NONLINEAR AND COOPERATIVE CONTROL OF MULTIPLE
HOVERCRAFT WITH INPUT CONSTRAINTS

William B. Dunbarf, Reza Olfati Saber, Richard M. Murray

Control and Dynamical Systems, Mail Code 107-81
California Institute of Technology, Pasadena, CA, USA 91125

Ph: (626) 395- 3366,

Fax: (626) 796- 8914

emai | : {dunbar, ol fati, murray}@ds. cal tech. edu
fCorresponding Author

Keywords: cooperative control, decentralized control, au-
tonomous multi-vehicles, underactuated systems, unidirec-
tional/bounded control.

Abstract

In this paper, we introduce an approach for distributed nonlin-
ear control of multiple hovercraft-type underactuated vehicles
with bounded and unidirectional inputs. First, a bounded non-
linear controller is given for stabilization and tracking of a sin-
gle vehicle, using a cascade backstepping method. Then, this
controller is combined with a distributed gradient-based con-
trol for multi-vehicle formation stabilization using formation
potential functions previously constructed. The vehicles are
used in the Caltech Multi-Vehicle Wireless Testbed (MVWT).
We provide simulation and experimental results for stabiliza-
tion and tracking of a single vehicle, and a simulation of sta-
bilization of a six-vehicle formation, demonstrating that in all
cases the control bounds and the control objective are satisfied.

1 Introduction

Cooperative control of systems with multiple semi-
autonomous vehicles that are capable of performing co-
ordinated tasks in a distributed manner is an active area of
research that has attracted great interest. This is due to the
many potential applications, such as coordination of unmanned
air vehicles (UAVs), automated search and rescue operations,
distributed sensory networks, and automated highway systems
to name a few.

An appropriate way to test and demonstrate some of the the-
oretical results obtained on distributed coordination of multi-
vehicle systems is on a testbed that mimics some of the realis-
tic constraints that exist in real-life applications of interest. To
this end, the Caltech Multi-\ehicle Wireless Testbed (MVWT)
has been designed, consisting of eight hovercraft-type under-
actuated vehicles with wireless communication and dedicated
sensing, actuation, and computational devices [1]. In this pa-
per, we demonstrate an extension of the result in Olfati Saber
and Murray [9] to distributed control of multiple MVWT vehi-
cles, which are subject to bounded and unidirectional controls.
This extension relies on an aggressive control design method
introduced by the second author in [8] for global configura-

tion stabilization of the Vertical Takeoff and Landing (VTOL)
aircraft. The dynamics of the VTOL aircraft has certain simi-
larities to the model of a MVWT vehicle.

In Leonard and Fiorelli [6], coordinated control of multiple ve-
hicles with linear and fully-actuated dynamics is examined us-
ing potential functions (that differ from the ones used in Olfati
Saber and Murray [9]). To the best of our knowledge, dis-
tributed cooperative control of multiple hovercraft type vehi-
cles has never been addressed before. In Fantoni et al. [4],
control of the kinematic model of a single hovercraft is consid-
ered without the constraint of bounded inputs. A rather general
result on stabilization of feedforward nonlinear system with
bounded controls is given in Teel [12]. This result is not ap-
plicable to the underactuated systems considered in this paper
because they are in strict feedback form. A direct use of the
standard backstepping procedure in Isidori [5] does not lead
to construction of uniformly bounded and unidirectional state
feedback laws. Instead, we use a variation of backstepping
procedure called “cascade backstepping” given in Olfati Saber
[7, 8] that does not make use of any recursive procedure for
construction of Lyapunov functions. An alternative approach
that accounts for the control constraints is to use Model Pre-
dictive Control (MPC) as in Dunbar et al. [2], where similar
restrictive control constraints need to be satisfied for MPC of
the Caltech ducted fan experiment. Formation stabilization of
three MVWT vehicles using MPC is considered in Dunbar and
Murray [3].

In Olfati Saber and Murray [9], a distributed and cooperative
control algorithm is developed for formation stabilization of
multiple fully-actuated vehicles with double-integrator (linear)
dynamics. The key idea of the algorithm in [9] is to automati-
cally obtain formation potentials from rigid and unfoldable for-
mation graphs as defined in Olfati Saber and Murray [10]. Then
use a gradient-based controller obtained from these formation
potentials to achieve local asymptotic stabilization of a desired
formation.

The main contribution of this paper is to show how the method
introduced in [9] can be extended to distributed and coopera-
tive control of multiple underactuated vehicles (i.e., hovercraft)
with nonlinear dynamics and bounded and unidirectional con-
trols. In fact, global asymptotic stabilization and asymptotic
position tracking for the dynamic model of a single underac-



tuated hovercraft with bounded and unidirectional control is
a rather challenging task. Therefore, first we address stabi-
lization/tracking problems for one vehicle. Then, we combine
the distributed controller given in [9] with the nonlinear con-
troller designed for a single vehicle to obtain a distributed con-
trol algorithm for coordination of multiple underactuated vehi-
cles. This is performed in a way that guarantees the control in-
puts of each vehicle satisfy the corresponding input constraints
throughout formation stabilization and tracking.

The outline of this paper is as follows. In Section 2, stabiliza-
tion of a single hovercraft is addressed and simulation results
are given in Section 3. The control design approach for the
tracking controller of a single vehicle is explained in Section
4 with experimental tracking results using the actual MVWT
presented in Section 5. The derivation of the distributed algo-
rithm for coordination of multiple vehicles is given in Section
6. Simulation results for six-vehicle formation stabilization is
presented in Section 7. Finally, concluding remarks are made
in Section 8.

2 Single Vehicle Stabilization Control

Each MVWT vehicle rests on omni-directional casters and is
powered by two uni-directional ducted fans. The hovercraft-
like underactuated dynamics of a MVWT vehicle can be ex-
pressed as

q =rT - (77/7”)"1,

6 = 7— (/)0
Fy = (mT+7J/r))2 1
Fy, = (mT—-1J/r)/2

0 < F <Fpaw 1=1,2

where (g,0) € R? xR, r; = [cos(f) sin(#)]T, and F; denotes
the unidirectional and bounded force applied by the i ducted
fan. In addition, T is the thrust and  is the torque induced by
the forces F; and F5. In terms of units, F; are in units of force,
while 7" and 7 are normalized and have units of translational
and rotational acceleration, respectively. As a result, 7" and 7
are restricted to stay in the shaded region specified in Figure 1,
where Thae = 2F mae /™, Tmaz = Tmae /20 and o = J/mr.

Figure 1: Shaded region depicts allowable thrust force 7" and
torque 7 values.

The parameters m, J,n, v, r denote the mass, moment of in-

ertia, viscous translational and rotational friction coefficients,
and the thrust force moment arm, respectively (see [1] for de-
tails).

For future use, we define the m-dimensional sigmoidal func-
tion o, : R™ — R™ as

Yy — 1
oy, (y) = —=——, anddenote o, =o0,,,
" e+ |lyl]? "
withm =1,2,...,e > 0and || - || denotes the Euclidean norm

|| - ||2 unless stated otherwise.

In the following, we construct a controller that stabilizes the
translational state in equation (1), i.e. (q, q), to the origin. The
attitude (or rotational) state (6, §) is stabilized to (6, 0), where
f¢ is a constant. By our approach, it is not possible to specify
Oc in the stabilization problem. Thus, it should be understood
that when we reference stability, we a referring to stabilization
to the final state (q,0,q,60) = (0,6¢,0,0). Remarks on the
value of O are given at the end of this section.

Consider translational stabilization to the origin for a double-
integrator system

subject to the control constraint ||u|| < Upger. Let u =
k(g,q) be a global stabilizing state-feedback for this 2-
dimensional double-integrator with damping. To satisfy the
control bounds, we use the following saturated (or sigmoidal)
PD controller

k:(qa q) = _UmaxUQ(q + q) (3)

It can be shown that according to LaSalle’s Invariance theorem,
the smooth and positive-definite function

V(g.q) = 14I1*/2 4 Unmazp(@), ©(q) £ /1+|lq|]> -1

is a valid Lyapunov function for the closed-loop system that
guarantees global asymptotic stability of the equilibrium point
(g,q) = (0,0), where ¢ satisfies p(q) > 0, ¢(q) =0< g =
0and Vo(q) = 02(q).

Given the bounded controller k& above and returning to equation
(1), the translational dynamics are stabilized by setting

mT =k, or T=]|kl|, ri=k/|K| 4)
From the definition of r; = [cos(6) sin(6)]7, the value of 6
and its derivatives can be computed given k and its derivatives.
From 6 and its (first two) derivatives, we can in turn determine
the torque 7 from the attitude dynamics. As such, derivatives
of k/||k|| are required for construction of the torque 7. In or-
der that these derivatives be well-defined over a domain that
includes the origin, we scale T" and 7, in equation (4) by the
parameter ¢ as follows

|||
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F=Cry, T = (%), where ¢ =



implying 7T = k. We refer to the desired values for 7" and 7
as Ty and 74, respectively, given by

Ty = \/]|k||? + €2,

We choose the thrustas 7' = CTd so that the control bounds for
the thrust are satisfied. In the remainder of this section, the re-
maining control 7 is constructed, given the desired orientation
according to »; = 74/¢ and such that the torque constraints
are satisfied. Let f'g = [v1 vo] and 6, denote the desired value
of 0 so that

#q = o5(k).

Ccos(fy) =v1, (sin(0y) = va.

Given 74, g = arctan(vz /vy ), which implies the desired val-
ues for 6 and 6 can be computed as

Vo1 — V201 Vo1 — Vol ¢
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where (=

To avoid singularity problems arising from division by ¢, a
modified version of ¢ denoted by ¢ is used. We define ¢ as
follows

é(k75) = { é{ﬂ’

Now, we construct the appropriate torque 7. Writing the atti-
tude error state as (6,,6.) = (0 — 64,0 — 6,) and combining
this with equation (1) yields
Oc + 00 =1 — (0/J)(0e +0a) = b =7 — (¥/J)be,
where 7 =7 — 04 — (¢/.J)04

0<|k||<e
e < [|K||

We use the following saturated PD controller to stabilize the
above error dynamics

7 = —Boy(0e + 6.),

that satisfies the torque constraint | 7| < B. Finally, the desired
torque for the original system is

T4 = —Bo (96 + ée) + éd + (’(/)/J)ed

According to equation (3) and 7' = (7}, the bounds on the
desired thrust are ¢/v/2 < T < Uyuaz, SO choosing e small
enough and U,,q. = Thae Will always generate a 7' that sat-
isfies the aforementioned bounds. The torque bounds are cap-
tured by the following function that is parameterized by the
thrust T

7| < a(T), where a(T) = Tyas — é T = T /2| (5)
The torque bounds could be achieved in practice by incorpo-
rating a saturation function, namely by applying the torque
7 = o1(74)a(T"), which we refer to as torque cutting.

e & ¢

For tuning the performance of the controller, we introduce pa-
rameters in k and 7 as

k= *TmamO—Q(alq + CY2¢'J)7 T = 7B0—1(ﬂ10e + ﬂQée)-

The five controller parameters are thus (a1, aq, 51,52, B).
These parameters can be chosen such that |74| < a(T), in
which case we can set = = 74 and the constraints in equation
(1) are satisfied analytically. In this case, a proof of asymptotic
stability of the closed-loop dynamics follows along the same
lines of the proof of Theorem 2 in [8].

In the stabilization simulation, the parameters are chosen such
that the torque bounds are satisfied analytically (meaning with-
out cutting but for a given bounded set of initial conditions) and
we implement 7 = 7,. Of course, for large enough initial state
error, the same controller parameters result in violation of the
torque bounds. However, it should be noted that the MVWT
platform has a bounded configuration space and the simulation
result here shows aggressive performance with a non-trivial ini-
tial state error. For tracking, stability holds when an appropriate
time-parameterization of the desired trajectory, with uniformly
bounded tracking path curvature, is chosen. Although torque
cutting will guarantee that the torque bounds are respected, in-
dependent of the controller parameters, such a control law is
known to be non-robust and not necessarily stabilizing. This is
why it is desirable to avoid torque cutting.

As stated, stabilization is with respect to the final state
(q,0,q4,0) = (0,6c,0,0). With the notation ¢ = (z,y),
04 = arctan(ve/v1) = arctan((a1y + a29)/(c1x + ag)),
and so (0, éd) exhibits initial transient behavior and converges
to (0c,0), where ¢ = lim;_, arctan((o1y + a2y) /(o x +
ast)). The value of this limit depends upon the initial transla-
tional state and the controller parameters (aq, a2), and there-
fore cannot be commanded in general to take any desired value.

3 Single Vehicle Stabilization Simulation

The physical parameter values [1] are (m, J,n,v,r) = (5.15
kg, 0.05 kg-m?, 4.5 kg/s, 0.084 kg m?/s, 0.124 m). Fig-
ure 2 shows the response of the vehicle from initial condition
(q.0,4,0) = (1,1,7/4,0,0,0) to the origin. The graphi-
cal picture of the vehicle shows the position, orientation and
the fan forces, where the length of the cone is proportional
to the force in each fan. Figure 3 shows the inputs on the
force/torque map and Figure 4 shows the closed-loop state re-
sponses. In this case, 7 = 74 and the torque bounds are an-
alytically satisfied. ~ The dashed lines in the state responses
define the desired state (0, 64,0, éd). The controller parame-
ter values chosen for this simulation are (ay, as, 1, 52, B) =
(0.5,0.75,0.2,0.05, Taz /2). The closed-loop response at-
tests to the stability and performance of the controller. The
initial torque (visible in the difference in the length of the fan
cones and on the force map) results from the initial configura-
tion error, particularly the angle error 6.(0) # 0.
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Figure 2: Stabilization of vehicle in ¢ = (z,y) space from
(1,1,7/4,0,0,0) to the origin.

Force Map

Figure 4: Closed-loop response of the vehicle states (solid
lines) and desired state (0, 64, 0, 64) (dashed lines).

4 Single Vehicle Tracking Control

Consider tracking a desired translational position and velocity
(a4, @) with double integrator dynamics ¢ = u— (¢, for some

B > 0, subject to ||u|| < Upnaz. Again, denote the controller
u = k(q, 4, q,4, q,) and the translational error state (g, q.) =
(g — q4,q — q4)- Using a saturated PD error controller, the
control law is given by

k= _UmaIUQ(alqe + aQqe) + qd

To satisfy the thrust constraint, we must characterize the pa-
rameter U,,.. and the desired translational acceleration. For
example, when ||g,|| < pTmaz, for some p € (0,1/2], the
appropriate choice is [ Trnae(1 — p). The control law
for T is as defined in the previous section with k given above.
The expression for 7 is also the same as in the previous section,
although to guarantee that the configuration error can be driven
to zero in the presence of equation (5), the values for qff’) and
qff) (denoting third and fourth time derivatives), as well as the
controller parameters (a1, ag, 51, 32, B), must also be char-
acterized. The specific characterizations will be detailed in a
future paper that addresses stability theoretically [11].

5 Single Vehicle Tracking Experiment

The tracking signal is g; = 2.5(sin(wt), cos(3wt)), where
w = 0.16 rad/sec is chosen such that ||g,|| < 0.3 Thas- Fig-
ure 5 shows a plot of the hovercraft trajectory (solid line) and
the reference trajectory (dashed line) in x, y space. The circle
and diamond indicate the initial and final positions of the hov-
ercraft, respectively. The plot also shows the dimensions of the

Vehicle Tracking

Figure 5: Tracking reference in (x,y) space of hovercraft on
MVWT floor.

MVWT floor [1] on which the vehicles are permitted to move;
the outer line denotes the floor boundary and the inner box de-
notes an obstacle that the hovercraft is not permitted to pass
through. Figure 6 shows the state responses and reference tra-
jectories. The closed-loop response attests to the performance
of the controller in the presence of the uncertainty and distur-
bances present in the MVWT experiment.
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Figure 6: Closed-loop response of the experimental vehicle
states.

6 Multi-vehicle Formation Potential Based Co-
oper ative Control

From [9], a cooperative and distributed control law for the
translational dynamics of the ith vehicle in a rigid formation
graph is given in explicit form k; = k;(q;, q;,q,;,) by

ki =Taa [ MINil | D or(mij)ni; | — (1= Noa(q,) |

JEN;
(6)

where A € (0, 1), g, are translational configuration variables,
N; denotes the set of neighbors of the ith vehicle on the graph,
|V;| is the total number of neighbors of the ith vehicle, and the
edge shape variables and the unit vectors connecting vehicle i
to vehicle j are, respectively, defined by

q9; — 4,

ng; = ——————.
Y qu_qu

nij = lla; — q;ll — dij,

The feedback laws T;, 7, for each vehicle ¢ are again as defined
in Section 2 with k set to k;. Proof that k; is stabilizing and
that ||k;|| < Tnae, for all vehicles 4, is detailed in [9]. The
controller parameters are (a1, as, A, 81, B2, B), which can be
chosen independently for each vehicle in the formation.

As before, the derivation of the torque ; requires two time-
derivatives of k,;, which in turn requires that each vehicle have
the following information from its neighbors at each update
of the controller: (q;,0;,q;,k;), forall j € N;. Thus, the
control law is generated in two-stages (in series). That is, for
vehicle 4, k; is first computed given state 7 and the position
of all neighbors, then the rest of the control law is computed
given (q;,0;,4q;,k;), forall j € NV;. In a practical setting, this
means (wireless) communication must occur amidst the control
computations.

7 Six-Vehicle Formation Stabilization Simula-
tion
The directed graph G = (V, E) that corresponds to this ex-

ample has vertex and edge sets V' = {1,2,3,4,5,6} and £ =
{(1,2),(1,3),(2.3),(2,5),(3,2). (3.5), (4,2), (4,5), (5.2),

(5,3),(6,5),(6,3)}. Figure 7 shows the desired formation
depicted as a directed graph, where each vehicle has 2 neigh-
bors with a desired distance of 1 from each neighbor. Figure
8 shows the response of the six vehicles for stabilization from
the initial configuration shown, with zero initial velocity.

4
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g

Figure 7: Desired formation, depicted as a directed graph.
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Figure 8: Six vehicle stabilization response.

Figure 9 shows the six input responses on the force/torque
map and Figure 10 shows the inter-vehicle distances for
each edge in the graph.  The controller parameter values
chosen for this simulation, common for all six vehicles, are
(a1, 0, A, B1, B2, B) = (1.0,0.5,0.5,1.0, 0.5, Traz /2).

8 Conclusions

Cooperative and distributed nonlinear control of a multi-
vehicle formation that consists of the underactuated hovercraft-
type vehicles of the Caltech MVWT has been examined in this
paper. The nonlinear hovercraft controllers that perform sta-
bilization/tracking for a single underactuated vehicle were here
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Figure 9: The force/torque map.
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Figure 10: Intervehicle distances for all edges in graph.

developed according to the cascade backstepping method given
in [8]. Then, the distributed control algorithm introduced in [9]
for asymptotic formation stabilization of multiple vehicles with
double-integrator type dynamics, was combined with the non-
linear hovercraft controller. The result is a distributed nonlinear
control algorithm for formation stabilization of multiple under-
actuated, nonlinear hovercraft-type vehicles subject to bounded
and unidirectional input constraints.

We presented simulation and experimental results for stabiliza-
tion and trajectory tracking, respectively, of a single vehicle,
and a stabilization simulation of a six vehicle formation. In all
cases, we observed that the controllers perform well, in par-
ticular behaving in a rather aggressive way by initially staying
close to the control bounds. Moreover, all controllers satisfy
the control bounds imposed on the inputs of each vehicle.

Formal proofs of stability analysis is the topic of an upcoming
paper [11] and follows the same lines of argument presented in
[8, 9]. Additional experimental results, for single and multiple

vehicles, will also be conducted in the near future.
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