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Abstract 
 
Considering the extensive applications and also importance of simulators 
with flexible abilities such as link speed, reliable topology and accessible 
for all necessary data and tests, this paper addresses a method which have 
these advantages including a structure which can be updated for several 
behaviors of processes.  Here we present an advanced power plant simulator 
based on a combination of mechanistic equations and neural networks and 
wavelet models to achieve a high performance response. The hybrid 
modeling approach is applied to the complex dynamics of a fossil fuel steam 
power plant which have previously developed via SIMULINK and OOP. 
Since most of high order simulators consume much time to analyze a 
behavior and also their development is very time consuming, this article 
tries to present a hybrid simulator to overcome these problems. 
Comparisons of the hybrid simulator and the original one is also presented.  

 
 
1  Introduction 
 
With improving computer hardware and numerical methods, 
simulation and simulators have been received attention in the 
literature. Since power plants are complicated systems, their 
simulators and also simulation time are important issues for 
engineers [4]. 
In this paper, the development of a hybrid model of a fossil 
fuel steam power plant using artificial neural networks and 
its combination with wavelets (i.e. called wavenets) [9] is 
presented. The basic system under study here is a typical 
power plant developed in SIMULINK environment based on 
“Object Oriented Programming” (OOP) and C-programming 
language, and created a new toolbox for constructing 
simulators. An important feature of this environment is 
building the “Dynamic Link Library” (DLL) of m-files and 
c-files of the block diagrams of this simulator using Visual 
C++ program linked with the MATLAB. Here, one needs to 
produce new MATLAB S-functions to construct an 
intelligent library [10],[11].  
The developed simulator is able to use all MATLAB 
toolboxes for training, testing and other research studies. 
One may also invokes neural network and wavelet toolboxes 
 

 
 
 
 
 
 
 
 
 
 
 
 
for the development of the hybrid models of the system 
within this simulator.  
Several parts of the basic power plant such as boiler, steam 
turbine, condenser, feed water system, furnace, steam 
generator, superheater, attemperator, reheater and air 
preheater can be modeled with neural networks. Such 
models would be so useful for decreasing the time of 
simulation and can be easily modified and developed for real 
power plants. Besides, due to the capability of general neural 
networks and also wavenets, reliable and accurate models 
based on the real  data and under practical conditions can be 
developed and employed in the simulator. 
In this paper, after the above general introduction, the 
concept of hybrid modeling is explained. Then, various 
components of a fossil fuel steam power plant are 
introduced. The study will be followed by hybrid modeling 
of the power plant and simulation results of the new 
developments.  
 

2  Hybrid Modeling 
In science and engineering there are two fundamentally 
different philosophies that form the basis of modeling, 
namely the mechanistic and empirical approaches. A 
mechanistic model structure is developed on the basis of a 
detailed understanding of the generic underlying 
mechanisms, or laws, that governs the system behavior. 
While system parameters may be identified using empirical 
data. An empirical model, on the other hand, is derived on 
the basis of the specific observed behavior of the system. Its 
structure is often a generic black box that cannot be directly 
interpreted in terms of the system mechanisms.  
However, it may also be developed on the basis of empirical 
knowledge, including measured process data, and the 
experience of process operators and engineers. Often, neither 
of these two approaches are attractive. If the system 
mechanisms are only partially understood, the development 
of a mechanistic model structure may not be feasible. This 
may, however, also be the case for an empirical model, 
because of a lack of process data and difficulties to 
incorporate the available system knowledge in this approach. 
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This is because engineering knowledge is incompatible with 
many empirical model representations, like black boxes. 
In practice, most models are based on an unbalanced 
combination of mechanistic and empirical knowledge. For 
example, in a mainly mechanistic approach certain aspects of 
the system that are not sufficiently well understood may be 
described by empirical correlations in the model. Also, in a 
dominantly empirical approach, some mechanistic 
understanding is often useful to make certain structural 
choices, like the model order, or non-linearities. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1: Illustration of different modeling paradigms [6] 
 
Moreover, at early stages in the model development, an 
empirical model will often be useful as a starting point for 
gaining more knowledge and eventually designing a 
mechanistic model. Different modeling paradigms are 
visualized in Fig.1, projected onto the “mechanistic” and 
“empirical” axes. A typical situation is illustrated, where the 
initial state of the model development is characterized by a 
lack of both empirical and mechanistic knowledge [7]. 
 With the empirical approach, one will collect more data, and 
end up in a state with more data and perhaps some improved 
mechanistic knowledge. With the mechanistic approach, on 
the other hand, one will end up with significantly improved 
mechanistic knowledge and perhaps some more data. The 
“in between" region and path corresponding to hybrid 
models (semi-empirical models, semi-mechanistic models, 
or models with a balanced utilization of empirical and 
mechanistic knowledge) is often approached in an ad. hoc. 
manner, or avoided. A major reason for this may be that 
powerful frameworks and software tools for such problems 
are lacking. The main objective of this papers is to develop 
and study a framework that we believe may be useful for 
solving such hybrid modeling problems. It is our assumption 
that resources in many cases can be saved by choosing the 
hybrid approach [6]. 

3 Steam Power Plant Components 
A typical fossil fuel steam power plant contains four main 
parts: 
• Boiler 
• Turbine 
• Condenser 
• Feed Water System 
 In our basic simulator the above subsystems are accessible 
in both open loop and closed loop situations. So we are able 
to get data from each variable of the plant under various 
conditions. But it is assumed that the measured parameters 
are in the normal behavior of the plant. No start up and/or 
shut down stages are considered here. The subsystems of 
each part of the plant have been introduced as the following. 
 
3.1  Boiler 
The boiler contains the following components: 
• Furnace 
• Drum and Riser 
• Superheater 
• Reheater 
The order of the dynamic mechanistic equations of the open 
loop boiler, without PID controllers and actuators is 14 with 
22 output and 14 input variable including 42 algebraic 
equations as it shown in Fig.2. For more details of 
mechanistic and thermodynamics equations, one may see 
[10].  

 
Figure 2: Block diagram of boiler configuration 



Each subsystem of the boiler is constructed via MATLAB S-
functions compiled with MEX-functions. These blocks use 
DLL files and can be incorporated in an intelligent or expert 
simulator. 
According to the practical situations [2],[5],[8] not all the 
inputs are subject to considerable deviations, and it is only 
necessary to deal with the manipulated variables which are 
used to control the system. The reduced set of variables is 
shown in Table 1. 
 

INPUTS 
Notation Variable Name Unit Nominal Value 

WF fuel flow to furnace Kg/Sec 16.3584 
We water flow to drum Kg/Sec 12 
WA air flow to furnace Kg/Sec 84.8824 
θ tilt angle Rad 0.88041 

Wa water flow to attemporator Kg/Sec 0 
OUTPUTS 

Notation Variable Name Unit 
L level of drum water m 
PG air furnace pressure Pa 
PS Superheater steam pressure Pa 
TS Superheater steam temperature ºK 
Tr reheater steam temperature ºK 

 

Table 1: Manipulated variables of the boiler 

 

As seen in Table 1, there are five fundamental inputs in the 
boiler to be changed to produce the necessary information 
for training the neural networks. This is performed by 
applying changes to the manipulated variables of Fig.2. 
These inputs have deviations around their nominal value (see 
Table 1). The range of these changes can be found by 
measuring the input deviations in the closed loop system, 
and is suggested in Table 2. 
 
 

Deviations in Inputs 
∆WF [-0.01,+0.01]  Kg/Sec 

∆We [-0.5,+0.5]  Kg/Sec 

∆WA [-0.015,+0.080]  Kg/Sec 

∆θ [-0.0011,+0.0015]  rad 

∆Wa [0,+1]  Kg/Sec 

 

Table 2: Input changes of the boiler 

 

Any change in the input is applied after every 50 seconds, 
for 500 seconds with a normal random distribution and the 
solution method is (ode4) Runge Kutta with ∆t=0.01 second 
fixed step. The resulting outputs are shown in Fig.3. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3: Output changes of the boiler for the input variation of Table 2 
 

3.2 Turbine 
The components of turbine of the simulator are: 
• High Pressure (HP) 
• Intermediate Pressure (IP) 
• Low Pressure (LP) 
The order of the dynamic equations of the open loop turbine 
(without PID controllers and actuators) is 10 with 11 outputs 
and 11 inputs and 32 algebraic equations as shown in Fig. 4 



(see [10] for details of equations). The manipulated variables 
are shown in Table 3. 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 4: Block diagram of Turbine Configuration 

 

INPUTS 
Notation Variable Name Unit Nominal Value 

WS Steam flow to HP Kg/Sec 12 
PS Steam pressure of HP Pa 4.5251*106 

TS Steam temperature of HP ºK 717.72 
ρos Steam density of HP Kg/m3 13.662 
hS Steam enthalpy of HP J/Kg 3.3117*106 

Wro Steam flow to IP Kg/Sec 10.459 
Pro Steam pressure of IP Pa 1.3034*106 
Tr steam temperature of IP ºK 727.25 
ρor Steam density of IP Kg/m3 3.8835 
hro Steam enthalpy of IP J/Kg 3.3334*106 

OUTPUTS 
Notation Variable Name Unit 

Pm turbine power output W 

ω turbine speed p.u. 
 

Table 3: Manipulated variables of turbine 
 

The ten input variables of the turbine are due to the change 
to get necessary output information. Their changes in closed 
loop system are presented in Table 4 for neural network 
training. 
The changes in inputs, apply after every 50 second, for 500 
second with a normal random distribution and the solution 
method is (ode4) Runge Kutta with ∆t=0.1 second tolerance. 
We should note that in practice not all the inputs are to 
considerable change in close loop system, but here we apply 
the changes to all inputs to get rich data for training. 
The measured output due to the ten inputs changes is shown 
in Fig.5. As it is shown in Table 3, the angular velocity (ω) 
is also another output, but because of the simple dynamic of 
the generator in the simulator we do not need to model this 
component. 

Deviations in Inputs 
Variable Changes Variable Changes 

∆WS [-4,+1]  Kg/Sec ∆Wro [-3,+1]  Kg/Sec 
∆PS [-104,+104]  Pa ∆Pro [-104,+104]  Pa 
∆TS [-4,+4] ºK ∆Tr [-2,+2]  ºK 
∆ρos [-0.02,+0.02] Kg/m3 ∆ρor [-0.03,+0.03]  Kg/m3 
∆hS [-103,+103]  J/Kg ∆hro [-3*103,+3*103]  J/Kg 

 

Table 4: Input changes of turbine 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 5: Output changes of the turbine 

3.3  Condensor, Feed Water System and Generator 
The other components of the simulator such as condenser, 
feed water system, generator, pumps, valves, economiser, 
deaerator, actuators and the others have simple dynamics and 
are represented via simple algebraic equations. Therefore, 
we do not need to find any new model for these parts. So the 
combination of mechanistic equations for the components 
with simple dynamics and the neural network modeling for 
the complex parts of the plant will build a hybrid model with 
high performances.   
 

4 Developing Hybrid and Neural Network Models 
Because of the complexity of the boiler and the turbine 
dynamics, we try to develop accurate neural networks (NN) 
models for these components in the simulator. The numbers 
of inputs and outputs of the boiler regarding their sampling 
time, are ten data sequences with 500,000 samples in each 
series that should be used to train a neural network and with 
5 input and 5 output. Such a training with a proper error 
index takes tremendous time and may not be practically 
useful. To avoid this problem, we use an extrapolation 
method for every 5 sample. Also, to simplify the modeling 
we can use five different neural networks for each output. 
This allows us to have a smaller error and it does not take 
much training time for the networks. The past inputs of the 
last two sampling times are also taken as the inputs of the 
neural networks model of the boiler. Thus, for each of the 



boiler’s output variables yk ,  the inputs of the  network will 
be yk-1, yk-2, u1, u2, u3,  u4 and u5 . 
The networks considered here is a three hidden layer (Multi 
Layer Perceptron) MLP network. The number of the neurons 
in each layer is chosen by trial and error to get the best 
numbers. The functions used in the layers are tan-sigmoid 
for the first and second layers, and pure linear for the output 
layer (see Fig.6). 
 

 

 

 

 
Figure 6: Normalized Tan-Sigmoid and Linear Function used in 

 Neural Network [3] 
 

The termination error is 10-6  and the number of neurons for 
each output is shown in Table 5. 

Number and Types of the Neurons to Train Boiler Variable 
with MLP Network 

Variable Layer Number 1 
(Tan-Sigmoid) 

Layer Number 2 
(Tan-Sigmoid) 

Layer Number 3 
(Pure Linear) 

L 2-Neurons 4-Neurons 1-Neuron 
PG 2-Neurons 2-Neurons 1-Neuron 
PS 1-Neuron 2-Neurons 1-Neuron 
TS 2-Neurons 3-Neurons 1-Neuron 
Tr 2-Neurons 3-Neurons 1-Neuron 

Table 5: Number of neurons for the boiler modeling 
 

For the turbine system we use Pmk-1 , Pmk-2 , u1 , u2 , … , u10 
to train the  network. The layers used in this case are: 
• Layer Number 1 (Tan-Sigmoid), 1-Neuron 
• Layer Number 2 (Tan-Sigmoid), 2-Neurons 
• Layer Number 3 (Pure Linear), 1-Neuron 
MLP networks with backpropagation learning algorithm 
were developed for the boiler system [3]. Due to the special 
nature of the turbine system, wavenet networks showed 
better approximation features and thus used here. For a detail 
explanation of the wavenets and their properties see [9]. 
 
5  The Hybrid Simulator and Closed Loop Responses 

Having developed NN models of the turbine and boiler 
systems which cover the most complex part of the power 
plant simulator, and constructing the rest of the simulator 
components using the mechanistic model formulations, the 
hybrid simulator is built by combining the two parts of our 
developments. In fact, to get familiar with the mechanistic 
parts of the simpler elements of the simulator, one may see 
[10], [11]. The closed loop systems (with controllers, valves 
and etc.) in this new simulator is studied to show the 
performance of the new developments.  

The testing signals are applied to the closed loop boiler 
system which contains the boiler, two valves and six PID 
controllers and closed loop turbine system containing three 
valves, generator and  a PID controller [10],[11]. We apply 
different disturbances based on the real environment and 
actual conditions [2],[5],[8] to test the performance of the 
hybrid simulator by changing the setpoints as follows: 
Test 1: Reduce in ps and pg by 10% in 200 seconds (fig.7) 
Test 2: Increase in level of drum water by 10% (fig.8) 
Test 3: Reduce in temperature of superheater by 7ºk (fig.9) 
Test 4: Reduce in temperature of reheater by 3ºk (fig.10) 
Test 5: Reduce turbine power by 10% in 200 seconds(fig.11) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 7: Reduce in PS (top) and PG (bottom) by 10% in 200 seconds 

 

 

 

 

 

 

 

 
Figure 8: Increase in level of drum water by 10% 



 

 

 

 

 
 

Figure 9: Reduce in Temperature of Superheater by 7ºK 

 
 

 

 

 

 

 
 

 

Figure 10: Reduce in Temperature of Reheater by 3ºK 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 11: Reduce turbine power by 10% in 200 seconds; output power 
(top) and turbine speed (bottom) 

To compare the results of the basic simulator and estimated 
outputs by the hybrid simulator, we use the normalized root 
mean square error [1]: 
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where x̂  is the output vector of hybrid simulator and x  is 
the output vector of the basic simulator. This error is 
computed for all of the boiler and turbine outputs. The 
results is shown in Table 6. 
 

Output Normalized Root Mean Square Errors 
L 0.0281 TS 0.0207 
PG 0.0759 Tr 0.0377 
PS 0.0452 Pm 0.00023 

 ω 0.0000715  

Table 6: Output Errors 
 

As we can see in Table 6, the minimum errors occurs in 
variables Pm and ω of turbine, because the training method  
of these parts is based on wavenet structure. The wavelet 
which is used in this case is One-Dimensional-Daubechies-
Type-Wavelet [9]. Beside of the good performance one can 
see in the hybrid simulator, the simulation time is also a 
great importance. The simulation times decrease from about 
10 minutes for 500 seconds simulation to 10-20 seconds for 
each part of the simulator. 
 

6 Conclusions 
In this article, a new development of a hybrid simulator of a 
fossil fuel power plant was addressed. The idea was to model 
some complex and time consuming parts of the power plant 
using NN’s and wavenets. Then combined these parts with 
some simple mechanistic formulations to build the hybrid 
simulator. Some advantages of this hybrid simulator is its 
flexibility in re-newing the models of the complex parts and 
the accuracy that it will have due to the possibility of the 
development of NN models based on the real and updated 
data of a true power plant. Besides, the simulation time will 
be considerably reduced and allows a faster decision making 
process. The great potential of wavenet models were proved 
very well in this study. For additional works, we are able to 
add some noise sources to simulate the various behaviors of 
the plant and also to extend the hybrid simulator to cover the 
start up and shut down equations which are very 
complicated. 
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