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Abstract

This paper first proposes a model of traffic signal control sys-
tems for avoiding traffic congestion in urban road networks.
The model is constructed so that it is controllable, and dis-
turbances of traffic flow and changes of traffic situations can
be taken into account. As a result, the proposed model is de-
scribed as a linear system with polytopic uncertainties. Next,
a robust control method is applied to the proposed model so
as to achieve robust stability and performance under the uncer-
tainties. The proposed control method gives a control law for
real-time and network-wide traffic signal systems. A numeri-
cal example is given to show the effectiveness of the proposed
method.

1 Introduction

Traffic signal control plays a very important role for road safety
and smoothness of traffic flow. Especially, in order to avoid
traffic congestion in urban road networks, real-time control of
traffic signals have been studied [2, 3, 4, 7, 9, 10].

Recently, Diakaki et al. [3, 4] have proposed a model for such
network-wide traffic signal control, and applied optimal lin-
ear quadratic (LQ) control to the model. This research is very
promising for intelligent transportation systems. However the
model and the control method proposed in [3, 4] have the fol-
lowing problems.

• The model to be controlled is usually uncontrollable due
to an inappropriate choice of state variables, and, as a re-
sult, traffic flows are difficult to control adequately by the
proposed method.

• The disturbances which naturally appear in the model are
neglected when a feedback gain is designed.

• The control input calculated by the LQ method needs to

be modified so that some constraints on the control input
are satisfied. Therefore the resulting control input is not
optimal for the LQ performance index.

In this paper, we first propose a modified model for traffic sig-
nal control that resolves the above issues. The proposed model
is a linear system with polytopic uncertainties. We next ap-
ply theH∞ control method based on linear matrix inequalities
(LMIs) [1].

This paper is organized as follows: The model for traffic signal
control is described in section 2, including discussion of the
controllability of the model. In section 3, we apply the LMI-
based robust control technique to the model. Then, a numerical
example is provided in section 4, which is followed by the con-
clusion.

2 Model for Traffic Signal Control

The traffic signals are controlled mainly by three parameters
calledcycle time, split, andoffset[4, 6, 8]. Roughly speaking,
the cycle time is a period of repeated signal cycles, the split is
a ratio of green time to the cycle time, and the offset is the time
difference between the beginning times of green signals at mul-
tiple intersections. Another element islost timewhich means
time of yellow and all red signal. A simple example of the
signal cycle is shown in Figure 1. In general, it is difficult to si-
multaneously optimize these control parameters, and therefore,
many methods for individually optimizing each control param-
eter have been studied [6, 8]. In this paper, we concentrate on
control of the split parameter as well as in [3, 4].

Now we describe a model for traffic signal systems. An urban
road network is composed by the sets of links and intersections
denotingL = {L1, L2, . . . , LnL} andJ = {J1, J2, . . . , JnJ},
respectively. For each intersectionJi ∈ J , Ii andOi denote
the sets of incoming and outgoing links, respectively. We here
make the following assumptions:

• Cycle times at all intersections are equal and fixed;
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Figure 1: An example of signal cycle.

• Lost time (i.e., time of yellow and all red signal) of each
intersection is zero for simplicity;

• The turning movement ratesti,o from Li ∈ Ij to Lo ∈ Oj

at intersectionJj are assumed to be known and fixed.

For simplicity, we consider the case where all roads are along
x or y direction and all intersections have two signal stages as
shown in Figure 1. At intersectionJi, let gi ∈ [0, 1] be a split
(i.e., a ratio of green time to the cycle time) for the road along
x direction. Then, the split for the road alongy direction at the
intersection is1− gi.

Remark 1 In [3, 4], each split parameter of roads alongx and
y directions denoted here bygx andgy, respectively is indepen-
dently calculated by the LQ control. In implementation, how-
ever, the resulting parameters no longer satisfygx + gy = 1.
Therefore, these parameters need to be modified by solving an-
other optimization problem subject to this constraint, and hence
are not optimal in a sense of the LQ control. Note that, in order
to avoid such modification, we adopt the above settings for the
split parameters.
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Figure 2: An urban road link.

Consider a single linkLi connecting two intersectionsJm, Jn

such thatLi ∈ Om andLi ∈ In hold as shown in Figure 2.
Then, according to the store-and-forward modelling approach,
the dynamics of the link is expressed by

li(k + 1) = li(k) + qi(k)− ri(k) + wi(k),

whereli is the volume of traffic (i.e., the amount of vehicles)
within link Li; qi and ri are the inflow and outflow, respec-
tively, of link Li over the period[kT, (k + 1)T ] with the con-
trol intervalT which is assumed to be equal to the cycle time;
andwi is a disturbance within linkLi such as demand and exit
flows. Moreover we make the following assumptions:

• The inflow to link Li is given by qi(k) =∑
Lj∈Im

tj,irj(k);

• li is sufficiently large, and therefore, the outflowri of link
Li is given by

ri =
{

pigm, Li ∈ L is a road alongx direction
pi(1− gm), Li ∈ L is a road alongy direction

wherepi is the saturation flow that is the product of the
saturation flow rate and the cycle timeT ;

• Whenwi = 0 for all Li ∈ L, nominal green timesgN
i

at all intersectionsJi, i = 1, . . . , nJ that lead to a steady-
state system with equilibrium pointslNi for Li ∈ L are
available.

To construct a controllable system, we must carefully deter-
mine state variables from the links. To this end, we should not
choose the origin and destination links as state variables be-
cause these links are connected with single intersections and
thus are incomplete. Now let̃L(⊂ L) denote a set of links cho-
sen as state variables. Then, for linkLi ∈ L̃ connecting two
intersections as in Figure 2, the dynamics of linkLi ∈ L̃ along
x direction is described as

li(k + 1) = li(k) +
∑

Lj∈Im

tj,irj(k)− pign(k) + wi(k).

Note that the dynamics of links alongy direction are also de-
scribed in the similar manner. Arranging this equation, we have

li(k + 1) = li(k) +
∑

Lj∈Im

tj,isjpjgm(k)

− pign(k) + wi(k) + c, (1)

where

sj =
{

1, Lj is a road alongx direction
−1, Lj is a road alongy direction

andc is a constant. Since this system has an equilibrium point
from the assumption, it follows that

lNi = lNi +
∑

Lj∈Im

tj,isjpjg
N
m − pig

N
n + c. (2)



Subtracting (2) from (1), we have

∆li(k + 1) = ∆li(k) +
∑

Lj∈Im

tj,isjpj∆gm(k)

− pi∆gn(k) + wi(k), (3)

where ∆li(k) := li(k) − lNi , ∆gm(k) := gm(k) − gN
m ,

∆gn(k) := gn(k)− gN
n . LetnL̃ be the number of links chosen

as the state variables;x ∈ <nL̃ be the vector of∆li for Li ∈ L̃;
u ∈ <nJ be the vector of∆gj for Jj ∈ J ; andw ∈ <nL̃ be the
vector ofwi for Li ∈ L̃. Then (3) is summarized as follows:

x(k + 1) = x(k) + Bu(k) + w(k), (4)

whereB ∈ <nL̃×nJ is a matrix linearly including the satura-
tion flow parameterspi for Li ∈ L̃.

It is known that these saturation flow parameters are change-
able due to traffic conditions, and some of them might not be
ignorable. To cope with the parameter variation, we introduce
uncertainties forpi. Let L̂ be a set of links with such change-
able saturation flows, andnL̂ be the number of elements ofL̂,
and definepi for Li ∈ L̂ aspi ∈ [plb

i , pub
i ]. Then we obtain

B(k) ∈ Co{B1, B2, . . . , B2
n

L̂},
whereCo{B1, B2, . . . , B2

n
L̂} denotes the convex hull of the

constant matricesBi, i = 1, . . . , 2nL̂ corresponding to the ex-
treme points of the parameter space of the saturation flows with
uncertainties. Namely,B belongs to a matrix polytope. To sum
up, we obtain the following traffic signal system:

x(k + 1) = x(k) + B(k)u(k) + w(k), (5)

B(k) ∈ Co{B1, B2, . . . , B2
n

L̂ }.

Remark 2 In [3, 4], the disturbancew are finally ignored and
the uncertainty in the saturation flow is not taken account. We
adopt a control method such that these important factors can be
appropriately dealt with in the next section.

When we design a control system based on its model, control-
lability and observability of the model are important properties
to be checked. In our case,x is assumed to be measurable, and
hence, the observability of system (5) is satisfied. However, the
controllability of system (5) is not always satisfied. Related to
this, the following proposition holds for system (5).

Proposition 1 System (5) is controllable if and only if
rankB(k) = nL̃ for all k ≥ 0.

Proof: It is well-known that a linear system given by

x(k + 1) = Ax(k) + Bu(k),
x ∈ <nL̃ , u ∈ <nJ

is controllable if and only if the controllability matrix

U := [B, AB, . . . , An−1B]

has full row rank. SinceA = I in this case, the proof is obvi-
ous.

We see from Proposition 1 thatnL̃ ≤ nJ is a necessary condi-
tion for controllability of system (5).

Remark 3 In the conventional approach [4], all linksLi ∈ L
are chosen as state variables, and then, the number of links is
usually larger than that of intersections, i.e.,nL̃ > nJ . There-
fore, the system proposed in [4] is usually uncontrollable. As
mentioned above, it is important to choose appropriate state
variables so that the resulting system is controllable.

3 H∞ Control Based on the Proposed Model

We assume that the state variables are observable as well as in
[3, 4]. Then our aim is to seek a state-feedbacku(k) = Kx(k)
such that the closed-loop system is stable and satisfies desired
properties. Model (5) is a linear system with polytopic uncer-
tainties, and therefore, various control methods are known to be
applicable. We here present a control design method via LMIs
[1]. From now on, note that “P > 0” means that a symmetric
matrixP is positive definite.

3.1 Quadratic stabilizability

The closed-loop system with a state-feedbacku(k) = Kx(k)
is

x(k + 1) = (I + B(k)K)x(k) + w(k), (6)

B(k) ∈ Co{B1, B2, . . . , B2
n

L̂ }.
Stabilizability, i.e., a convergence property of all trajectories of
system (6), is the most fundamental requirement for construct-
ing the closed-loop system. A sufficient condition for this is
quadratic stabilizability defined as follows [1].

Definition 1 System (5) is said to bequadratically stabilizable
if there exist a state-feedback gainK and a quadratic function
V (ξ) = ξT Pξ, P > 0 that decreases along every nonzero tra-
jectory of (6).

A necessary and sufficient LMI condition for quadratic stabiliz-
ability of a continuous-time system is derived in [1]. An LMI
condition for the discrete-time system such as (5) can be easily
derived as well as in [1].

Proposition 2 System (5) is quadratically stabilizable if and
only if there exist matricesQ = QT andY satisfying

[
Q Y T BT

i + Q
Q + BiY Q

]
> 0, i = 1, . . . , 2nL̂ . (7)

Then, K = Y Q−1 is a quadratically stabilizable state-
feedback gain.

The condition (7) is an LMI ofQ andY . Therefore the feasi-
bility problem to seekQ andY satisfying (7) is a semidefinite
programming problem, and is efficiently solvable by recently
developed tools [5, 11, 12].



3.2 H∞ performance

To evaluate control performance, we introduce the control out-
put shown by

z(k) = Cx(k) + Du(k)
= (C + DK)x(k). (8)

We seek a state-feedback gainK such that theH∞ perfor-
mance

sup
‖w‖2 6=0

‖z‖2
‖w‖2 < γ (9)

is satisfied, whereγ is a specified number and‖ · ‖2 is thel2

norm defined by‖v(k)‖22 :=
∑∞

k=0 v(k)T v(k). Since the left
side in (9) equals the so-calledH∞ norm of the closed-loop
system (6), (8) with a constantB, the above property is called
theH∞ performance for a changeableB(k). A sufficient LMI
condition for theH∞ performance is derived as well as in [1].

Proposition 3 For a givenγ, if there exist matricesQ = QT

andY satisfying




Q Q + Y T BT
u,i 0 QCT + Y T DT

Q + BiY Q I 0
0 I γ2I 0

CQ + DY 0 0 I




> 0, i = 1, . . . , 2nL̂ , (10)

then the closed-loop system (6), (8) withK = Y Q−1 gives the
H∞ performance.

The condition (10) is also an LMI ofQ, Y andγ2. Therefore,
by solving the optimizatoin problem of minimizingγ2 subject
to (10), we can design a state-feedback gainK = YoptQ

−1
opt

whereYopt andQopt are the optimal solutions. By means of
theH∞ control, we can reduce the effect of the disturbances in
the closed-loop system. Here, note that LMI (10) includes LMI
(7), and thus, the closed-loop system constructed by solving
(10) is guaranteed to be quadratically stable.

Remark 4 We can evaluate the LQ performance by takingC
andD with symmetric matrices̄Q ∈ <nL̃×nL̃ , R̄ ∈ <nJ×nJ

as follows.

C :=
[

Q̄1/2

0

]
, Q̄ > 0

D :=
[

0
R̄1/2,

]
, R̄ > 0.

Then we see that‖z(k)‖22 =
∑∞

k=0 z(k)T z(k) gives an LQ
performance index since

z(k)T z(k) = x(k)T Q̄x(k) + u(k)T R̄u(k).
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Figure 3: A simple traffic network.

4 Numerical Example

Figure 3 shows a simple traffic network composed by the sets
of two intersections and 14 links denotingJ = {J1, J2} and
L = {L1, L2, . . . , L14}, respectively. The incoming links and
the outgoing links are as follows:

I1 = {L2, L3, L5, L7}
I2 = {L1, L9, L11, L13}
O1 = {L1, L4, L6, L8}
O2 = {L2, L10, L12, L14}.

We must to set state variables so that the control system is con-
trollable. Here we choose the numbers of vehicles in links 1
and 2 as the state variables, i.e.,L̃ = {L1, L2}. Let the data of
the (nominal) saturation flows and the turning movement rates
be

p1 = 50, p2 = 50, p3 = 40, p5 = 40,

p7 = 40, p9 = 40, p11 = 40, p13 = 40,

t3,1 = 0.25, t5,1 = 0.75, t7,1 = 0.25,

t9,2 = 0.25, t11,2 = 0.75, t13,2 = 0.25.

We assume that the saturation flows of linkL1 is changeable in
this example as follows:

p1 ∈ [40, 60].

Also let gN
i (i = 1, 2) be the nominal split parameters of the

roads alongx directionL1, L2, L5, L6, L11, L12.

For the above settings, we summarize the dynamics of linksL1

andL2 as follows:

l1(k + 1) = l1(k) + 10g1 − 50g2 + w1 + 20
l2(k + 1) = l2(k) + 10g2 − p1g1 + w2 + 20. (11)

We can see that system (11) has an equilibrium point, i.e., there
exist gN

i ∈ [0, 1] (i = 1, 2) for wi = 0 (i = 1, 2) andp1 ∈
[40, 60]. Then, the following equations hold forp1 ∈ [40, 60].

lN1 = lN1 + 10gN
1 − 50gN

2 + 20
lN2 = lN2 + 10gN

2 − p1g
N
1 + 20. (12)

Subtracting (12) from (11), and denotingx = [l1−lN1 , l2−lN2 ]T

andu = [g1 − gN
1 , g2 − gN

2 ]T , we have the following system:

x(k + 1) = x(k) + Bu(k) + w(k),



B ∈ Co
{[

10 −50
−40 10

]
,

[
10 −50
−60 10

]}
.

(13)

Note thatB is full rank for all p1 ∈ [40, 60], and thus, this
system is controllable.

For system (13), we seek a state-feedback controlu = Kx
using the proposed method. We set the parametersQ̄ = I,
R̄ = 10000I. All computation was run on MATLAB.

We first consider the case for reducing the current numbers of
vehicles in linksL1 andL2 by 20 and 5, respectively, under
w(k) ≡ 0. To this end, we set the initial statex(0) = [20, 5]T .
Figures 4–6 show the transient responses of the numbers of
vehicles and the split parameters for the saturation flowsp1 =
40, 50, 60, respectively. It is seen from these figures that the
numbers of vehicles inL1 andL2 are reduced by 20 and 5,
respectively, within about 5 cycles. Also, the split parameters
g1, g2 are reasonable because they are within[0.35, 0.83].

To demonstrate control performance againstw, we next com-
pare the proposed method with the fixed split parameters, i.e.,
the case without control. For uniform random disturbances
wi(k), i = 1, 2 within the range[−5, 5] shown in Figure 7,
the numbers of vehicles and the split parameters by the pro-
posed method are shown in Figure 8. We see from this figure
that these values are controlled reasonably. In contrast, Figure
9 shows the numbers of vehicles by the fixed split parameters
gi = 0.5, i = 1, 2.

5 Conclusion

In this paper, we have proposed a new model for traffic signal
control by modifying the model in [3, 4]. We also have shown
that the way of choice state variables from links is important
from the viewpoint of the controllability of the model. Then
we have presented theH∞ control design method by means of
LMIs, and shown its effectiveness in the simple numerical ex-
ample. One of topics for further research is to evaluate the pro-
posed control method in more realistic traffic simulation sys-
tems.

References

[1] S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan,
Linear Matrix Inequalities in System and Control Theory,
SIAM, (1994).

[2] B. De Schutter, “Optimal Traffic Light Control for a Sin-
gle Intersection,”Proc. American Control Conference,
pp. 2195–2199, (1999).

[3] C. Diakaki and M. Papageorgiou, “The coordinated
traffic-responsive urban control strategy TUC,”5th Delta
Report for DaimlerChrysler AG, (1999).

[4] C. Diakaki, M. Papageorgiou and K. Aboudolas, “A
multivariable regulator approach to traffic-responsive

network-wide signal control,”Control Engineering Prac-
tice, 10, pp. 183–195, (2002).

[5] P. Gahinet, A. Nemirovski, A. J. Laub and M. Chilali,
LMI Control Toolbox, For Use with MATLAB, The Math-
Works, Inc., (1995).

[6] P. B. Hunt, D. L. Robertson, R. D. Bretherton and M. C.
Royle, “The SCOOT on-line traffic signal optimisation
technique,”Traffic Engineering and Control, 23, pp. 190–
199, (1982).

[7] K. Iwaoka, T. Otokita, S. Niikura, “Optimization strategy
on urban signal control”,Proc. the 8th World Congress on
ITS ’01, (2001).

[8] Manual on Traffic Signal Control, Japan Society of Traffic
Engineers, (1992) (in Japanese).

[9] T. Oda and J. Leo, “Optimization of coordinated traffic
signal timings in urban road network,”Trans. ISCIE, 11,
no. 7, pp. 364–374, (1998) (in Japanese).

[10] H. Shimizu, “Congestion control system of arterials,”
Journal of the Society of Instrument and Control Engi-
neers, 41, no. 3, pp. 199–204, (2002) (in Japanese).

[11] L. Vandenberghe and V. Balakrishnan, “Algorithms and
software for LMI problems in control,”IEEE Control Sys-
tems, vol. 17, no. 10, pp. 89–95, (1997).

[12] L. Vandenberghe and S. Boyd, “Semidefinite program-
ming,” SIAM Review, 38, no. 1, pp. 49–95, (1996).

0 2 4 6 8 10
45

50

55

60

65

70

k

N
um

be
r o

f V
eh

ic
le

s

l
1

l
2

0 2 4 6 8 10
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

S
pl

it 
P

ar
am

et
er

k

g
1

g
2

Figure 4: The numbers of vehicles and the split parameters for
p1 = 40; l1 andg1 (solid); l2 andg2 (dashed).
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Figure 5: The numbers of vehicles and the split parameters for
p1 = 50; l1 andg1 (solid); l2 andg2 (dashed).
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Figure 6: The numbers of vehicles and the split parameters for
p1 = 60; l1 andg1 (solid); l2 andg2 (dashed).
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Figure 7: Disturbancew; w1 (solid);w2 (dashed).
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Figure 8: The numbers of vehicles and the split parameters with
control;l1 andg1 (solid); l2 andg2 (dashed).
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Figure 9: The numbers of vehicles and the split parameters
without control;l1 (solid); l2 (dashed).
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