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Abstract

A lateral stabilization system for automotive vehicles is de-
signed based on nonlinear constrained receding horizon con-
trol. An explicit piecewise linear control law approximating
the optimal solution is computed off-line, giving a computa-
tionally efficient on-line solution which can be implemented
with low real-time software complexity on inexpensive hard-
ware. Simulations show that the controller is able to stabilize
the vehicle in extreme maneuvers where the vehicle otherwise
becomes unstable.

1 Introduction

One of the first contributions within the field of stabilizingcon-
trol of automotive vehicles was ABS brakes, which was com-
mercially introduced more than 20 years ago. ABS controllers
maintain high longitudinal braking efficiency and improve lat-
eral stability of the vehicle during braking maneuvers. These
systems were followed by traction control systems, which im-
prove the lateral stability and maximize friction during accel-
eration of the vehicle. A natural continuation of this devel-
opment was to introduce automatic control of the yaw motion
during critical situations to retain steerability of the vehicle, see
e.g. [1]. Such control systems became commercially available
in the 90’s, with the Electronic Stability Program (ESP) [2].

The contribution of this work is a study of model-based, con-
strained optimal control of the vehicle yaw dynamics. As sug-
gested in [10] the strategy is to keep the states within certain
bounds so that steerability of the vehicle is retained. Thisis
done by using a receding horizon control (RHC) approach in
which a nonlinear optimization problem is solved at each sam-
ple, taking advantage of all available degrees of freedom inthe
braking system. We are not aware of any previous work on
optimization based controllers for automotive vehicle yawdy-
namics.

The main problems of designing a controller for the yaw
dynamics are the nonlinearities which appear in the system
model, in addition to achieving the largest possible regionof
stabilizability under control input constraints. The RHC prob-
lem formulated in this paper requires the solution of a nonlinear
program (NLP) at each control sample, giving an optimal feed-
back control. This is, however, not a technique which is ap-
plicable to a practical implementation in a real vehicle, due to

high on-line computational requirements, and complex numer-
ical software which is generally not recommended in safety-
critical applications. We address this problem by designing an
approximation to the optimal solution based on multiparamet-
ric nonlinear programming (mpNLP) [8]. This is a technique
in which an arbitrarily close approximation to the solutionof
an NLP can be found off-line as an explicit, piecewise linear
(PWL) function of the state. This gives a solution which can
readily be implemented and verified on inexpensive hardware
with high software reliability.

2 Vehicle Model

In the model-based approach to yaw rate control we use the
vehicle model for horizontal plane motion in [11], where more
details can be found.

Some nomenclature:

v Speed (absolute value of velocity vector at COG)
β Vehicle side slip angle
ψ̇ Yaw rate
Fxi Force on wheel in longitudinal direction,i ∈ {1, 2, 3, 4}
Fyi Force on wheel in lateral direction,i ∈ {1, 2, 3, 4}
Fzi Vertical force on ground from each wheel,i ∈ {1, 2, 3, 4}
δi Steering angle,i ∈ {1, 2, 3, 4}
m Vehicle mass
J Vehicle moment of inertia about COG
µH Maximum friction coefficient
αi Wheel side slip angle (angle between velocity vector

at centre of wheel and wheel direction),i ∈ {1, 2, 3, 4}
µyi Lateral friction coefficient,i ∈ {1, 2, 3, 4}
µxi Longitudinal friction coefficient,i ∈ {1, 2, 3, 4}

A three state model will be used to describe the dynamics of
the vehicle, based on the geometry in Figure 1. We will as-
sume that the driver controls the front wheel steering angleδW
by using the steering wheel, while the controller can use the
four longitudinal brake slipsλxi for stabilizing the lateral mo-
tion. We assume that only brakes are available as actuators,
so that only negative forcesFxi can be generated. Moreover,
we assume that only the front wheels can be steered, that is
δ1 = δ2 = δW , and δ3 = δ4 = 0. The wheel forces are
given by the friction coefficients, which are given by nonlinear
functions (friction curves) [11]:

Fxi = −Fziµxi(λxi, αi, µH) (1)

Fyi = Fziµyi(λxi, αi, µH). (2)

For simplicity we have assumedFzi = mg
4

. One could, how-
ever, include the effects of roll and pitch onFzi without adding
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Figure 1: Vehicle geometry and coordinate definitions

considerably to the complexity of the control law. Figure 2
shows friction curves for lateral forces for some values ofαi,
while Figure 3 shows a typical friction curve for longitudinal
forces forαi = 0. The vehicle is assumed to be equipped with
an ABS system with a slip controller which can apply com-
manded longitudinal slip values individually to each wheel,
[5, 11, 13].
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Figure 2: Lateral friction coefficient as a function of the longi-
tudinal slip

From Newton’s law one can derive

[

v̇

β̇

]

= −

[

0

ψ̇

]

+
T (v, β)

m

4
∑

i=1

D (δi)

[

Fxi
Fyi

]

. (3)

Similarly, a torque balance gives

ψ̈ =
1

J

4
∑

i=1

gTi (hi, θi)D(δi)

[

Fxi
Fyi

]

. (4)
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Figure 3: Longitudinal friction coefficient as a function ofthe
longitudinal slip

Here,

T (v, β) =
1

v

[

v cosβ v sinβ
− sinβ cosβ

]

, v > 0, (5)

gi(hi, θi) =

[

− sin θi
cos θi

]

hi, (6)

D(δi) =

[

cos δi − sin δi
sin δi cos δi

]

. (7)

Let the state vector bex = [ v β ψ̇ ]T and the control input
u = [ λx1 λx2 λx3 λx4 ]T . We can then summarize the
nonlinear state space model in the form

ẋ = f (x, u, δW , µH) . (8)

We want to use feedback from the system state in the controller,
and thus need measurements/estimates of this. The vehicle
speedv can be estimated from the wheel speeds and acceler-
ation sensors,̇ψ can be measured and an observer can be de-
signed to obtain the vehicle side slip angleβ. We also need
an estimate of the current friction coefficientµH , which we as-
sume is available from the ABS system (see e.g. [5, 10, 11]) or
a separate system such as [7].

3 Yaw Dynamics Control Problem Formulation

The main goal of using brake actuators to control the yaw mo-
tion, is to be able to maintain steerability of a vehicle in critical
driving situations in which the driver is unable to do this by
using the steering wheel alone. We will use the same strategy
of maintaining vehicle steerability as suggested in [10], which
is by constraining the vehicle side slip angleβ and the yaw
rateψ̇ to be within upper/lower bounds. We will in addition to
this also place constraints on the control inputs. The authors of
[10] addressed the state constraints indirectly by commanding



the reference values of the states, using a linearized modeland
a pole placement approach. In our approach we will use the
nonlinear dynamical model of the vehicle and an RHC opti-
mal control strategy, to directly address these constraints. This
strategy aims at computing an open loop optimal control trajec-
tory on a time horizon. The first part of the control trajectory is
applied to the is commanded to the vehicle’s ABS system, and
at the next sample the optimization is repeated, but now witha
shifted horizon and a new initial condition from the new state.
In this way this becomes a closed loop approach, see [12] for
an overview.

The state and input constraints appear explicitly in the prob-
lem formulation as linear and nonlinear inequality constraints,
while the state space model appears as nonlinear equality con-
straints. As the forces generated by the brakes are in negative
x direction, the control inputsλi are constrained as

λi ≥ 0 for i ∈ {1, 2, 3, 4} . (9)

The yaw rateψ̇ is constrained by [10]
∣

∣

∣
ψ̇
∣

∣

∣
≤ ψ̇max (v, v̇, β) =

aYmax
− v̇ sinβ

v cosβ
, (10)

whereaYmax
is the maximum lateral acceleration, given by

aYmax
= µYmax

· 8m/s2, (11)

andµYmax
is the maximum lateral friction coefficient. More-

over, the side slip angleβ was in [10] constrained by a function
of the velocityv, that is

|β| ≤ βmax (v) = 10◦ − 7◦ ·
v2

(40m/s)
2
. (12)

Since our simulations indicated that (12) is generally satisfied
when (10) is enforced, we chose to leave (12) implicit in the
controller design to reduce controller complexity. These con-
straints are, however, shown in the simulations in Section 5.
For simplicity, we consider a fixedµh = 0.8.

Let the horizon[0, T ] be divided intoN equal sized intervals
by the ordered set of time instants{t1, t2, . . . , tN} ⊂ [0, T ].
Let the input signalu [0, T ] be constant in each interval and pa-
rameterized by a vectorU = [ uT (0) · · · uT (tN−1) ]T ∈

R
4N , and letX = [ xT (t1) · · · xT (tN ) ]T ∈ R

3N de-
note the vector of states at these time instants. By relaxingthe
inequality constraints to hold only atN time instants, we can
form the following dynamical optimal control problem (multi-
ple shooting [4]):

V (x(0)) = min
U,X,s

(

sTWs+

∫ T

0

u (t)
T
Ru (t) dt

)

(13)

subject to the constraints,

λxi (t) ≥ 0, i ∈ {1, 2, 3, 4} andt ∈ {t1, ..., tN} , (14)

|β (t)| ≤ βmax (v (t)) + sβ , t ∈ {t1, ..., tN} , (15)
∣

∣

∣
ψ̇ (t)

∣

∣

∣
≤ ψ̇max (v (t) , v̇ (t) , β (t)) + sψ̇, t ∈ {t1, ..., tN} ,(16)

x (ti+1) = φ (x (ti) , u (ti) , ti+1 − ti) , i ∈ {0, ..., N − 1} (17)

whereφ(x(t), u(t), τ) denotes the solutionx(t + τ) to ẋ =
f (x, u, δW , µH) with initial conditionx(t) and constantu(t),
δW andµH on the time interval betweent andt+ τ . Here,s =
[ sβ sψ̇ ] are slack variables used to guarantee the existence
of a feasible solution to the inequality constraints, the predic-
tion horizonT = 0.6s, N = 3, R = I4×4 andW = 2I2×2.
The differential equations are solved by using the forward Eu-
ler method, with a discretization interval of∆t = T ·N

10
. We

assume during the prediction that the driver does not change
the steering wheel angle. Note that this formulation does not
assume any setpoints for the states. This means that as long as
the inequality constraints are fulfilled on the horizon, thecon-
trol input will be zero, so that the driver controls the vehicle by
the steering angle alone. However, when the state constraints
become active, the controller directs the appropriate forces to
the individual brakes to keep the states within the constraints.

4 Solution via mpNLP

The optimization problem from the previous section is not well
suited for a real-time application using an on-line NLP solver.
This is mainly due to the high computational costs required to
solve the NLP (13)–(17) at each sample. Instead, we obtain an
approximate solution in the form of a piecewise linear (PWL)
control law by using mpNLP [8]. The NLP (13)–(17) can be
written in the general form,

min
z
J(z, θ) (18)

G(z, θ) = 0 (19)

H(z, θ) ≤ 0, (20)

wherezT = [UT XT sT ] andθT = [xT δTW ]. Eqs. (18)–
(20) are to be considered a multiparametric program, which
means thatθ is a parameter to the optimization problem, and
the optimal solution is to be found for a range of parameter
values. We seek to find an explicit approximate representation
of the solution as a function of these parameters. The algorithm
in [8] does this by partitioning the parameter space into a set of
polyhedra, in which the NLP is approximated by a quadratic
approximation. Each of these approximations can be treated
as a multiparametric quadratic program (mpQP) which can be
solved exactly off-line, giving the control input as an explicit
PWL function of its time-varying parameters [3]. The method
can briefly be summarized as follows (see [8] for details)

1) Let Θ be a polyhedral set of parametersθ in which the
mpNLP is to be solved. LetΘ0 = Θ.

2) Selectθ0 as the centre point ofΘ0.

3) Solve the NLP (13)–(17) withθ = θ0 by using an NLP
solver to obtain the solutionU∗(θ0),X∗(θ0) ands∗(θ0).

4) Compute a local quadratic approximation to the NLP cost
function, and a linear approximation to the NLP con-
straintsG andH at (θ0, U

∗(θ0),X
∗(θ0), s

∗(θ0)). Such
an approximation defines an mpQP.



5) Estimate the maximal errors (in cost function, control in-
puts and constraint violations, see [8] for details) made by
approximating the mpNLP solution with the mpQP solu-
tion for θ ∈ Θ0. If these are not within apriori defined
bounds, sub-partitionΘ0 into two polyhedral regions.

6) Select a newΘ0 from the partition. If no further sub-
partitioning is needed, go to step 7. Otherwise, go to Step
2.

7) For every sub-partitionΘ0, solve the local mpQP prob-
lem.

This means that the main effort of solving the optimization
problem is moved off-line. Efficient off-line mpQP solvers
have recently been developed [14]. The on-line effort is re-
duced to evaluating a PWL function, which can be imple-
mented efficiently using a binary search tree as in [15].

The explicit solution obtained in this paper was computed for
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We assume thatβ cannot have a too large positive value for a
positive ψ̇. This assumption was made to decrease the com-
plexity of the controller, this may, however, need to be recon-
sidered in a real vehicle. The range of speeds would also have
to be increased.

The whole solution vectorz of the explicit solution does not
need to be evaluated, asu(t) is the only part needed in the
control law. The explicit solution obtained consists of5803
regions in the 4-dimensional parameter space, and the binary
search tree representing the control law can be stored using
23909 numbers, needing a maximum of173 arithmetic oper-
ations per sample to evaluate the control law. The maximum
allowed estimated error in the control input (λxi) was specified
to 0.04, while an estimated error of25% was allowed in the
cost function. The actual errors are, however, typically orders
of magnitude smaller. Note that as the NLP is non-convex,
care must be taken to ensure that the global optimizer is ob-
tained. This is another argument for using an explicit solution
approach, as this gives the possibility of off-line verification of
the solution. The nonlinear optimization problems were solved
by NPSOL [6].

5 Simulations

We have considered a simulation example, in which the driver
must carry out an evasive maneuver at high speed, withµH =
0.8, corresponding to a dry asphalt surface. The driver con-
trols the steering angle, and the controller applies an appropri-
ate distribution of braking forces to keep the state within the
constraints. Figure 4 shows the uncontrolled behavior of the
system. The vehicle is obviously unable to follow the drivers
command. The yaw rate increases in the left turn, but the vehi-
cle does not respond when the driver makes the right turn. The

dotted lines in theβ- andψ̇-plots are the constraints (15)–(16).
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Figure 4: Simulation of vehicle with no control action
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Figure 5: Simulation with optimal control obtained from NLP
solution

Figure 5 shows the same maneuver, but now with optimal con-
trol applied, obtained by using the exact NLP solution. In the
first turn the controller applies a braking force to both right
wheels to keep the yaw rate within its bounds. A production
ESP controller would in such situations apply a force to the
front wheel only. This is due to the fact thatFyi decreases
when a wheel is braking (see Figure 2), and one wants to keep
the side force on the back wheels. However, the optimal (in the
sense of the previously defined optimization problem) control



0 1 2 3 4
0

0.02

0.04

0.06

0.08

0.1

t [s]

W
h

e
e

l 
s
li
p

s
 [
] λ

x1
λ

x2

λ
x3 λ

x4

0 1 2 3 4
25

26

27

28

29

30

31

32

S
p

e
e

d
 [
m

/s
]

t [s]

0 1 2 3 4
−10

−5

0

5

10

V
e

h
ic

le
 b

o
d

y
 s

id
e

 s
li
p

 a
n

g
le

 [
°]

t [s]
0 1 2 3 4

−15

−10

−5

0

5

10

15

V
e

h
ic

le
 y

a
w

 r
a

te
 [°

/s
]

t [s]

Figure 6: Simulation with sub-optimal explicit PWL mpNLP
solution
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Figure 7: Simulation with unmodelled actuator dynamics
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Figure 8: Simulation with unmodelled actuator dynamics and
varyingµH(t) = 0.8 + 0.08 · sin(πt)
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Figure 9: Simulation with unmodelled actuator dynamics,
varyingµH and measurement noise (the curves show the states
with noise included)



action is to apply a small force to the rear wheel also. Since
only a small slip is requested on the rear wheels, most of the
lateral forceFyi is retained, while the longitudinal forceFxi
contributes to keeping control of the yaw dynamics. In the sec-
ond turn, a similar braking torque is applied to the left wheels.

In Figure 6, the explicit PWL control law described in Sec-
tion 4 is applied. The control action approximates the optimal
one, and only minor discrepancies can be seen in the state tra-
jectory. The control input is however discontinuous at some
time instants. The discontinuities occur when switching from
one quadratic approximation to another. Even if one would
prefer a continuous control input, the effects of the small dis-
continuity are not prohibitive. The obtained control inputs are
used as setpoints for slip controllers on each wheel, and theslip
actuator dynamics and ABS system work as a low-pass filter.
In Figure 7 this effect is illustrated by including unmodelled
actuator dynamics, which are approximated as

λxi
λ∗xi

(s) =
1

1 + 0.1s
, (21)

whereλ∗xi is the setpoint of the slip controller. This gives a
small overshoot in the yaw rate. The actuator dynamics are
not accounted for in the controller design. The estimation of
the maximum friction coefficientµH would include some er-
ror, and Figure 8 also includes the effect of varyingµH within
±10% of its nominal value. In Figure 9 measurement noise is
also added. We conclude that the control strategy appears tobe
robust and performs well.

6 Conclusions

We have presented an optimization based constrained con-
troller for automotive vehicle lateral stabilization. Simulations
have been made on a case in which the vehicle loses steerabil-
ity under manual control, but with the controller applied, the
maneuver remains stable. The proposed solution may be well
suited for implementation in a real vehicle, as it is computation-
ally very efficient. A practical implementation may, however,
require some extensions: a) The controller should be designed
to work for all values ofµH . b) The simplification that the ve-
hicle mass is equally distributed among the four wheels may
be improved. c) The range of parameter values for which the
control law is designed should be increased. d) Interactions
with the ABS system and observer design may require further
attention. At least points a) and c) above will lead to increased
complexity in terms of a larger number of regions in the rep-
resentation of the PWL controller. This may be unacceptable,
but may be counteracted in several ways:

- Tuning of approximation tolerances

- Approximating and joining solution in neighboring small
regions

- Separating the control problem into a control allocation
problem (see [9]) and a simpler control problem. Such
a control allocation problem can be posed as an mpNLP,

which would be simpler than the mpNLP obtained from
the RHC formulation in this paper.
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[5] M. Burckhardt. Fahrwerktechnik: Radschlupf-Regelsysteme.
Vogel Verlag, Ẅurzburg, 1993.
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