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Abstract

In this paper the problem of multi-scenario
data driven fuzzy parameter estimation is consid-
ered. Experimental data are used from a small
scale differentially steered four-wheel mobile robot
”PROMETHEUS”. In particular two key modes of
operation were identified and the multi-model pa-
rameters were obtained using the subtractive cluster-
ing approach. The two modes of the mobile robot op-
eration were blended using a suitable blending func-
tion. The robotic vehicle modes structure was of
a 1-st order multivariate Takagi-Sugeno-Kang. The
parameter estimation process also included a non-
casual filtering approach which resulted in a reduced
number of TSK rules.

1 Introduction

Differentially steered electrically-actuated wheeled
robots which belong to the class of nonholonomic
mobile robots, still remain a challenging modelling
problem due to the complex interactions between
the wheels and actuators, and the surface and the
near-surface regions. The interactions are essential
in obtaining a model which is valid for a wide range
of input demands [10]. For the case of the differen-
tially steered mobile robot, due to the tight turns
that it can perform up to pivot turns, (depending on
the actuator capabilities), it does share some of the
steerability advantages of a holonomic mobile robot.

Fuzzy logic modelling belongs to the class of ”in-
telligent” methods which are based on ”knowl-
edge based” methodologies. Conventional modelling
methods, when applied to practical problems, have

demonstrated the difficulty of representing accu-
rately a complex process by a single mathematical
model over a wide range of input demands. Over the
course of time, there has been increasing interest in
the application of intelligent methods in solving such
practical problems. Several researchers have intro-
duced the fuzzy modelling approaches from a con-
trol and engineering perspective [3], and in particu-
lar the use of fuzzy clustering techniques for fuzzy
model identification [6]. However, the fuzzy mod-
elling of real systems from experimental data often
produces a large number of rules (models) which can
be unrealistic for any control purposes. In [4] and
[5] several approaches have been introduced which
in effect reduce the number of rules within an error
tolerance.

In this paper, a skid-steer electrically actuated mo-
bile robot has been modelled using a number of
Takagi-Sugeno-Kang fuzzy logic local models. The
two inputs are the left and right armature voltage
demands of the four d.c. motors which are initially
crisp (i.e. non-fuzzy). All the TSK mobile robot
rules are 1− st order multivariate models which are
evaluated in parallel using fuzzy reasoning at every
time instant. The rules results are combined and fi-
nally defuzzified to a give crisp (non-fuzzy) number
which represents the mobile robot blended state vec-
tor (x̃) which represents the non-linear mobile robot
model.

The wheeled differentially steered nonholonomic mo-
bile robot employs wheel skidding for its turning
function rather than the more conventional Acker-
man steering geometry [4]. The experimental mobile
robot can perform all turns from smooth high ra-
dius turns (HRTs) to low radius turns (LRTs) which
include pivot turns.

The paper is organised as follows: Section 2 describes
the dual-scenario mobile robot operation, the TSK



problem formulation and the basic principle of the
data driven subtractive clustering filtering algorithm.
Section 3 presents the experimental results and the
effectiveness of the fuzzy TSK mobile robot model.
The concluding remarks are given in Section 4.

2 Mobile Robot Operational Scenario

The generic differentially-steered mobile robot state
variables and dimensions are shown in figure 1. The
mobile robot planar trajectory is divided to two main
modes of operation:

• HRT: High Radius Turns

• LRT: Low Radius Turns

Assuming that the left and right mobile robot side
actuators are operating at the same armature volt-
ages, the desired family of linear model structures

Figure 1: Differentially Steered Mobile Robot.

are shown in 1 and 2 for the two data experimental
data sets ξ = {1, 2}.
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2.1 Fuzzy TSK Model Structure

The two inputs are the left and right hand mobile
robot d.c. motor armature voltages. The TSK3

block requires as inputs the common-mode and dif-
ferential voltage demands for the actuators which are
defined in equation 3.

δu+
a = Va1+Va2

2

δu−a = Va1−Va2
2

}
(3)

The TSK mobile robot fuzzy rules consist of several
local models, which are evaluated, in parallel using
fuzzy reasoning for every time instant. The rules re-
sults are combined and finally defuzzified to give a
crisp (non-fuzzy) number which represents the mo-

bile robot blended state vector x̃
4
= [ũ, r̃]T .

The defuzzified blended TSK model for ξ = {1, 2} is
given from equation 4 and 5.
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The model blending variable ws depends on the dif-
ferential and common-mode demands (δu−a , δu+

a ) re-
spectively.

ũ = wsũ1 + (1− ws)ũ2

r̃ = wsr̃1 + (1− ws)r̃2

}
(6)

The associated fuzzy logic TSK membership func-
tions for the inference engine are shown in figure 2.
The inference rules are shown in figure 3 and result
in the output surface shown in figure 4. The blend-
ing 0− degree TSK3 output is given from equation
7.
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The resulting multi-scenario mobile robot model is
given from equations 8 and 4 and 5. The indepen-
dent and blended HRT and LRT fuzzy logic regions
are clearly shown in figure 4. Effectively, the zero
order TSK output (ws) in figure 4 is equivalent to a
singleton Mamdani fuzzy logic inference engine.
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Figure 2: TSK Membership Functions.
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The local linear TSK models for each fuzzy rule i for
imax rules are given by equations 4 and 5 in a state
space form. These models were estimated using the
subtractive clustering method [7] together with non-
casual filtering for bounded normalised errors εu̇, εṙ

as defined in equations 9 in the state variables for
the two experimental data sets ξ = {1, 2}.

ε̇uξ = 100
u̇ξ − ˙̃uξ

max(max(|u̇ξ|))
ε̇rξ = 100

ṙξ − ˙̃rξ

max(max(|ṙξ|)) (9)

where the integers i = TSK rule number and imax =
maximum number of TSK rules. The subtractive
clustering method is satisfied when, for given error

boundaries in the state variable matrices ēu̇ and ēṙ

over the experimental data sets, the inequalities in
10 are simultaneously satisfied.

max(|εu̇|)ξ ≤ ēu̇

max(|εṙ|)ξ ≤ ēṙ (10)

The flowchart in figure 5 shows the mobile robot
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Figure 3: Tagaki Sugeno Fuzzy Logic Inference En-
gine.

mathematical model generation algorithm. The al-
gorithm requires the experimental data and the er-
ror bounds ēu̇ and ēṙ. From the experimental
mobile robot input-output data and a random re-
cursively generated sequence for the radii rsc =
[r1, r2, r3, r4, r5, r6] the algorithm uses the subtrac-
tive clustering method to estimate the TSK model
coefficients.

The clusters generated represent natural groupings of
data from a large set of experimental data. The sub-
tractive clustering method considers each data point
as a potential cluster. As a result the number of grid
points to be evaluated are the number of data points.
According to [7] the subtractive clustering algorithm
reduces the maximum number of clusters simply by
selecting the data points with the highest potential.
The algorithm suggested in [7] produces an optimum
number of rules (TSK models) which are different for
the same experimental data when the initial radii are
different. In this paper the method in [7] is improved
by including a loop which randomly varies the ranges
of influence (radii) recursively till a prespecified error
bound criterion is met.

For the mobile robot application the fuzzy inference
rules are generated and the normalised error matri-
ces ēu̇ and ēṙ are compared to the required error
bounds. When the normalised error matrices over
the specific data sets ξ = {1, 2} are less than the re-
quired error bounds, then the subtractive clustering
fuzzy inference rule base is accepted [7]. If not, then



the algorithm repeats until the conditions in 10 are
met for both state variables.

0

5

10

15

20

−20
−15

−10
−5

0
5

10
15

20

0

0.2

0.4

0.6

0.8

1

w
s T

S
K

3  O
ut

pu
t

COMMON−MODE INPUT δu
a
+ IN V

DIFFERENTIAL INPUT δu
a
− IN V

Figure 4: Tagaki Sugeno Fuzzy Logic Output Sur-
face.

3 Experimental and Fuzzy-TSK Esti-
mated Data

The suggested approach shown in this paper was
implemented for data obtained from a real small
scale mobile robot PROMETHEUS. The skid steer
wheeled mobile robot was fully instrumented includ-
ing the yaw rate and accelerator sensors. In par-
ticular the velocity signal was relatively smooth as
this was obtained by the integration of the accel-
eration. However, the yaw rate signal was relatively
more noisy and the recursive subtractive filtering ap-
proach required more samples in order to obtain a
smoother signal for the estimation process. The de-
manded motor voltages were measured with an RC
filter since the power electronics operated using an
H-bridge topology with a variable duty cycle. A non-
causal filtering approach was used here recursively
over the entire data set time horizon in combination
with the subtractive clustering method. The latter
resulted in a reduced number of TSK fuzzy models
which satisfy the pre-specified error bound criterion.
The results shown in figures 6 and 7 indicate the
effectiveness of the subtractive filtering approach for
the HRT mode of operation, which retains very good
tracking properties. In figure 6(b), in addition to the
experimental data and the fuzzy logic TSK data the
filtered data, are also shown and these form the basis
of the estimation process while retaining the original
signal trend. Figures 8 and 9 show the effectiveness
for the LRT mobile robot mode of operation. During
this mode the longitudinal velocity is kept relatively
low in relation to an increasing yaw rate while the
tracking error is kept to an acceptable value. The
algorithm was run with an error of less than 20%
and the results in figures 7 and 9 demonstrate this
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ing Algorithm.
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Figure 6: HRT Scenario: Comparisons of Experi-
mental Data and TSK Model Results.

for the entire time for both data sets. Finally, the
HRT and LRT TSK fuzzy logic designs were blended
using an additional TSK system. The resulting sub-
optimum design was simulated for a combined (LRT
and HRT) turn, as shown in figure 10.

4 Conclusions

A small scale differentially steered mobile robot
PROMETHEUS was used for the data capturing of
two steering scenarios: (a) HRT mode and (b) LRT
mode. These data were independently used to es-
timate using the subtractive clustering method, the
1-st order multivariate fuzzy-TSK model parameters
for both cases (a) and (b). A non-casual filtering
approach was also used part of the parameter esti-
mation process in order to reduce the number of TSK
models. Finally a suitable blending function was
used to blend the two modes of the mobile robot op-
eration. The experimental and estimated data were
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presented in order to show the effectiveness of the
proposed approach.
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[9] A. Tsourdos, R. Żbikowski, B.A. White,”Robust au-
topilot for a quasi-linear parameter-varying missile
model”, AIAA Journal of Guidance, Control and Dy-
namics , vol. 24 no.2. pages 287-295 March-April
2001.

[10] J.T. Economou, R.E. Colyer, “Modelling of Skid
Steering and Fuzzy Logic Vehicle Ground Interac-
tion”,Proceedings of the American Control Confer-
ence, Chicago, Illinois, June 2000.


	Session Index
	Author Index



