G3-SPLINES FOR THE PATH PLANNING OF WHEELED
MOBILE ROBOTS

Aurelio Piazzi, Massimo Romano, and Corrado Guarino Lo Bianco

Universit di Parma - Dipartimento di Ingegneria dell'Informazione,
Parco Area delle Scienze, 181/A - 1-43100 Parma - Italy,
Tel. + 39 0521 905733, Fax. + 39 0521 905723,
E-mail: {piazzi, romano, guarinp@ce.unipr.it

Keywords: path planning, wheeled mobile robots, dynamiby planning with theG3-splines whereas using ti@?-splines

path inversion, polynomial splines, iterative steering. leads to the sole continuity of the robot’s velocities (in this case
accelerations can be discontinuous). Hence a definite benefit is
Abstract gained with theG3-splines. Moreover, this new spline depends

on a vector with six parameterg)(that can be used to finely
This paper deals with generation of smooth paths for the naghape the robot’s path.
gation of wheeled mobile robots by means of the iterative stegy; paper is organized as follows. Section 2 introduces the

ng techmque_. A new motion planmng primitive call@?- _new concept ofz3-paths or paths with third order geometric
spl!ne orn—sphng IS proposed. It 1S aseventh prder pOlymm'?:l)ntinuity and the related inversion based control of WMRs.
spI.|ne thgt permits the |nte.rpolat|c_>n Of. an arbitrary sequencegéction 3 is the core of the paper: B&-splines are presented
points V\,”th gssomateq arblt'rary dlrect|0r'1, curvature and Cur(ggy, pejp explicit closed-form parameterizations and related
ture derivative. Adopting this path planning, the robot's contrg mpleteness and minimality results are included (Proposition

inputs can be ob_tained by means ofa dy”?mic path inversié)%nd Property 1). A result on the symmetry of the proposed
procedure ensuring the continuity of velocities and accelera-

. Thi ine d d ith si 1-parameterization is exposed in Section 4 with path planning
tions. This new spline depends on a vector with six paramet mples. Concluding remarks are given in Section 5
(n) that can be used to finely shape the path. The paper includes

both theoretical results and path planning examples. 3 ) .
2 G°-Paths and inversion based smooth control

1 Introduction of WMRs

Lé curve on the{x,y}-plane can be described by means of the

The advisability of pursuing a path planning with continuo
yorp g apaih p 9 app : [Up,us] — R2, u— p(u) = [a(u) B(u)]", where[up, uy]

curvatures for wheeled mobile robots (WMRs) was early indi® . : . :
( ) y a real closed interval. The associated “path” is the image

cated by Nelson [8] who devised two primitives, quintic curve " der th torial functi .
for lane changing maneuvers and polar splines for symme%{[uo’ul} under the vectorial functiop (u), i.e. p([uo, ).

turns, to smoothly connect line segments. Subsequently, m say that the curv(u) is regul_ar ifp(u) € CP([UO’uﬂ) and
authors have worked on various planning schemes ensurin ) # _OW < [Qo,ul] (here _and n the following the class of
continuous-curvature paths, for example [2], [3], [12], [4]. |pi€cewise continuous functions is denoted@y. The curve
particular the authors have proposed in [9], [10] a continquS:ngth measgred -along(u) , denoted bys, can Ee .expressed
curvature path planning based on a new parameterized cufys the functionf : [uo, uy] — [0, F(W)], u— = Jy, [IP(€)] dE,
calledG?-spline. This motion primitive was adopted to achievd ere|-|| denotes the Euclidean norm. Given a regular curve

a straightforward inversion-based control for the iterative ste |(—u) the Iength fu_nctlorf (Z) IS continuous OVelLo, u.l] and bi-
ing of vision-based autonomous vehicles. jective; hence its inverse is continuous too and will be denoted

by f~1:10, f(u1)] — [Uo,us], s— u= f~1(s).

In this paper we propose a generalization of the quiGfe Associated with every point of a regular cumg) there is the
spline leading to th&3-spline, also callegj-spline. Itis a sev- orthonormal moving framér(u),v(u)} that is congruent with
enth order polynomial spline that permits the interpolation dfie axes of théx, y}-plane and where (u) = p(u)/||p(u)| de-
an arbitrary sequence of points with associated arbitrary direotes the unit tangent vector pfu). For any regular curve
tion (unittangent vector), curvature and curvature derivative. $tich thatp(u) € Cp([uo,u1]), the scalar curvature is well de-
such a way, not only the path curvature is continuous but algged according to the Frenet formu% (U) = Ke(u)r(u) so
the derivative with respect of the arc length of the curvaturetisat we have the functior : [Up,u1] — R, u— K¢(u). The
overall continuous too. Adopting this path planning, as showegalar curvature can also be expressed as a function of the curve
in [6], the robot’s control inputs can be obtained by means F@‘ngths, i.e.k: [0, f(u1)] — R, s— k(s); evidently this func-
a dynamic path inversion procedure ensuring the continuity ¥n can be evaluated a$s) = Ke(f1(9)).

velocities and accelerations. In particular, the overall continu-

ity of the robot’s linear and angular accelerations is achieved = 1 o 3 _
Definition 1 (G*-,G=- and G°-curves) A parametric curve



p(u) has first order geometric continuity and we safu) is approach [7]. In such a way, swift high-performance motion
a Gl-curve if p(u) is regular and its unit tangent vector is aof the WMR can be achieved while intelligent or elaborate be-
continuous function along the curve, i.e.(-) € C%(up,u1]). haviours are performed. The solution to SMPP is based on a
The curvep(u) has second order geometric continuity and wpath dynamic inversion procedure that needs a planning of a
sayp(u) is aG2-curve ifp(u) is aG-curve,p(-) € Cp([uo,u1]) G3-path connectingpa with pg. This relies on the following
and its scalar curvature is continuous along the curve, i.eesult.
Ke(-) € CO([uo, Ua]), or equivalentlyk(-) € CO([0, f (u)]). The
curve p(u) has third order geometric continuity and we sayProposition 1 [6] A path I on the Cartesian plane is gener-
p(u) is aG3-curve ifp(u) is aG?-curve,P(-) € Cp([Uo,u1]) and  ated by the model (1) with inpué.), w(-) € C1, v(t) # 0, vt >
the derivative with respect to the arc lengtbf the scalar cur- 0if and only ifl" is a G3-path.
vature is continuous along the curve, i) € C°([0, f (uy)]).

The G3-path connectinga with pg must satisfy interpolating
GLl- and G2- curves where introduced by Barsky and Beattgonditions at the end-points that depend on the initial and final
[1] in a computer graphics contest and tB&curves has been extended states of the WMR. Consider, for example, the case
recently proposed by the authors [6] for the inversion-bas®d > 0 andvg > 0. Then the heading angles of the initial and

control of WMRs. Moreover, a “natural” definition &'-paths final pose of the WMR are the anglé and6g, with respect
on the Cartesian plane is the following. to thex- axis of the unit tangent vectors at the path end-points

(see Fig. 1). Mooreover, the curvatures and the derivatives with

Definition 2 (G-, G?- and G3-paths) A path of a Cartesian
space, i.e. a set of points of this space, S'gpath ( = 1,2,3) y
if there exists a parametriG'-curve whose image is the given
path.

Consider as a motion model of a wheeled mobile robot the fol-
lowing nonholonomic system:

x(t) = v(t)cosd(t)
{y(t) = v(t)sind(t) @)
B(t) = ot

wherex, y indicate the robot position with respect to a station-
ary frame 8 is the robot heading angle, amd w are its linear

and angular velocities to be considered as the control inputs of
the robot.

In order to achieve a smooth control of the robot the inputs
v(t) andw(t) must beCt-functions, i.e. the linear and angular
accelerations of the robot are continuous signals. It is useful
to define an “extended state” of model (1) that comprises the X
inputs and their derivatives:

€

3
>

. . Figure 1: AGS3-path connectinga with pg and satisfying end-
(x(®),y(®),8(t),v(t),v(t), w(t),w(t)}. point interpolating conditions.
Then, the following Smooth Motion Planning Problem (SMP
can be posed [6].
SMPP Given any assigned travelling tinte¢ > O, find con-

Pr)espect to the arc length of the curvatures at the end-points can
be determined according to the expressions:

trol inputsv(-), w(:) € C1([0,t¢]) such that the mobile robot ka = ‘\%’\* , ks = %
starting from an arbitrary initial extended state kn = (AVA—WAVA kg = WBVE—WeVE
Pa= [xayal" = [x(0) y(0)]", 8a = 6(0),

o . . The critical casa/a = 0 and/orvg = 0 and other cases are dis-
Va = V(0), Va =V(0), wa = w(0), wa = @(0), cussed in [6].

reaches the arbitrary final extended state

pe = [Xa ¥B" = [X(tr) ¥(tr)]", B8 = B(tr),
. . . . In the context of the smooth iterative steering of WMRs, the
ve = V(tr), Vg = V(tr), 0 = 0(ty), 0B = Golty) . previous section has shown the necessity of planning with
The solution of the above problem, exposed in [6], can be usBé-paths having arbitrary interpolating conditions at the end-
in a motion control architecture based on the iterative steeripgints. This justifies the introduction of the following problem.

3 Polynomial G*-splines



The polynomial G3-interpolating problem: Determine the

minimal order polynomial curve that interpolates between

given pointspa = [xa ya]' andpg = [xg yg]" with associated
unit tangent vectors defined by angks and6g, scalar cur-
vatureska andkg and the derivatives with respect to the arc
length of the curvatur&a andky, (see Fig. 1). All the in-
terpolating dataa, pe € R?, 84,05 € [0,2m), Ka,Kp € R and
Ka,Kg € R can be arbitrarily assigned.

To solve the posed interpolating problem, consider a seventh

order polynomial curve (u) = [a (u) B(u)]™, u e [0,1] where
o (U) := O+ agu+ 02u? + a3u® + agu® + asu® + agu® + azu’
2

B (u) := Bo+ Bau+ Bat® + Bau® + Bau® + Bsu® + Beu® + 87517)
The interpolating conditions are the following: ©
P(0) = Ppa, P(1)=ps 4)

ro-[ e ro-[Se] ®

Kc (0) = Ka, Kc(l) =Kg (6)

Ke(0) =Kalp(0)]], Ke(1) =kellp(D)I (7

7(u) is the unit tangent vector and is given pyu) /||p (u)||.
The polynomial curve of the seventh order satisfying all the
above conditions has the following coefficients:

Og = Xa 8
a1 =11C0SH )
1 1,
Oy = éf']g, €cosbp — ér]lKAsmeA (10)
1 1 . .
= ér]SCoseA— & (NTKa+3n1N3KA) SINBA (11)

2
as = 35(Xg—Xa)— <20f]1+5f]3+ ns) cosBa
+ (SanA+ 3r]1KA+2n1r]3KA) SinBa
(15r]2— =Na+ = f]e) costg

( N3Ks — ﬂ%KB—ZHZMKB) sinBg  (12)

O = —84(XB —Xa) + (4501 4+ 10n3+Ns5) cOSOA

— (10’]%KA + H?I.(A + 3I’]1I’]3KA) SinBp

1
+ (39ﬂz — s+ 2'16) cosBg

1 5. 3 .
+ (7U%KB - éﬂgKB - 2ﬂ2ﬂ4KB> sinég  (13)

15 2
= 70(Xg—Xa)— (36n1+ N3+ ns) cosfa
15
+ ?anA'F rllKA+2r]1|13KA)sm6A

.3 .
> n§KB zngxs— 2n2n4KB) sinBg  (14)

(34ﬂ2— Na+ 5 ﬂe)COSQB

1
a; = 20(XBXA)+(1OI]1+ZH3+GH5) cosPp

, 14 1 .

— anKA+én1KA+§nm3KA SinBa
1

+ (10’]2 —2n4+ 6ﬂ6) cosfs

2 1 3. 1 -
+{ 2n2Ke — 5N2Ke — 5N2Nake sinBg  (15)

Bo = ya (16)

B1 = nisinba (17)
1 1,

B = §ﬂ35|n9A+§ﬂlKACOSOA (18)

Bs = nssmeA+ (anA+3nln3KA)C059A (19)

2 .

Bs = 35(yB—YA)—(20711+5ﬂ3+ﬂ5) sinBa
<5fllKA+ ﬂlKA+2f]1ﬂ3KA> cosBa
(15ﬂzﬂ5+ ﬂe)Sines

+(2n§KB 602KB ﬂzﬂ4KB>COSBB (20)

Bs = —84(ys—Yya)+(45n1+10n3+ns)Sin6a

+ (10nKa +N3KA + 3N1N3KA) COSOA
1 .
+ (39]2 — TN+ Zr]e,) SinBg

15 3
- (m%KB — 5N2ke - 2n2n4KB) cosds  (21)

15 2 .
Be = 70(yB—yA)—<36|11+ﬂ3+ﬂ5)SIn9A

15
<2r|1KA+ f]lKAJrzr]lf]gKA) cosOp
(3402 S Nat 2r16> sinBg
13
+ (2’1 Kg — rIzKB ﬂ2ﬂ4KB> cosBg (22)



Evidently it is not possible to interpolate the given data with a
sixth or lower order polynomial curve for any arbitrary choice
ofneH. O

1 .
Bz = —20(yB—yA)+<1011+2n3+ 6n4) SinBa

1 5. 1
+ <2ﬂ%KA+ BHEKA"‘ ZﬂlnsKA> cosBa

The following result shows how thg-splines become line seg-
ments under particular interpolating conditions (for a proof see

[11)).

1 .
+ <1Q"|2 —2Na+ 6”6) sinBg

— <2n§KB - %n%kg - ;r]ngB) cosfg  (23)

Property 2 (line segments generation) Defide= ||pg — pal|

The real parametens;, i = 1,...,6, appearing in expressionsand assume xg = Xa + dcosd, ys = ya + dsinb,

(8)-(23) can be packed together to form the six-dimentional s = 88 = 0 € [0,21), Ko = Kg = 0, Ka = kg = 0. Then

rameter vectop =[N1 N2 Nz N4 Ns Nel . so that the the path generated y(u;n) is a segment ling'n € 4.

resulting parametric curve can be concisely denotgul(agn)

or, informally, n-spline

Moreovezr denote witt¥# the set given by the Cartesian prodz  pgth planning with the G3-splines

uct (RT)“ x R*. The main result of this section is given by the

following proposition. The practical use of the devis&@F-splines requires, apart im-
posing the interpolating end-points condition, the setting of the

Proposition 2 Given any interpolating datppa, 8a, Ka, Ka and N parametersi(= 1,2, ...,6). From the relationgp (0;n)| =

Pg, BB, Kg, Kg, the parametric curve (u;n) satisfies condi- N1 and||p(1;n)|| = n2 the parameterg; andn, can be in-

tions (4)-(7) for alln € #{. Conversely, any seventh order polyterpreted as “velocity” parameters whereas the other angs (

nomial curvep (u) with p(0) # 0, p(1) # 0) satisfying condi- N4, Ns andng) can be generically tagged as “twist” parameters.

tions (4)-(7) there exists a parameter vecipe # such that The following property is useful in understanding the shaping

the curvep (u) can be expressed agu; n). of then-spline as affected by its various parameters.

Proof. For brevity the proof is omitted. It can be found in [11]Property 3 (symmetry) Assumgs =ns = v € RT, n3 =
e ~Na=WER, Ns=ne=z€Randdefiney=[vvw—-wz z]T.
g@oreover, consideBs =0g =8 € [0,21), Kn =Kg = 0, Kp =
Kg =0and

Proposition 2makes evident that thg-spline is a complet
parameterization of all the seventh order polynomial curv
interpolating the given endpoint data.

{ Xg = Xa + d1 0SB — d»sin®

=Yya+d18in6 +dzcosd
Property 1 The curvep(u;n) is the minimal order polynomial Yo =Yatt 2

curve interpolating any arbitrarily given dataa, ps € R?, 6,
B € [0,2m), Kp, Kg€ R andkp, Kg € R.

whered; € R* ed, € R. Then it follows that

P(1—u;n) =pa+ps—p(Un) (24)
Proof. The seventh degree curygu;n) characterize all the Yu € [0,1], We R, Ywe R, vze R.

polynomial curves, interpolating the given endpoint data, till to

the seventh order. Hence, if a lower order polynomial curve

exists this must coincide with(u; ) for some appropriatg €  Proof. By direct substitution into (8)-(23) of all the posed as-
4. Consider the following interpolating data (leading to a lanéumptions and after some computations we obtain:

change path):

o xa cosd 1 [cosB | o5 1. [ cosB ]| 5
Pa= [OO]Ta ps=[2 1]T7 p(um) = [ ya ] +V{ sin@ }U+EW{ sing | u +62[ sin@ }u
Bo=03=0, ka=kp=0, Kpa=Kp=0 +’ cosd  —sind | [ 35d1735v7§’wfgz_u4Jr
1 1 | sinB  cos® || 3502 ]
o (u;m) =niu+ §n3u2+ énsu3 [ cos —sind ][ —8dd+84+1w+3z | s,
_ 5 5 1 | sin6 cos® || —84d,
+ 70*20f]1+5r]3+§ﬂ5*15ﬂz+§ﬂ4* éﬂe} ut [ cosB —sin® |[ 70d;—70v—14w— Lz ] &
- + | sinB  cos® || 70d, ] *
+ 168+45n1+10r]3+r]5+39’]2—7r]4+}n6} w N [ cos® —sin® | [ —20d; +20v+4w+ 3z J
L 2 | sin6 cos® || —20d,
I 15 2 13 1 76 (25)
+ _140_ 3611~ 5 N3~ 3Ns— 342+ 5Na— 5”6} u Using the above expression (25) fafu;n) we verify that re-
r 1 1 . lation (24) holdsvu € [0,1], Vv e RT, Vwe R, Vze R. O
+ —40+10‘|1+2F]3+*r]5+10‘|2—2l’]4+*|']6}u o ) ]
L 6 6 The above symmetry property is illustrated in the figures 2,
B(u;n) = 35u* — 84u° + 70u® — 2007 3, and 4. All these plots describe the so called “lane change”



curve Pa Ps Ba | 8 [ ka | k8 | Ka [ K | N1,N2 [ N3,N4,N5:N6
1 8;2 ég w2 |m2| 0| 0| -8| 0| 3162 0
2 o3 s3l|m2|m2| oo o] o316 0
3 8§ ég m2|m2| 0| 0| 8 | 0| 3162 0

Table 1: Path data of figure 5.

curve Pa Ps 6a | OB | Ka | KB Ka Kg MuN2 | N3.N2.N5.N6
1 8 g:gzgg 0|05| 0| 02| 004| -0,36| 4,944 0
2 8 g:gzgg 0 |05| 0 |02]|004]| 004 | 4944 0
3 8 g:gzgg 0| 05| 0 | 02| 004| 044 | 4944 0

Table 2: Path data of figure 6.

[m] [m] 3

2.5

0.5 05

Figure 2: A lane change withs =n4 =ns5=ne=0. Figure 3: A lane change with; = n, = 20andns = ne = 0.

5 Conclusions

paths withpa = [0 O]T, ps =[20 ?JT, Br=065=0,ka=Kg=0, We have presented a closed-form parameterization of seventh-
Ka = Kg = 0, and various choices for thg parameters. order polynomial splines that permits the planning of com-
. I . posite paths ensuring an overall third-order geometric conti-
As exposed in [5] it is sensible to choose vectpby solv- nuity. This new motion primitive appears especially useful for

ng a suitable optimization problem. - For tlﬁ—spllnes Fh? the smooth iterative steering of autonomous wheeled mobile
optimal smoothness of the path may be gained by minimigs o

ing the absolute value of the variationskgk) along the path,
i.e. min max)] |k (s;m)|. This is a difficult minimax problem, Acknowledgements

nestsc[0.f(1 This work was partiall r MIUR scientific research
however a rough sub-optimal solution is given, in manytypic?lflhS ork was partially supported by MIUR scientific researc

cases of the autonomous robot navigation, by the euristic ru gds under the framework of the COFIN projects.

N1 ="z = [[pa—pgl andnz =ns =ns =ne = 0. In figure 5

we have applied this rule to a line change with perturbations eferences

the curvature de_rivative at the initial path point (seg Tgble 1;1] Barsky, B. A. and Beatty, J. C.: 1983, Local control
These pertl_eratlons have a mqued effect on the initial shape” ¢ ias and tension in beta-splin€omputer Graphics

of the n-spline. The same rule is also used in figure 6 where 17(3), 193-218.

the central path is a very good approximation of a clothoid, i.e.

K(s) ~0.04 Vse [0, f(1)], and the other paths are obtained by[2] Delingette, H., Hbert, M. and Ikeuchi, K.: 1991, Trajec-
perturbingkg = 0.044-0.40 (see all the path data on Table 2). tory generation with curvature constraint based on energy
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Figure 4: A lane change with; =n; =20and;nz = —ne =
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Figure 5: Modifying a line change by perturbirg.
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