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Abstract

This paper presents a novel emergency control scheme capa-
ble of predicting and preventing a voltage collapse in a power
system, that is modelled as a hybrid system incorporating non-
linear dynamics, discrete events and discrete manipulated vari-
ables. Model Predictive Control in connection with the Mixed
Logical Dynamical framework is used to successfully stabilize
the voltage of a four bus example system.

1 Introduction

An electrical power system consists of numerous components
connected together to form a large, complex system gener-
ating, transmitting and distributing electrical power. Electric
power systems and additional preventive control schemes are
designed in such a way, that the system should be able to with-
stand any single contingency, that is, outage of any single com-
ponent without loss of stability and with all system variables
kept within predefined ranges [10]. Not all possible distur-
bances, however, can be foreseen at the planning stage and
these may result in instability leading eventually to collapse or
islanding of the system. Furthermore, because of environmen-
tal constraints on the extension of the transmission capacity, in-
creased electricity consumption and new economic constraints
imposed by the liberalized power market, power systems are
operated closer and closer to their stability limits.

Under heavy load conditions, a power system can become un-
stable exhibiting slow voltage drops, that may lead to a voltage
collapse resulting in a black-out if appropriate countermeasures
are not taken. Several such voltage instability incidents have
occurred around the world [17, 20]. As a consequence, voltage
stability has become a major concern in power system planning
and operation and the need for emergency control schemes that
ensure stability - also during cascaded or multiple outages - has
increased.

Currently, most practical implementations of protection sys-
tems against voltage collapses are purely rule-based and most
often based only on local criteria [6]. General rules are to dis-
connect load and to connect any available capacitor bank if the

voltage drops to abnormally low levels. While local protec-
tion schemes have the obvious advantage of simplicity since
they do not require wide-area communication, it has been been
shown, that substantial benefits can be gained by coordinat-
ing the actions taken in different parts of the system [13]. In
particular, proper coordination of all control measures mini-
mizes the amount of load shed. Additionally, because of the
nonlinearity of the power system, it is very difficult to specify
a single appropriate rule for the complete range of operating
conditions. Traditionally, these rules are tuned on an ad-hoc
basis [6]. In [15] however, a systematic approach has been re-
ported, where an optimally tuned rule is derived by solving a
combinatorial optimization problem.

The nonlinear behavior of the system calls for methods based
on a dynamic model in order to account for changes of the op-
erating point and the network state. This is complicated by the
fact, that most control moves are inherently discrete-valued.
Examples include capacitor banks and tap changers, which
must be switched using fixed step sizes, and load-shedding
which must be carried out by disconnecting whole feeders since
most utilities lack direct load control schemes. Recent ad-
vances in computation, communication and power system in-
strumentation technology, more specifically Phasor Measure-
ment Units and Wide-Area Measurement Systems [16], have
made coordinated and model based approaches tractable. They
are highly attractive since the use of a model in combination
with on-line optimization allows for optimal coordination of
different control moves and automatic adaption to changing op-
erating conditions. Thanks to this, they are less conservative
than non-adaptive local schemes - even if the local schemes
have been optimally tuned - and thus avoid unnecessary op-
eration of the protection schemes in order to minimize load
shedding.

Model Predictive Control (MPC) has been used successfully
for a long time in the process industry and recently also for
hybrid systems [3]. MPC was first applied to the emergency
voltage control problem in [12]. There, the MPC problem was
based on a single linearized model for the whole prediction
horizon. The discrete-valued control variables led to a com-
binatorial optimization problem which was solved by a tree
search. In [13], this work was extended by heuristic search
enhancements in order to render the problem tractable also for
large-scale applications.
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Figure 1: Example power system.

As detailed above, power systems are hybrid systems incorpo-
rating not only discrete manipulated variables but also discrete
events like logic and finite state machines. Although there exist
various different methodologies to model hybrid systems, their
equivalence can be shown under mild assumptions [8]. In this
paper, we will focus on the Mixed Logic Dynamical (MLD)
framework [3]. In comparison to the previous work [12, 13],
the MLD framework allows us to model the hybrid behavior
of the power system and thus provides better accuracy since
effectively multiple linearizations are used during the predic-
tion interval. It is believed that this is the first time a general-
purpose control framework is applied successfully to the emer-
gency voltage control problem.

The paper is structured in the following way. Section 2 sum-
marizes the model of the example power system and Section
3 details its formulation as MLD model. The optimal control
problem is stated and solved in Section 4. Section 5 concludes
the paper.

2 Example Power System

In this paper, we will focus on the power system given
by [11, 7], which is contained in the EU project Control and
Computation (CC) as a case study. This power system incor-
porates all the components of a mature power system and can
be driven unstable exhibiting a voltage collapse. Nevertheless,
it is small enough to serve as a starting point allowing for a
successful derivation of an emergency control scheme.

2.1 Overview

As depicted in Figure 1, the power system contains two gener-
ators. The generator 1 is modelled as an infinite bus, i.e. a large
power system, whereas generator 2 can only produce a limited
amount of reactive power. The latter includes an internal con-
troller regulating the voltage at bus 2. The two generators are

connected with each other and the transformer by three trans-
mission lines. All these components form the transmission sys-
tem of the power system.

The transformer incorporates an internal controller regulating
the load voltage V4m within a dead-band around the voltage
reference V4m,ref . This controller is a finite state machine and
allows changes of the tap position nT only every 30 s by one
discrete step. In addition, by setting sC , parts of the capacitor
bank can be used to support the power system by producing
reactive power close to the load.

The distribution system that, in general, consists of numerous
loads on different voltage levels connected with each other by
transformers, is modelled using one load model aggregating
and approximating the whole distribution system. It is con-
nected to the secondary side of the transformer. Discrete parts
of the load can be disconnected by using sL.

Summing up, the power system has one continuous constrained
manipulated variable, namely the reference voltage of the tap
changer V4m,ref ∈ [0.8, 1.2]1, and two integer manipulated
variables given by the number of discrete capacitor banks con-
nected to the system sC ∈ {0, 1, 2, 3} and the discrete amount
of load-shedding sL ∈ {0, 1, 2, 3}. The outputs of main in-
terest are the three continuous bus voltages Vim ∈ R, i ∈
{2, 3, 4}. Besides that, the power system has the following
continuous and discrete-valued states. The two continuous
states xLp, xLq ∈ R describe the dynamics of the active
and reactive power in the load. The discrete-valued variable
nT ∈ {0.8, 0.82, 0.84, . . . , 1.2} denotes the tap position of the
transformer. Additional binary states are needed to model the
finite state machine of the internal tap changer controller.

As detailed in [7], the power system under consideration is a
hybrid system containing integer manipulated variables, a satu-
ration, a finite state machine with thresholds and boolean logic,
two ordinary differential equations and 29 algebraic equality
constraints of which 18 are nonlinear. The detailed mathemati-
cal model including the parameters is given in [7], but omitted
here due to space limitations.

2.2 Decomposition

The power system which incorporates both continuous dynam-
ics and discrete events can be divided accordingly into the fol-
lowing two parts:

(i) The continuous dynamical system. This part is modelled as
a differential algebraic equation (DAE) system which is formed
from the two ordinary differential equations (ODE) of the load
and the algebraic equations (equality constraints). The ODE as
well as most of the algebraic equations are nonlinear. Addition-
ally, the saturation of the internal Automatic Voltage Regulator
(AVR) of generator 2 can be included as part of the continu-
ous dynamics. The discrete-valued nT and the integers sC and
sL form the inputs to this subsystem, the three bus voltages

1All equations, variables and parameters are normalized using the per-unit
system (p.u.), as it is common practise in the power system community.
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Figure 2: Model decomposition.

Vim, i ∈ {2, 3, 4} constitute the outputs, and xLp, xLq are the
continuous states.

(ii) The discrete event system. It combines the thresholds and
the finite state machine modelling the internal controller of the
transformer. V4m,ref and the bus voltage V4m are the continu-
ous inputs, nT is both the discrete-valued output and the state.

The model decomposition is shown in Figure 2, where x :=
[xLp, xLq]T , ub := [sC , sL]T and y := [V2m, V3m, V4m]T .

For completeness, the initial values of the load states are given
by xLp(0) = xLq(0) = 0, the position of the tap changer is
nT (0) = 1.02 and the steady state inputs to the nominal system
are V4m,ref = 1, sC = 2 and sL = 0.

2.3 Fault

At time t = 100 s a short circuit occurs in the transmission
line L3 which is immediately partly disconnected. As a conse-
quence, the admittance of the line is reduced from 2 to 2

3 , which
increases the power losses on the line and constricts the power
transmitted from generator 1 to the load. Therefore, the second
generator is put under heavier load. The dynamics of the load
together with the internal controller of the tap changer drive
the generator 2 to its loading limit. The overexcitation limiter
of the second generator is activated at time t = 224 s leading
to a loss of voltage control and to a fast voltage collapse within
less than 200 s as shown in Figure 3.
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Figure 3: Bus voltages of open-loop response: V2m is the dash-
dotted, V3m the dashed and V4m is the solid line.

3 MLD Model

The general MLD form of a hybrid system introduced in [3] is

x(t + 1) = Ax(t) + B1u(t) + B2δ(t) + B3z(t) (1a)

y(t) = Cx(t) + D1u(t) + D2δ(t) + D3z(t) (1b)

E2δ(t) + E3z(t) ≤ E4x(t) + E1u(t) + E5, (1c)

where x ∈ R
nc × {0, 1}n� denotes the states, u ∈ R

mc ×
{0, 1}m� the inputs and y ∈ R

pc × {0, 1}p� the outputs,
with both continuous and binary components. Furthermore,
δ ∈ {0, 1}r� and z ∈ R

rc represent binary and auxiliary con-
tinuous variables, respectively. These variables are introduced
when translating propositional logic or PWA functions into lin-
ear inequalities. All constraints on state, input, and auxiliary
variables are summarized in the inequality (1c). Note that the
equations (1a) and (1b) are linear; the nonlinearity is hidden in
the integrality constraints over the binary variables.

We consider MLD systems that are completely well-posed [3],
i.e. for given x(t) and u(t), the values of δ(t) and z(t) are
uniquely defined by the inequality (1c). This assumption is not
restrictive and is always satisfied when real plants are described
in the MLD form [3].

Based on Section 2.2, the nonlinear model of the power system
can be cast into MLD form using two different approaches.

The first approach is to approximate the continuous-time dy-
namics of the DAE by discrete-time dynamics and subse-
quently to approximate the nonlinearities of the discrete-time
dynamics and the algebraic equations by PWA functions. This
can been done using an algorithm based on [5] exploiting the
combined use of clustering, linear identification and classifica-
tion techniques allowing us to identify at the same time both
the affine functions and the polyhedral partition of the domain
on which each affine function is valid. However, as most of the
involved expressions are strongly nonlinear and defined over
two- or three-dimensional domains and because the interac-
tions between the nonlinear algebraic constraints are tight, this
approach leads to a disproportionally large number of polyhe-
dra and unacceptable large approximation errors [7].

On the other hand, approximating the input to output behavior
of the entire DAE system with the AVR reduces not only the
number of polyhedra but also leads to significantly smaller ap-
proximation errors. This subsystem has the continuous states
xLp and xLq, the discrete-valued input nT and the integer in-
puts sC and sL. Gridding the state-input space spanned by xLp,
xLq and nT , and sampling the system response for each com-
bination of integer inputs yields the discrete-time state-update
functions of the load as well as the output functions of the bus
voltages.

The number of states can be reduced by one by observing that
the ratio between the load states is almost constant, i.e. xLp

xLq
∈

[9.995, 10.4]. The function r(V4m) := 10 + 4.75( 1
V4m

− 1)
approximates xLp

xLq
well for xLp ∈ [−1, 10] observed during

experiments. Due to the fact that the DAE with the AVR is



only mildly nonlinear, it is sufficient to partition the resulting
two-dimensional state-input space, which is spanned by xLp

and nT , into 24 triangular polytopes or simplices. Then, the
toolbox [9] yields the PWA state-update and output functions
for a given integer input combination. As sC = 0 or sC = 1
would destabilize the system and sL > 1 is never necessary
in order to stabilize the system, we only consider sC = {2, 3}
and sL = {0, 1}. This helps to reduce the complexity of the
MLD model. Note that the partition does not depend on the
integer inputs. For each binary input combination, however,
each polytope refers in general to a different PWA state-update
and output function.

The discrete event system of the power system can be rewritten
directly as inequality constraints (1c) by introducing binary and
auxiliary continuous variables [3].

The above procedure yields an MLD system with two states,
302 z-variables, 31 δ-variables and 1660 inequality constraints.
The derivation of the MLD system is performed by the com-
piler HYSDEL (HYbrid System DEscription Language) gener-
ating the matrices of the MLD system starting from a high-level
description of the system [18].

4 Optimal Control Problem

4.1 Control Objectives

The control objectives are to bring V4m as close to its refer-
ence value 1 as possible while fulfilling the soft constraints
on the bus voltages V2m ∈ [0.95, 1.05], V3m ∈ [0.9, 1.1] and
V4m ∈ [0.9, 1.1] and while switching the manipulated variables
as little as possible.

The control moves can be classified as nominal and emergency
control. During nominal control, the soft constraints on the bus
voltages can be fulfilled by using only “cheap” control moves,
i.e. capacitor bank switching sC and changing the tap changer
voltage reference V4m,ref . If the soft constraints can’t be met
by only applying cheap control moves, the controller has to
switch to emergency control and use the full range of available
control moves including load-shedding which is considered to
be very expensive.

4.2 MPC

As introduced in [19], Model Predictive Control (MPC) is well
suited for finding control laws in an optimal way for hybrid
systems described in the MLD framework. Here, an objec-
tive function is used that penalizes with the ∞-norm over a
finite horizon the following three terms. (i) the deviation of
the load voltage V4m from its reference, (ii) the switching of
the manipulated variables and (iii) the violation of the soft con-
straints. The control law is then obtained by minimizing the
objective function subject to the mixed-integer linear inequal-
ity constraints of the MLD model (1) and the physical con-
straints on the manipulated variables. As we are using the ∞-
norm, this minimization problem amounts to solving a Mixed-

Integer Linear Program (MILP). For details concerning the set
up of the MPC formulation in connection with MLD models,
the reader is referred to [3] and [2]. Details about MPC can be
found in [14].

4.2.1 Cascaded Controller Scheme

The reference voltage V4m,ref is used to communicate to the
internal controller of the tap changer whether the tap position
shall be kept, increased or decreased by one step. In order to
avoid sensitivity problems with this controller, we introduce
the tapping strategy ∆nT ∈ {0, nstep,−nstep}, and we con-
sider for the MPC formulation that ∆nT is manipulated di-
rectly subject to the limitation that it can only be changed ev-
ery 30 s. Then for the actual implementation we need to convert
back from ∆nT calculated by MPC to V4m,ref applied to the
tapping controller.

V4m,ref (t) =




V4m,ref (t − 1) if ∆nT (t) = 0,
0.8 if ∆nT (t) = −nstep,
1.2 if ∆nT (t) = nstep.

Note that 0.8 and 1.2 constitute the minimal and maximal ad-
missible values of V4m,ref and nstep = 0.02 is the physical
step size of the tap changer.

4.2.2 MPC Objective Function

According to [2] and Section 4.1 and employing the cascaded
controller scheme, the optimal control problem

min
∆u(0),..,∆u(N−1)

J :=
N−1∑
k=0

(
‖V4m(t + k|t) − 1‖ + ‖Q∆u(k)‖∞

)

+
N−1∑
k=1

(
S(t + k|t) + S(t + k|t)

)

is considered subject to the evolution of the MLD model
(1) over the prediction horizon N and additional physi-
cal constraints on the manipulated variables as defined in
Section 2.1. The switching of the manipulated variables
∆u := [∆nT ,∆sC ,∆sL]T is weighted by the matrix Q :=
diag(q1, q2, q3). Note that due to the cascaded controller
scheme, the tap changer strategy ∆nT is weighted rather than
the reference voltage V4m,ref . From a physical point of view
this is reasonable, too, as the mechanical wear of the trans-
former results from tapping and not from changes in the refer-
ence voltage.

Having set the weight on the voltage deviation ‖V4m(t+k|t)−
1‖ to one, the weight Q on the manipulated variables is cho-
sen such that control moves are performed when the penalty
on the voltage deviation exceeds a certain limit. Therefore,
Q is derived by comparing the cost on the voltage deviation
‖V4m(t+k|t)− 1‖ when refraining from using a control move
with the cost of performing a control action [12]. Assume, that
the tap changer may be moved by one step up or down, if this
results in a reduction of the voltage deviation by at least 0.004.



As one step is given by nstep = 0.02, we get q1 = 0.004
0.02 = 0.2.

Analogously, assuming that one part of the capacitor bank may
be switched if this reduces the voltage deviation by 0.03 or
more leads to q2 = 0.03

1 = 0.03. As the lower and upper volt-
age constraints on V4m are equal to 0.9 and 1.1, respectively,
the maximal cost resulting from the voltage deviation is 0.1.
Load-shedding has to be avoided unless a soft constraint on the
bus voltages is violated. This implies q3 � 0.1

1 = 0.1 and
therefore, q3 = 1 is chosen.

In order to take the soft constraints on the lower bounds into
account, the binary variables δi, i ∈ {2, 3, 4} indicating the
violation of the i-th lower soft constraint are introduced:

[δi(t) = 1] ↔ [Vim(t) < V im],

where V 2m = 0.95, V 3m = V 4m = 0.9 are the lower bounds
on the respective bus voltages as defined in Section 4.1. Ad-
ditionally, the slack variables si ≥ 0, i ∈ {2, 3, 4} denote the
degree of the violation:

si(t) =
{

0 if δi(t) = 0,
V im − Vim(t) if δi(t) = 1.

Penalizing the violation as well as the degree of the violation
yields

S(t + k|t) = p ·
4∑

i=2

(
δi(t + k|t) + si(t + k|t)

)
.

The soft constraints on the upper bounds S(t + k|t) are pe-
nalized accordingly. The weight p is chosen such that the full
range of control moves can be used to remove the violation.
This reasoning leads to p � ‖q · ∆umax‖∞ = 3 and to the
choice p = 10.

This choice of the penalties will cause emergency actions to be
triggered as soon as one of the soft constraints is violated and
will avoid the soft constraints to be violated unless absolutely
necessary.

4.3 Control Experiments

This section presents control experiments using the cascaded
controller scheme. MPC employs the derived MLD model as
prediction model, whereas the “real” power system is described
by the more accurate nonlinear model [7, 11]. As the load
states and the tap changer position can be easily measured or
estimated, we assume that they are available for the MPC con-
troller. Given the sampling time Ts = 30 s, the length of the
prediction horizon N is set to 3, making sure that the predic-
tion time interval amounts to 90 s and thus exceeds the domi-
nant time constant Tp = Tq = 60 s of the load. Then, given the
initial states and inputs of Section 2.2 and applying the fault in
line L3 at time t = 100 s, we obtain the following closed-loop
results.

Figure 4 shows the bus voltages V3m and V4m of the original
nonlinear model as well as the ones of the MLD model. V2m is

not depicted, as it remains within [1.02, 1.03] during the con-
trol experiment and is thus of minor interest. The manipulated
variable V4m,ref together with its tolerance band is shown in
Figure 5, whereas Figure 6 displays the trajectory of the tap
changer position nT . The manipulated integer variables are as
follows: sC is in the beginning equal to 2 and then set to 3 at
time t = 120 s, whereas sL remains constant at 0.

The fault at time t = 100 s reduces the bus voltages instanta-
neously leading to a voltage collapse if no appropriate control
actions are taken as shown Figure 3. At the first sampling in-
stant after the fault at time t = 120 s, MPC predicts the po-
tential collapse and connects the remaining part of the capac-
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Figure 4: Bus voltages: V3m of the nonlinear model: solid;
V3m of the MLD model: dash-dotted; V4m of the nonlinear
model: dashed; V4m of the MLD model: dotted.
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itor bank to the power system by setting sC to its maximum
value 3. This control move is both necessary and sufficient to
stabilize the system and therefore, thanks to the proper timing,
only nominal control moves are needed to prevent a voltage
collapse. Thus, load-shedding is avoided and sL is kept at 0.
Note that the proper timing of the control actions is important,
as connecting the capacitor bank a few sampling instants later
would lead to a severe violation of the lower soft constraint on
V3m that could not be removed by nominal control moves only
(i.e. within the sampling time). As a result, emergency control
would be applied and part of the load would be shed in order to
meet the soft constraints.

Apart from the capacitor switching, V4m,ref is set to its max-
imum at time t = 120 s in order to step up the tap changer
twice thus reducing the deviation of V4m from its reference. At
t = 270 s and t = 480 s, however, MPC issues tap down com-
mands in order to avoid violations of the lower soft constraint
on V3m. According to the objective function and the horizon,
this is the optimal sequence of control moves. If desired, a dif-
ferent tuning of the objective function and a longer prediction
horizon can avoid the tap up and down actions and keep the tap
changer at its initial position.

In Figure 4, the modelling error which results from approxi-
mating the nonlinear DAE by PWA functions can be seen as a
small mismatch between the respective bus voltages of the non-
linear and the MLD model. Increasing the number of partitions
of the PWA approximation would reduce the errors arbitrarily.
The major error, however, is introduced by discretizing the time
with Ts = 30 s. Using a sampling time of 10 s reduces this er-
ror significantly. For Ts = 10 s and N = 7, similar results are
obtained with the only difference that the controller issues the
first stabilizing control moves already at time t = 110 s. Fur-
thermore, the system response of the MLD prediction model is
smoother.

The computation times for solving the optimal control problem
at each time-step when running CPLEX 8.0 on a Pentium IV
2.8 GHz machine are as follows. For Ts = 30 s and a horizon
N = 3, the computation time is on average 1.8 s and always
less than 3.5 s. For Ts = 10 s and N = 7, the respective times
are 11 s and 160 s.

5 Conclusions

The example power system [7, 11] was modelled as an MLD
system. Replacing the nonlinearities by PWA approxima-
tions introduces only small modelling errors hardly manifest-
ing themselves in the control experiments thus proving the
usefulness of the MLD modelling approach. We have shown
that the load voltage V4m can be stabilized by an appropriately
tuned MPC controller using only nominal control moves. The
tuning of the controller is straightforward and systematic allow-
ing us to easily distinguish between nominal and emergency
control moves.

Future research will be directed to avoid online optimization by

deriving the explicit feedback law [1, 4], to show closed-loop
stability and to extend the size of the example power system.
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