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Abstract

When designing control laws for systems with more inputs than
controlled variables, one issue to consider is how to deal with
actuator redundancy. Two tools for distributing the control ef-
fort among a redundant set of actuators are control allocation
and linear quadratic control design. In this paper, we inves-
tigate the relationship between these two design tools when a
quadratic performance index is used for control allocation. We
show that for a particular class of linear systems, they give ex-
actly the same design freedom in distributing the control ef-
fort among the actuators. The main benefit of using a separate
control allocator is that actuator constraints can be considered,
which is illustrated with a flight control example.

1 Introduction

Actuator redundancy is one issue to be dealt with when de-
signing controllers for systems with more inputs than outputs.
A common approach is to use some optimal control design
method, like linear quadratic (LQ) control [3], to shape the
closed loop dynamics as well as the actuator control distribu-
tion in one step.

An alternative is to separate the regulation task from the con-
trol distribution task. With this strategy, the control law spec-
ifies only which total control effort should be produced. The
distribution of control among the actuators is then decided by a
separate control allocation module, see Figure 1. This strategy
can be found in several practical applications such as aerospace
control [6, 10, 9] and control of marine vehicles [11].

In this paper, we derive some connections between these two
strategies when quadratic performance indices are used both
for control law design and for control allocation. Hence, LQ
control and l2-optimal control allocation will be used to design
the control system building blocks in Figure 1. This compari-
son is particularly interesting from a flight control perspective
since LQ design today is a commonly used method [2, 12], and
control allocation is possibly becoming one.

The main result to be shown is that for a particular class of
overactuated linear systems, the two design strategies offer pre-
cisely the same design freedom. Given one design, we show
how to select the parameters of the other design to obtain the
same control law. We also motivate what benefits a modular
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Figure 1: Control system structure when control allocation is
performed separately.

design—with a separate control allocator—offers. In particu-
lar, actuator constraints can be handled in a potentially better
way.

In Section 2, the class of systems considered is introduced.
Two different control designs are proposed in Section 3 and
are shown to be equivalent in Section 4. Practical implications
of this result are discussed in Section 5. Section 6 contains a
flight control example and conclusions are drawn in Section 7.

2 System Description

We will consider linear systems of the form

ẋ = Ax + Buu

y = Cx
(1)

where x ∈ R
n is the system state, u ∈ R

m is the control input,
y ∈ R

p is the system output to be controlled, and (A,Bu) is
stabilizable. We assume x to be measured so that full state
information is available.

Assume now that rank(Bu) = k < m. This implies that Bu

can be factorized as
Bu = BvB

where Bv ∈ R
n×k and B ∈ R

k×m. With this, an alternative
system description is given by

ẋ = Ax + Bvv

v = Bu

y = Cx

(2)

where v ∈ R
k can be interpreted as the total control effort

produced by the actuators. We will refer to v as the virtual
control input.

Since k < m, B (and also Bu) has a null space of dimension
m − k in which u can be perturbed without affecting the sys-
tem dynamics. This is the type of actuator redundancy that is
typically considered in control allocation applications.



For simplicity, we will restrict ourselves to the case k = p, i.e.,
when the number of virtual control inputs equals the number of
variables to be controlled.

3 Two Control Designs

Let the control objective be for the output y to track a constant
reference signal r, so that y = r is achieved asymptotically.
Based on the two equivalent system descriptions (1) and (2),
two different control designs come naturally. We can either
consider (1) and design a control law in terms of u directly, or
we can consider (2) and first design a control law in terms of
v, and then map this onto u. These design alternatives are the
topics of Section 3.1 and Section 3.2, respectively.

In developing the control laws, the following lemma is useful.

Lemma 1. The least squares problem

min
x

∥
∥Wx

∥
∥

2
= xT WT Wx

subject to Ax = y

where W is nonsingular and A has full row rank, is solved by

x = W−1(AW−1)†y

where A† = AT (AAT )−1 is the pseudoinverse of A.

Proof. See, e.g., [9].

3.1 Standard LQ Design

Design 1. Consider the system description (1) and determine
the control input u(t) by solving

min
u

∫ ∞

0

(
(x − x∗)T Q1(x − x∗) + (u − u∗)T R1(u − u∗)

)
dt

where Q1 = QT
1 is positive semidefinite, R1 = RT

1 is positive
definite, (A,Q1) is detectable, and x∗, u∗ solve

min
x,u

uT R1u

subject to Ax + Buu = 0

Cx = r

(3)

The interpretation of (3) is that if there are several choices of u

that achieve ẋ = 0 and y = r, we pick u such that uT R1u is
minimized at steady state. The optimal control law is given by
the following theorem, based on [7, Thm. 9.2].

Theorem 1. The optimal control law for Design 1 is given by

u(t) = Lrr − Lx(t)

Lr = R
− 1

2

1
(G0R

− 1

2

1
)†

L = R−1

1
BT

u S1

(4)

where
G0 = C(BuL − A)−1Bu

and S1 is the unique positive semidefinite and symmetric solu-
tion to

AT S1 + S1A + Q1 − S1BuR−1

1
BT

u S1 = 0

Proof. Introduce the residual variables x̃ = x−x∗, ũ = u−u∗.
The dynamics of x̃ are given by

˙̃x = ẋ = Ax + Buu = Ax̃ + Buũ

where the last step follows from Ax∗ + Buu∗ = 0. Standard
results from linear quadratic control theory (see, e.g., [3, p. 52])
gives the control law

ũ = −Lx̃

L = R−1

1
BT

u S1

where S1 is the unique positive semidefinite and symmetric so-
lution to the algebraic Riccati equation

AT S1 + S1A + Q1 − S1BuR−1

1
BT

u S1 = 0

In the original variables we get

u = u∗ + Lx∗ − Lx = ur − Lx

Inserting this into (3) gives us

min
x,ur

(ur − Lx)T R1(ur − Lx)

subject to Ax + Bu(ur − Lx) = 0

Cx = r

Since (A,Bu) is stabilizable, A − BuL becomes a Hurwitz
matrix and can thus be inverted. Using Bu = BvB and intro-
ducing vr = Bur, the equality constraints become

x = (BuL − A)−1Buur = (BuL − A)−1Bvvr

Cx = C(BuL − A)−1Buur = C(BuL − A)−1Bvvr = r

Assuming that C(BuL − A)−1Bv (p × p) is nonsingular (or
the control problem would not be feasible), we see that vr, and
consequently also x, is completely determined by r. This im-
plies that the objective function can be rearranged as

(ur − Lx)T R1(ur − Lx) = uT
r R1ur + f(r)

since the mixed term becomes

−2xT LT R1ur = −2xT S1Buur = −2xT S1Bvvr

and x and vr are uniquely determined by r. Hence the opti-
mization problem can be restated as

min
ur

uT
r R1ur

subject to G0ur = r

where G0 = C(BuL − A)−1Bu, which has the solution

ur = R
− 1

2

1
(G0R

− 1

2

1
)†r = Lrr

according to Lemma 1.



3.2 LQ Design and Control Allocation

Design 2. Consider the system description (2) and determine
the virtual control input v(t) by solving

min
v

∫ ∞

0

(
(x − x∗)T Q2(x − x∗) + (v − v∗)T R2(v − v∗)

)
dt

where Q2 = QT
2 is positive semidefinite, R2 = RT

2 is positive
definite, (A,Q2) is detectable, and x∗, v∗ solve

Ax + Bvv = 0

Cx = r
(5)

Then determine the control input u(t) by solving

min
u

∥
∥Wu

∥
∥

subject to Bu = v

where W = W T is non-singular.

In this case there is no need to minimize vT R2v at steady state
since (5) has a unique solution due to that dim v = dim y.

Theorem 2. The optimal control law for Design 2 is given by

u(t) = Pv(t)

P = W−1(BW−1)†

Further, the optimal virtual control input is given by

v(t) = Lrr − Lx(t)

Lr = G−1

0

L = R−1

2
BT

v S2

where
G0 = C(BvL − A)−1Bv

and S2 is the unique positive semidefinite and symmetric solu-
tion to

AT S2 + S2A + Q2 − S2BvR
−1

2
BT

v S2 = 0

Proof. The expressions for P and L follow directly from
Lemma 1 and Theorem 1, respectively. Further, solving

Ax + Bvv = 0

Cx = r

v = Lrr − Lx

gives Lr =
(

C(BvL − A)−1Bv

)−1

.

4 Main Result

We will now present the main result of the paper which con-
nects Design 1 and Design 2 in terms of the resulting control
input. In the presentation, subscripts 1 and 2 are used to specify
which design a certain entity (u, v, etc.) is related to.

Theorem 3. Consider Design 1 and Design 2. Given Q1 and
R1, selecting

Q2 = Q1

R2 =
(
BR−1

1
BT

)−1

W = R
1

2

1

(6)

achieves u2(t) = u1(t). Conversely, given Q2, R2, and W ,
selecting

Q1 = Q2

R1 = W 2 + BT
(
R2 − (BW−2BT )−1

)
B

(7)

achieves u1(t) = u2(t).

Proof. We will first consider the case r = 0. At the end of the
proof we will show that the resulting parameter selection rules
lead to u1(t) = u2(t) also when r 6= 0.

For the control signals to be equal, the virtual control signals
must be equal. From Theorem 1 and Theorem 2 we get

u1(t) = −L1x(t) = −R−1

1
BT

u S1x(t) = −R−1

1
BT BT

v S1x(t)

v1(t) = Bu1(t) = −BR−1

1
BT BT

v S1x(t)

v2(t) = −L2x(t) = −R−1

2
BT

v S2x(t)

where S1 and S2 solve

AT S1 + S1A + Q1 − S1BuR−1

1
BT

u S1 = 0

AT S2 + S2A + Q2 − S2BvR−1

2
BT

v S2 = 0

By inspection we see that

Q2 = Q1

R−1

2
= BR−1

1
BT

give the same solution to the Riccati equations, S1 = S2 = S,
and also the same virtual control signals, v1(t) = v2(t).

Applying these relationships to the control law in Theorem 2
gives

u2(t) = Pv2(t) = W−1(BW−1)†v2(t)

= −W−2BT (BW−2BT )−1BR−1

1
BT BT

v Sx(t)

Selecting W 2 = R1 yields

u2(t) = −R−1

1
BT BT

v Sx(t) = u1(t)

which proves that (6) achieves u2(t) = u1(t). Note that the
choice of W is not unique.

Deriving (7) is not as straightforward. To do this, we consider
Design 2 but with a different control allocation objective:

min
u

∥
∥W̃u

∥
∥ subject to Bu = v (8)

From above we know that this gives the same control signal as
Design 1 if

Q2 = Q1

R−1

2
= BR−1

1
BT

W̃ 2 = R1



Further, (8) gives the same control law as Design 2 if

W̃ 2 = W 2 + BT XB

for any symmetric X such that W̃ 2 is positive definite. This is
true since under the constraint Bu = v it holds that

arg min
u

∥
∥W̃u

∥
∥ = arg min

u
uT W̃ 2u

= arg min
u

uT (W 2 + BT XB)u = arg min
u

uT W 2u + vT Xv

= arg min
u

uT W 2u = arg min
u

∥
∥Wu

∥
∥

Thus, u1 = u2 is achieved for

Q1 = Q2

R1 = W 2 + BT XB

if there exists a symmetric matrix X that solves

R−1

2
= BR−1

1
BT = B(W 2 + BT XB)−1BT

and makes R1 positive definite. We will first solve for X and
then show that the resulting R1 matrix is indeed positive defi-
nite.

Using the matrix inversion formula

(A + BD)−1 = A−1 − A−1B(I + DA−1B)−1DA−1

gives us

R−1

2
= B(W 2 + BT XB)−1BT

= B
(

W−2 − W−2BT (I + XBW−2BT )−1XBW−2

)

BT

= M − M(I + XM)−1XM

where M = BW−2BT . Rearranging this expression gives

XM = (I + XM)M−1(M − R−1

2
)

= I − M−1R−1

2
+ XM − XR−1

2

which has the solution

X = R2 − M−1 = R2 − (BW−2BT )−1

Inserting this into the expression for R1 gives

R1 = W 2 + BT
(
R2 − (BW−2BT )−1

)
B

What remains to show is that R1 is positive definite. Introduc-
ing N = BW−1 and ũ = Wu we have that

uT R1u = ũT
(
I + NT (R2 − (NNT )−1)N

)
ũ

= ũT
(
I + NT R2N − NT (NNT )−1N

)
ũ

Since N has full row rank, the singular value decomposition of
N is given by

N = U
(
Σr 0

)
(

V T
r

V T
0

)

= UΣrV
T
r

where UT U = I , V T
r Vr = I , V T

r V0 = 0 and Σr is a positive
definite diagonal matrix. This gives

NT (NNT )−1N = VrΣrU
T (UΣ2

rU
T )−1UΣrV

T
r = VrV

T
r

Parameterizing ũ as ũ = Vrũr + V0ũ0 now yields

uT R1u = ũT
r ũr + ũT

0 ũ0 + ũT
r ΣrU

T R2UΣrũr − ũT
r ũr

= ũT
0 ũ0 + ũT

r ΣrU
T R2UΣr

︸ ︷︷ ︸

pos. def.

ũr > 0, u 6= 0

which shows that R1 is indeed positive definite.

Let us finally consider the case r 6= 0. Since BL1 = L2 and
L1 = PL2 we have that

u1(t) = R
− 1

2

1
(G0,1R

− 1

2

1
)† r − L1x(t)

= W̃−1(G0,2BW̃−1)† r − PL2x(t)

= W−1(BW−1)†(G−1

0,2 r − L2x(t)) = u2(t)

where the last identity follows from the fact that W and W̃ give
the same control allocation result.

5 Discussion

Let us now discuss the implications of this “conversion theo-
rem”, relating LQ design to l2-optimal control allocation.

The main message is that the two approaches give the designer
exactly the same freedom to shape the closed loop dynamics
and to distribute the control effort among the actuators. Given
the design parameters of one design, Theorem 3 states how the
parameters of the other design should be selected to achieve
precisely the same control law.

So why then bother to split the control design into two separate
tasks? Let us list some benefits of using a modular control
design.

• Facilitates tuning. In Design 1, modifying an element of
the control input weighting matrix, R1, will affect the con-
trol distribution as well as the closed loop behavior of the
system. In Design 2, the tuning of the closed loop dynam-
ics is separated from the design of the control distribution.

• Easy to reconfigure. An actuator failure can often be ap-
proximately modeled as a change in the B-matrix. In De-
sign 2 this only affects the control allocation. Hence, if
the failure is detected, the new B-matrix can be used for
control allocation, while the original virtual control law
can still be used, provided that the damaged system is still
controllable.

• Arbitrary control allocation method. From (2), we can
see that the system dynamics are completely determined
by the virtual control input, v. Hence, if we select Q2

and R2 as in (6), we can choose any control allocation
mapping u = h(v) in Design 2 such that Bh(v) = v,
without altering the closed loop dynamics from Design 1.
For a survey of control allocation methods, see, e.g., [5, 4].



• Actuator constraints. With a separate control allocator,
actuator constraints can be handled to some extent. If the
control input is bounded by u ≤ u(t) ≤ u, the control
allocation problem in Design 2 can be reformulated as

u = arg min
u∈Ω

∥
∥Wu

∥
∥

Ω = arg min
u≤u≤u

∥
∥Wv(Bu − v)

∥
∥

(9)

Given Ω, the set of feasible control inputs that minimize
Bu − v (weighted by Wv), we pick the control input that
minimizes u (weighted by W ). This way, the control ca-
pabilities of the actuator suite can be fully exploited be-
fore the closed loop performance is degraded. Also, when
Bu = v is not attainable due to the constraints, Wv allows
the designer to prioritize between the components of the
virtual control input. The optimization problem (9) can be
efficiently solved using, e.g., active set methods [8].

Remark: It should be stressed that including the con-
straints in the control allocation is not equivalent to in-
cluding the constraints in the original LQ problem in De-
sign 1.

Apparently, a modular design has potential benefits. Unfor-
tunately, not all systems with more actuators than controlled
variables display the type of redundancy that can be resolved
using control allocation. In some cases however, proper model
approximations can be made to achieve modularity, as we will
see in the design example in the following section.

6 Flight Control Example

To investigate the potential benefits of a modular LQ design
we use a flight control example based on the ADMIRE model
[1]. ADMIRE describes a small single engine fighter with a
delta-canard configuration. To induce actuator saturations, we
consider a low speed flight case, Mach 0.22, altitude 3000 m,
where the control surface efficiency is poor.

The linearized aircraft model is given by

x =
(
α β p q r

)T
− xlin

y =
(
α β p

)T
− ylin

δ =
(
δc δre δle δr

)T
− δlin

u =
(
uc ure ule ur

)T
− ulin

[
ẋ

δ̇

]

=

[
A Bx

0 −Bδ

] [
x

δ

]

+

[
0

Bδ

]

u (10)

where α = angle of attack, β = sideslip angle, p = roll rate,
q = pitch rate and r = yaw rate are the aircraft state variables,
δ and u contain the actual and the commanded deflections of
the canard wings, the right and left elevons, and the rudder,
respectively, and xlin, ylin, etc. are the points of linearization.
All actuators have first order dynamics with a time constant of
0.05 s corresponding to Bδ = 20I .

For this system, k = m = 4. Hence, although the number
of actuators exceeds the number of controlled variables, the re-
dundancy is not in a form that can be exploited using control
allocation. Let us therefore make the two following approxi-
mations:

• The actuator dynamics are neglected, i.e., δ = u is used.

• The control surfaces are viewed as pure moment gener-
ators and their influence on α̇ and β̇ is neglected. This
corresponds to zeroing the top two rows of Bx.

This gives the approximate model

ẋ = Ax + Buu = Ax + Bvv

v = Bu
(11)

where Bu = BvB, Bv =
[
02×3 I3×3

]T
, and B contains

the last three rows of Bx. The resulting virtual control input,
v = Bu, contains the angular accelerations in roll, pitch, and
yaw produced by the control surfaces.

Let us investigate three different control strategies:

1. Standard LQ design for the approximate model (11), see
Design 1, with weighting matrices Q1, R1.

2. LQ design and l2-optimal control allocation for the ap-
proximate model (11), see Design 2, with Q2 and R2 se-
lected as in Theorem 3. To handle actuator position con-
straints, the extended control allocation formulation (9) is
used with Wv = diag(1, 1, 100) to prioritize yaw stabil-
ity.

3. Standard LQ design for the full model (10) with weighting
matrices

Q =

(
Q1 0
0 0

)

, R = R1

and Lr selected as in Theorem 1.

The weighting matrices Q1 and R1 are selected to achieve de-
sirable characteristics of the short period mode, the dutch roll
mode, and the roll mode.

Figure 2 shows the simulation results, based on the original
linear model (10). The figure illustrates the resulting flight tra-
jectory for each of the three designs above.

Prior to t = 3 s, no actuator saturation occurs. In this time
interval, designs 1 and 2 above produce the exact same control
signals in accordance with Theorem 3. Design 3 produces a
slightly (barely visible) different result since it is based on the
original, more detailed model (10).

When the roll command is applied at t = 3 s, the left elevons
saturate. In designs 1 and 3, this causes an overshoot in the
pitch variables, α and q. In design 2, the control allocator copes
with the saturation by redistributing as much of the lost con-
trol effect as possible to the right elevons and to the canards.
The result is that the nominal trajectory, without actuator con-
straints, is almost completely recovered.
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Figure 2: Aircraft trajectory, x (left), and control surface po-
sitions, δ (right), for control design 1 (dash-dotted), 2 (solid),
and 3 (dashed). In design 2, the control allocator redistributes
the control effort when δle saturates, preventing an overshoot
in α.

7 Conclusions

For the considered class of linear systems, standard LQ design
and LQ design in combination with l2-optimal control alloca-
tion, offer the exact same design freedom in shaping the closed
loop response and distributing the control effect among the ac-
tuators. Theoretically, this is an interesting result in itself since
it ties together two useful tools for resolving actuator redun-
dancy.

There are also practical implications. Given an existing LQ
controller, we have shown how to split this into a new LQ con-
troller, governing the closed loop dynamics, and a control al-
locator, distributing the control effect among the actuators. In
the control allocator, actuator constraints can be considered, so
that when one actuator saturates, the remaining actuators can
be used to make up for the loss of control effect, if possible.
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