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systems, constraints. ical software which is generally not recommended in safety-
critical applications. We address this problem by desigin
approximation to the optimal solution based on multipartame
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ric nonlinear programming (mpNLP) [8]. This is a technique
A lateral stabilization system for automotive vehicles & d N Which an égb';rar")é clfcf)slg apprOX|mat||c?n_ to the sqlutnlw{fn
signed based on nonlinear constrained receding horizon c8f NP can be found off-line as an explicit, piecewise linear
trol. An explicit piecewise linear control law approxinagi PWI_‘) fungtlon of the state. Th'_s_ gives a solutlor) which can
the optimal solution is computed off-line, giving a Computareadlly be implemented and verified on inexpensive hardware

tionally efficient on-line solution which can be implemente With high software reliability.
with low real-time software complexity on inexpensive hard
ware. Simulations show that the controller is able to stabil 2 Vehicle Model

the vehicle in extreme maneuvers where the vehicle otherwis
becomes unstable. In the model-based approach to yaw rate control we use the

vehicle model for horizontal plane motion in [11], where mor

details can be found.

1 Introduction
Some nomenclature:

One of the first contributions within the field of stabilizingn- 4 Speed (absolute value of velocity vector at COG)
trol of automotive vehicles was ABS brakes, which was com Vehicle side slip angle

mercially introduced more than 20 years ago. ABS contrsller Yaw rate

maintain high longitudinal braking efficiency and improe¢-l 1. Force on wheel in longitudinal directiong {1,2,3,4}
eral stability of the vehicle during braking maneuvers. Séhe F,; Force onwheel in lateral directionge {1,2,3,4}
systems were followed by traction control systems, which im FZL Vertical force on ground from each wheek {1,2,3,4}
prove the lateral stability and maximize friction duringcat Steering angle; € {1,2,3,4}

eration of the vehicle. A natural continuation of this devel ,,,  \ehicle mass

opment was to introduce automatic control of the yaw motiony Vehicle moment of inertia about COG

during critical situations to retain steerability of thehiele, see Maximum friction coefficient
e.g. [1]. Such control systems became commercially availab ,,  \wheel side slip angle (angle between velocity vector
in the 90’s, with the Electronic Stability Program (ESP).[2] at centre of wheel and wheel direction); {1,2,3,4}

Lateral friction coefficient; € {1,2,3,4}

The contribution of this work is a study of model-based, contvi o L -
y Longitudinal friction coefficient; € {1,2, 3,4}

strained optimal control of the vehicle yaw dynamics. As-sug i
gested in [10] the strategy is to keep the states within iterta three state model will be used to describe the dynamics of
bounds so that steerability of the vehicle is retained. Thisthe vehicle, based on the geometry in Figure 1. We will as-
done by using a receding horizon control (RHC) approach same that the driver controls the front wheel steering afigle
which a nonlinear optimization problem is solved at each-sailny using the steering wheel, while the controller can use the
ple, taking advantage of all available degrees of freedothén four longitudinal brake slips..; for stabilizing the lateral mo-
braking system. We are not aware of any previous work ¢ion. We assume that only brakes are available as actuators,
optimization based controllers for automotive vehicle yéyw so that only negative forceB,; can be generated. Moreover,
namics. we assume that only the front wheels can be steered, that is
01 = 02 = dw, andds = 6, = 0. The wheel forces are
iven by the friction coefficients, which are given by noetm
{Thctions (friction curves) [11]:

The main problems of designing a controller for the ya
dynamics are the nonlinearities which appear in the syst
model, in addition to achieving the largest possible regibn
stabilizability under control input constraints. The RH®Ip- Foi = —Foipiaei(Aai, iy pirr) 1)
lem formulated in this paper requires the solution of a madr

program (NLP) at each control sample, giving an optimal feed
back control. This is, however, not a technique which is aper simplicity we have assumdd,; = “2. One could, how-

4
plicable to a practical implementation in a real vehicleg do  ever, include the effects of roll and pitch éh; without adding

Fyi = ziﬂyi()‘riv Ay, NH)- (2)
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considerably to the complexity of the control law. Figure 2
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Figure 1: Vehicle geometry and coordinate definitions 01
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while Figure 3 shows a typical friction curve for longitudin Iong|tud|nal slip

forces fora;; = 0. The vehicle is assumed to be equipped with
an ABS system with a slip controller which can apply com-

manded longitudinal slip values individually to each wheekiere,

[5, 11, 13].
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08 gi(hi 0;) = {02181199} (6)
. D6y = [ ] g
5 o Letthe state vectorbe=[ v § ¢ |7 and the control input
04 Decreasing o, u=1[ A1 A2 A3 Az |T. We can then summarize the
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nonlinear state space model in the form

j":f(x7u75W7uH)' (8)

We want to use feedback from the system state in the controlle

and thus need measurements/estimates of this. The vehicle

o o1 02 03 04 ;’\-5 06 07 08 09 1 speedv can be estimated from the wheel speeds and acceler-
Xi ation sensorsy can be measured and an observer can be de-

_ o o _ ~signed to obtain the vehicle side slip angle We also need
Figure 2: Lateral friction coefficient as a function of th@dp- an estimate of the current friction coefficign;, which we as-

tudinal slip sume is available from the ABS system (see e.qg. [5, 10, 11]) or
a separate system such as [7].

From Newton’s law one can derive

3 Yaw Dynamics Control Problem Formulation

Similarly, a torque balance gives

4
Z D (6;) {Fm} . (3) The main goal of using brake actuators to control the yaw mo-
i= tion, is to be able to maintain steerability of a vehicle iitical
driving situations in which the driver is unable to do this by
using the steering wheel alone. We will use the same strategy
of maintaining vehicle steerability as suggested in [10jjolh

is by constraining the vehicle side slip angieand the yaw
rateq to be within upper/lower bounds. We will in addition to

F,

yi

km—‘

4
Z (hs, 0,)D(55) |:Fa:7,:| ' (4) this also place constraints on the control inputs. The aathbb
— v [10] addressed the state constraints indirectly by comingnd



the reference values of the states, using a linearized namdel where¢(x(t), u(t), 7) denotes the solution(t + 7) to & =
a pole placement approach. In our approach we will use tfi€zx, u, dy, ug) with initial condition(¢) and constant(t),
nonlinear dynamical model of the vehicle and an RHC opthyy andu g on the time interval betwegrandt + 7. Here,s =
mal control strategy, to directly address these conssalfttis [ sg s, | are slack variables used to guarantee the existence
strategy aims at computing an open loop optimal contradtraj of a feasible solution to the inequality constraints, thedpr-
tory on a time horizon. The first part of the control trajegts tion horizonT = 0.6s, N = 3, R = I4x4 andW = 2[545.
applied to the is commanded to the vehicle’s ABS system, afile differential equations are solved by using the forwaue E
at the next sample the optimization is repeated, but now avither method, with a discretization interval dft = %. We
shifted horizon and a new initial condition from the new statassume during the prediction that the driver does not change
In this way this becomes a closed loop approach, see [12] fbe steering wheel angle. Note that this formulation dods no
an overview. assume any setpoints for the states. This means that asdong a
the inequality constraints are fulfilled on the horizon, toa-
The state and input constraints appear exp||c|t|y in thd)protr0| input will be zero, so that the driver controls the Véelby
lem formulation as linear and nonlinear inequality coristeg  the steering angle alone. However, when the state conistrain
while the state space model appears as nonlinear equatity d@ecome active, the controller directs the appropriateefoto
straints. As the forces generated by the brakes are in megathe individual brakes to keep the states within the consiai
x direction, the control inputy; are constrained as
N\ >0foric{1,2,3,4}. (90 4 Solution via mpNLP
The yaw rate) is constrained by [10] The optimization problem from the previous section is nott we
i j oy (e, — 0SNG suited for a real-time application using an on-line NLP salv
0] < U (0,0, ) = Do EERE - (qg) Sber 10 € ; . .
v cos 3 This is mainly due to the high computational costs requiced t
whereay. _is the maximum lateral acceleration, given by ~ Solve the NLP (13)—(17) at each sample. Instead, we obtain an
) approximate solution in the form of a piecewise linear (PWL)
WY = Wi - S/ 87, (1) control law by using mpNLP [8]. The NLP (13)—(17) can be
anduy__ is the maximum lateral friction coefficient. More-written in the general form,

max

over, the side slip anglé was in [10] constrained by a function

of the velocityv, that is mzin J(z,0) (18)
o o v? G(z,0) = 0 (19)

< Bmax =10°"-7"" ——. 12
I s ) (40m/s)® (42 H(z,0) < 0, (20)

Since our simulations indicated that (12) is generallys§iatil . . - . -
when (10) is enforced, we chose to leave (12) implicit in théherez" = [U7 X7 s']andf” = [z* by ]. Egs. (18)-
controller design to reduce controller complexity. Thesa-c (20) are to be considered a multiparametric program, which

straints are, however, shown in the simulations in Section™§€ans thad is a parameter to the optimization problem, and
For simplicity, we consider a fixed, = 0.8. the optimal solution is to be found for a range of parameter

) . . . ) values. We seek to find an explicit approximate represemtati
Let the horizon[0, T'] be divided intoV equal sized intervals wf the solution as a function of these parameters. The ahgori
by the ordered set of time instan{s,, ¢5,....tn} C [0,7]. jn [8] does this by partitioning the parameter space intd ake
Letthe mput signal: [0, T'] be constant in each interval and Papolyhedra, in which the NLP is approximated by a quadratic
rameterized by avectdf = [ «" (0) -+ u” (ty-1) I € gpproximation. Each of these approximations can be treated
RN, and letX = [ 2 (t1) --- 2" (tn) ]" € R*" de- as a multiparametric quadratic program (mpQP) which can be
note the vector of states at these time instants. By relahlﬂg solved exacﬂy off-line, g|V|ng the control input as an exnﬂ
inequality constraints to hold only & time instants, we can pwL function of its time-varying parameters [3]. The method

form the following dynamical optimal control problem (miilt can briefly be summarized as follows (see [8] for details)
ple shooting [4]):
1) Let © be a polyhedral set of parametétsn which the

T .
V (2(0)) = 5n)i(n (sTWs +/ ” (t)T Ru (t) dt) (13) mpNLP is to be solved. Led, = ©.
’ ’ 2) Select, as the centre point @.

3) Solve the NLP (13)—(17) with = 64 by using an NLP
solver to obtain the solutiofi*(6y), X*(6y) ands*(6p).

Ai (t) > 0, i €{1,2,3,4} andt € {t1,...,tn}, (14)
1B)] < Bumax (v (1)) + 88, € {t1, . tn}, @15)  4) Compute alocal quadratic approximation to the NLP cost
. . ) function, and a linear approximation to the NLP con-
‘w(t)‘ < Pmax (v (1),0 (1), 6(1) + 5,5t € {t1, ., tn } (16) straintsG and H at (6, U*(6), X*(6p), s*(6)). Such
z(tiy1) = ¢(z(t:),u(ts),tivr —ti),5 € {0,..., N — 1} (17) an approximation defines an mpQP.



5) Estimate the maximal errors (in cost function, contrel irdotted lines in thes- ands)-plots are the constraints (15)—(16).
puts and constraint violations, see [8] for details) made by
approximating the mpNLP solution with the mpQP solu
tion for 6 € ©y. If these are not within apriori defined

34

bounds, sub-partitio®, into two polyhedral regions. e’ 8
o 2 )
6) Select a newd, from the partition. If no further sub- 2 | £%
partitioning is needed, go to step 7. Otherwise, goto St £ S E.)_M
2. >, 30
7) For every sub-partitio®,, solve the local mpQP prob- 2
|em. 0 1 té] 3 4 0 1 t[25] 3 4

This means that the main effort of solving the optimizatio

problem is moved off-line. Efficient off-line mpQP solverss *° 20
have recently been developed [14]. The on-line effort is r ; 5 G
duced to evaluating a PWL function, which can be imples :
mented efficiently using a binary search tree as in [15]. F 0 g 0
The explicit solution obtained in this paper was computed fo % s g
m m > -10 0
75% 2 125% 0 1 2 3 4 0 1 2 3 4
770 2'50 t[s] t[s]
< Ll <
=20%/s | T | W | T | 20°/s _ . : : , .
_7° Swv 70 Figure 4: Simulation of vehicle with no control action

We assume that cannot have a too large positive value for ~

positivey. This assumption was made to decrease the co o *
plexity of the controller, this may, however, need to be reco °0 \ \ %
sidered in a real vehicle. The range of speeds would also hiZo_os . ° »
to be increased. 2
The whole solution vectot of the explicit solution does not = 7

. 26

E 0.04 g

; n
need to be evaluated, agt) is the only part needed in the Aa A
control law. The explicit solution obtained consists5803 % I 5 3 4 %, 1 2 3 2
regions in the 4-dimensional parameter space, and theybin thsl

search tree representing the control law can be stored us
23909 numbers, needing a maximum bf3 arithmetic oper-
ations per sample to evaluate the control law. The maximt
allowed estimated error in the control input.() was specified
to 0.04, while an estimated error &5% was allowed in the
cost function. The actual errors are, however, typicaltyeos

=
o
=
o

le body side slip angle [’]
U"! o u
Vehicle yaw rate [/s]
(] =
[3,] o [5,] o
g ©

of magnitude smaller. Note that as the NLP is non-conve ¢ : : -10
care must be taken to ensure that the global optimizer is ¢~ _;, s
tained. This is another argument for using an explicit $otut A A

approach, as this gives the possibility of off-line verifioa of

the solution. The nonlinear optimization problems wereatl Figure 5: Simulation with optimal control obtained from NLP
by NPSOL [6]. solution

5 Simulations

We have considered a simulation example, in which the driveigure 5 shows the same maneuver, but now with optimal con-
must carry out an evasive maneuver at high speed, with=  trol applied, obtained by using the exact NLP solution. la th
0.8, corresponding to a dry asphalt surface. The driver cofirst turn the controller applies a braking force to both tigh
trols the steering angle, and the controller applies anggpr wheels to keep the yaw rate within its bounds. A production
ate distribution of braking forces to keep the state withia t ESP controller would in such situations apply a force to the
constraints. Figure 4 shows the uncontrolled behavior ef tfront wheel only. This is due to the fact thal,; decreases
system. The vehicle is obviously unable to follow the drivemhen a wheel is braking (see Figure 2), and one wants to keep
command. The yaw rate increases in the left turn, but the vettie side force on the back wheels. However, the optimal én th
cle does not respond when the driver makes the right turn. T$ense of the previously defined optimization problem) aintr
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Figure 6: Simulation with sub-optimal explicit PWL mpNL
solution
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Figure 7: Simulation with unmodelled actuator dynamics
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action is to apply a small force to the rear wheel also. Since which would be simpler than the mpNLP obtained from
only a small slip is requested on the rear wheels, most of the the RHC formulation in this paper.

lateral forceF); is retained, while the longitudinal forcg,;
contributes to keeping control of the yaw dynamics. Inthe s
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