
to an inappropriate choice of state variables, and, as a #@ad network is composed by the sets of links and intersections

sult, traffic flows are difficult to control adequately by thélenotingL = {Ly, Ly, ..., Ly, } andJ = {J1, J2, ..., Jn, },
proposed method. respectively. For each intersectioh € J, I, andO; denote

) ) ] the sets of incoming and outgoing links, respectively. We here
e The disturbances which naturally appear in the model aigyke the following assumptions:

neglected when a feedback gain is designed.

e The control input calculated by the LQ method needs to e Cycle times at all intersections are equal and fixed,;



J L J A&L Consider a single lini; connecting two intersection,,, J,,

such thatl; € O,, andL; € I, hold as shown in Figure 2.
Then, according to the store-and-forward modelling approach,

L’ X ; ,%' the dynamics of the link is expressed by
N

stage 1 stage 2 Li(k+1) = lLi(k) + ¢;(k) — ri(k) + wi(k),

green  yellow red wherel; is the volume of traffic (i.e., the amount of vehicles)
road along b > within link L;; ¢; andr; are the inflow and outflow, respec-
xdirection tively, of link L; over the periodkT, (k + 1)T] with the con-
road along red . green  yellow trol interval T which is assumed to be equal to the cycle time;
y-direction L e andw; is a disturbance within linlt; such as demand and exit

stage 1 «3>  stage2 4> flows. Moreover we make the following assumptions:

lost time | e The inflow to link L; is given by ¢ (k) =

>orer, tiiri(k);

cycle time
e [; is sufficiently large, and therefore, the outfloywof link
. . L; is given by
Figure 1: An example of signal cycle.
v Pigms L; € Lis aroad along: direction
"7 pi(1—gm), L; € Lisaroad along direction
e Losttime (i.e., time of yellow and all red signal) of each  wherep; is the saturation flow that is the product of the
intersection is zero for simplicity; saturation flow rate and the cycle tirfie
e The turning movement rates, from L; € I;t0 L, € O; e Whenw; = 0 for all L; € L, nominal green timeg;"
at intersection/; are assumed to be known and fixed. at all intersectiong;,i = 1,...,n; that lead to a steady-
state system with equilibrium point§’ for L; € L are
available.

For simplicity, we consider the case where all roads are along

x or y direction and all intersections have two signal stages as
shown in Figure 1. At intersectiod, letg; € [0,1] be a split 10 construct a controllable system, we must carefully deter-
ine state variables from the links. To this end, we should not

(i.e., a ratio of green time to the cycle time) for the road alorfq]' ! < RS, '
« direction. Then, the split for the road alopglirection at the ch0ose the origin and destination links as state variables be-

intersection is — g;. cause these links are connected with single intersections and
thus are incomplete. Now Iét(C L) denote a set of links cho-
sen as state variables. Then, for libk € L connecting two
Remark 1 In [3, 4], each split parameter of roads alongnd intersections as in Figure 2, the dynamics of linke L along

y directions denoted here lgy andg,, respectively is indepen- ;. direction is described as

dently calculated by the LQ control. In implementation, how-

ever, the resulting parameters no longer satigfyt g, = 1. Lik+1)=1(k)+ Z t;ir;i (k) — pign (k) + w;(k).
Therefore, these parameters need to be modified by solving an- L€l

other optimization problem subject to this constraint, and hence hat th . ¢ links al L |
are not optimal in a sense of the LQ control. Note that, in ordbite that the dynamics of links alongdirection are also de-

to avoid such modification, we adopt the above settings for tRg"iPed in the similar manner. Arranging this equation, we have

li .
split parameters Lk+1) = L)+ > tisipigm(k)

L€l
J J { L — pign(k) +wi(k) + ¢, &
where
- @ T4 l; T @ o . — { 1, L ?s aroad along: d_irectﬁon
J —1, L; isaroad along direction

l UI \ andc is a constant. Since this system has an equilibrium point
’ from the assumption, it follows that

Figure 2: An urban road link. IV =N+ Z t;i5059N — pigl +c. 2)
L;eln,



Subtracting (2) from (1), we have has full row rank. Sinced = I in this case, the proof is obvi-

ous. [
Ali(k+1) = Al(k tii8:i0:i Agm (k . . .
(k+1) (k) + LEZI 5453952 gm () We see from Proposition 1 that < n; is a necessary condi-
o tion for controllability of system (5).
— piAAga(E) + wi(R), @) Y of system (%)

where Ali(k) = Li(k) — IV, Agm(k) = gm(k) — gN Remark 3 In the conventional approach [4], all links, € L
Agn (k) — n(k) 7g/N. Letrzi’be the number of links chgls'enare chosen as state variables, and then, the number of links is

as the state variables;c Rz be the vector of\l; for L; € L; ;Jsualtlz Iargetr than that of(jmterzephons, :Igeff > th‘ 'I;Ih%rle- A
u € R be the vector ofg, for J; € J; andw € R"z be the ore, the system proposed in [4] is usually uncontrollable. As

vector ofw; for L; € L. Then (3) is summarized as follows: ment|oned above, it is |mportant to qhoose appropriate state
variables so that the resulting system is controllable.

z(k +1) = 2(k) + Bu(k) + w(k), 4
3 H® Control Based on the Proposed Model
whereB € R"2*"7 is a matrix linearly including the satura-
tion flow parameters; for L; € L. We assume that the state variables are observable as well as in
[3, 4]. Then our aim is to seek a state-feedbatk) = Kx(k)

It is known that these saturation flow parameters are changgeh that the closed-loop system is stable and satisfies desired
able due to traffic conditions, and some of them might not tﬁ)‘?

, ; o : operties. Model (5) is a linear system with polytopic uncer-
ignorable. To cope with the parameter variation, we introduggities and therefore, various control methods are known to be
uncertainties fop,. Let L be a set of links with such change

X . 9% applicable. We here present a control desigh method via LMIs
able saturation flows, and; be the number of elements 6f [1]. From now on, note thatP > 0" means that a symmetric
and defing; for L; € L asp; € [p;”, p{"]. Then we obtain  matrix P is positive definite.

B(k) € Co{B1,Bs,...,By; }, . . .
(k) {B1, Bz 2} 3.1 Quadratic stabilizability

whereCo{By, Bs, ..., Byn; } denotes the convex hull of the .
constant matrice®;,i — 1,...,2" corresponding to the ex- | € closed-loop system with a state-feedback) = Kz (k)
treme points of the parameter space of the saturation flows with
uncertainties. Namely3 belongs to a matrix polytope. To sum z(k+1) = I+ B(k)K)x(k)+w(k), (6)
up, we obtain the following traffic signal system: B(k) € Co{Bi,Bs,...,By, ).
z(k+1) = z(k)+ B(k)u(k) + w(k), (5) Stabilizability, i.e., a convergence property of all trajectories of
B(k) € Co{Bi,Bs,...,By;}. system (6), is the most fundamental requirement for construct-

ing the closed-loop system. A sufficient condition for this is

Remark 2 In [3, 4], the disturbance are finally ignored and duadratic stabilizability defined as follows [1].
the uncertainty in the saturation flow is not taken account. \/E/S
I

adopt a control method such that these important factors can eﬁflnmon 1 System (5) is said to tguadratically Stf'ib"'zab.le
: R . there exist a state-feedback gdinhand a quadratic function
appropriately dealt with in the next section.

V(€) = ¢TP¢, P > 0 that decreases along every nonzero tra-

) _ jectory of (6).

When we design a control system based on its model, control-

lability and observability of the model are important propertieg necessary and sufficient LMI condition for quadratic stabiliz-
to be checked. In our casejs assumed to be measurable, angbility of a continuous-time system is derived in [1]. An LMI
hence, the observability of system (5) is satisfied. However, thgndition for the discrete-time system such as (5) can be easily
controllability of system (5) is not always satisfied. Related erived as well as in [1].

this, the following proposition holds for system (5).

Proposition 2 System (5) is quadratically stabilizable if and

Proposition 1 System (5) is controllable if and only ifonly if there exist matrice® = Q™ andY satisfying

rank B(k) = n; forall k > 0. T T
B Q YVIB +Q | i1 ow (@)
Q+ BY Q
Proof: Itis well-known that a linear system given b . . .
y g y Then, K = YQ~' is a quadratically stabilizable state-
r(k+1) = Ax(k)+ Bu(k), feedback gain.

ny g
TERT,uER The condition (7) is an LMI ofp andY. Therefore the feasi-

is controllable if and only if the controllability matrix bility problem to seek) andY” satisfying (7) is a semidefinite
programming problem, and is efficiently solvable by recently
U:=[B,AB,...,A" D] developed tools [5, 11, 12].



3.2 H*® performance L {
4

To evaluate control performance, we introduce the control out-

put shown by Ls Ly . 12
- L6 @ = L2 @ L11
z(k) = Cz(k)+ Du(k) . N
= (C+ DK)x(k). (8) H { f L ‘{0
We seek a state-feedback gainh such that thefli> perfor-
mance Figure 3: A simple traffic network.
2 o
lwla20 llwl]2

4 Numerical Example

is satisfied, where is a specified number arlf- |, is thel? . i
norm defined byjv(k)[2 := 2, v(k)To(k). Since the left Figure 3 shows a simple traffic network composed by the sets

side in (9) equals the so-calldd™ norm of the closed-loop Of WO intersections and 14 links denoting= {.J,, J»} and
system (6), (8) with a constai, the above property is called” = {L1: L2, -, L1a}, respectlv.ely. The incoming links and
the H* performance for a changeatii). A sufficient LM the outgoing links are as follows:

condition for theH > performance is derived as well as in [1]. I, = {Ly L3 Ls, L7}
I = {Li,Lg, L1, L3}
Proposition 3 For a givenn, if there exist matrices) = Q™ O, = {Li,Ly4 Ls,Lg}
andY satisfying Os = {La, Lio, Lra, Lis}.
Q Q+YT'Bl, 0 QCT+YTDT We must to set state variables so that the control system is con-
Q+ B;Y Q I 0 trollable. Here we choose the numbers of vehicles in links 1
0 I ~2I 0 and 2 as the state variables, ie.= {L1, Lo }. Let the data of
CQ+ DY 0 0 I the (nominal) saturation flows and the turning movement rates

>0, i=1,...,2", (10) be

p1 = 50, p2 = 50, p3 = 40, p5 = 40,
p7 =40, pg = 40,p11 = 40, p13 = 40,
t3,1 =0.25,151 = 0.75,17 1 = 0.25,
tgo = 0.25,t11 2 = 0.75,t132 = 0.25.

then the closed-loop system (6), (8) with= Y Q! gives the
H* performance.

The condition (10) is also an LMI af), Y and~2. Therefore,
by solving the optimizatoin problem of minimizing’ subject We assume that the saturation flows of libkis changeable in
to (10), we can design a state-feedback ghin= Yoth;plt this example as follows:

whereY,,; andQ,p are the optimal solutions. By means of
the H*° control, we can reduce the effect of the disturbances in p1 € [40,60].

the closed-loop system. Here, note that LMI (10) includes LMyiso let ¢V (i = 1,2) be the nominal split parameters of the

(7), and thus, the closed-loop system constructed by solViRghds along: directionL;, Lo, Ls, Lg, L11, L12.

(10) is guaranteed to be quadratically stable. ) ) )
For the above settings, we summarize the dynamics of links

andL, as follows:
Remark 4 We can evaluate the LQ performance by takirig

and D with symmetric matrice§) € R"2*"%, R e R/ *"s Lk+1) = hL(k)+10g1 —50gs + w1 + 20
as follows. lo(k+1) = Ia(k)+ 1092 — p1g1 +wo +20. (11)
Q12 _ We can see that system (11) has an equilibrium point, i.e., there
¢ = [ 0 } Q>0 existg¥ € [0,1] (i = 1,2) forw; = 0 (i = 1,2) andp; €
0 [40, 60]. Then, the following equations hold fpi € [40, 60].
Po= [RW,]’ >0 N = 1N +10g) — 509 +20
I = 1Y 4+10¢ — pigl¥ + 20. (12)

Then we see thatz(k)||3 = Y po, z(k)"z(k) gives an LQ

performance index since Subtracting (12) from (11), and denotimg= [I; —IV, l—1Y]7

andu = [g; — gV, g2 — ¢5']7, we have the following system:
2(k)" 2(k) = 2(k)" Qu(k) + u(k)" Ru(k). 2(k+1) = a(k)+ Bu(k) + w(k),



B e Co{[ 10 —50] { 10 —50]}_ network-wide signal control Control Engineering Prac-

—40 10 —60 10 tice, 10, pp. 183-195, (2002).
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Note thatB is full rank for all p; € [40,60], and thus, this LMI Control Toolbox, For Use with MATLABThe Math-
system is controllable. Works, Inc., (1995).
For system (13), we seek a state-feedback contret Kz  [6] P. B. Hunt, D. L. Robertson, R. D. Bretherton and M. C.
using the proposed method. We set the paramegers I, Royle, “The SCOQT on-line traffic signal optimisation
R = 100001. All computation was run on MATLAB. technique,Traffic Engineering and Contrp23, pp. 190—

. . . 199, (1982).
We first consider the case for reducing the current numbers of

vehicles in linksL; and L, by 20 and 5, respectively, under [7] K. lwaoka, T. Otokita, S. Niikura, “Optimization strategy
w(k) = 0. To this end, we set the initial stat¢0) = [20, 5]7". on urban signal control’Rroc. the 8th World Congress on
Figures 4—6 show the transient responses of the numbers of ITS '01, (2001).

vehicles and the split parameters for the saturation flows: o ] .
40,50, 60, respectively. It is seen from these figures that thd8] Manual onTraffic Signal Controlapan Society of Traffic
numbers of vehicles i, and L, are reduced by 20 and 5, Engineers, (1992) (in Japanese).

respectively, within about 5 cycles. Also, the split parameterfg] T. Oda and J. Leo, *

o Optimization of coordinated traffic
g1, g2 are reasonable because they are withid5, 0.83].

signal timings in urban road networkTrans. ISCIE 11,
To demonstrate control performance againsive next com- no. 7, pp. 364-374, (1998) (in Japanese).

pare the proposed method with the fixed split parameters, iﬁol

the case without control. For uniform random disturbances
w;(k),i = 1,2 within the range[—>5, 5] shown in Figure 7,

the numbers of vehicles and the split parameters by the pro-
posed method are shown in Figure 8. We see from this figyta] L. vvandenberghe and V. Balakrishnan, “Algorithms and

that these values are controlled reasonably. In contrast, Figure software for LMI problems in control JEEE Control Sys-
9 shows the numbers of vehicles by the fixed split parameters temsvol. 17, no. 10, pp. 89-95, (1997).

g =05,i=1,2.

H. Shimizu, “Congestion control system of arterials,”
Journal of the Society of Instrument and Control Engi-
neers 41, no. 3, pp. 199-204, (2002) (in Japanese).

[12] L. Vandenberghe and S. Boyd, “Semidefinite program-

5 Conclusion ming,” SIAM Review38, no. 1, pp. 49-95, (1996).

In this paper, we have proposed a new model for traffic signal 70
control by modifying the model in [3, 4]. We also have shown
that the way of choice state variables from links is important
from the viewpoint of the controllability of the model. Then :
we have presented tHé> control design method by means of
LMIs, and shown its effectiveness in the simple numerical ex-
ample. One of topics for further research is to evaluate the pro-
posed control method in more realistic traffic simulation sys-
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