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Keywords: Virtual sensors, identification, aircraft systems. where a high level of sensor redundancy is for reliability and

safety reasons required, the development of Virtual Sensors has
Abstract been thus far quite limited. A potential obstacle may have been

the highly nonlinear nature of the aircraft dynamics. Virtual
The design of an Angle-of-Attack aircraft Virtual Sensor is puSensors based upon Neural Network (NN) identification has
sued via a novel Functional Pooling Nonlinear AutoRegressigen postulated in a number of recent studies [6, 8, 9, 10, 4].
with eXogenous excitation (FP-NARX) methodology. Thidhese Virtual Sensors provide estimates of the signal of interest
methodology essentially is an identification approach capaMich is, in many cases, subsequently compared to its coun-
of establishing a nonlinear dynamical system model from ddetpart(s) provided by physical sensor(s) in establishing fault
obtained from many different flights, each one correspondidéagnosis schemes. Neural Network technology offers the pos-
to different aircraft and environmental conditions. The FRsibility of capturing the nonlinear dynamics of the aircraft, but,
NARX model structure is shown to be suitable for Angle-ofon the other hand, it introduces a potentially high level of com-
Attack Virtual Sensor development within the landing, takeplexity and time consuming training. Oosterom and Babuska
off, and clean flight regimes of the aircraft. Its performance [$1] have developed a Virtual Sensor based upon a fuzzy logic
examined via validation flights, which include substantial aimodel of the Takagi-Sugeno type, which has been successfully
craft maneuvering, and is shown to be very good, with peakplied to the detection of failed physical sensors.

errors not exceeding 1 degrees. The goal of the present study is the design and assessment of

an Angle-of-Attack (AoA) Virtual Sensor for a small commer-
1 Introduction cial aircraft through the use of a novel Functional Pooling Non-

linear AutoRegressive with eXogenous excitation (FP-NARX)
Virtual Sensors (VSsplso referred to asoft sensorsare soft-  methodology. This methodology essentially is an identification

ware based devices which utilize measurable signals (Virtugjnroach that is capable of overcoming two main difficulties
Sensor inputs) in order to reconstruct a signal of interest (Viizsgciated with aircraft Virtual Sensor development:
tual Sensor output). Virtual Sensors are useful in replacing

physical sensors, thus reducing hardware redundancy and ag-
quisition cost, or as part of fault detection methodologies by
having their output “compared” to that of a corresponding ac-
tual sensor. e Capturing the aircraft behavior under different flights,
each one corresponding to different aircraft and environ-
mental conditions.

Capturing the non-linear aircraft dynamics “acting” in a
“representative” flight, and,

Although Virtual Sensors may be, in principle, developed

based upon mathematical models obtained directly from the
physics of the system and first principles, more often than not, _
such mathematical models are either unavailable, or their exaB€ FP-NARX methodology consists of two stages: (a) Ba-
parameter values are unknown, or they are just too complica?é%l NARX structure determination via a single “representative”

to be used. For this reason the development of Virtual Senshidht: and, (b) Functionally Pooled NARX model determina-
often has to be based upon identification techniques. tion via data obtained from a multitude of flights correspond-

. . . . . o ing to various aircraft and environmental conditions. Although
Despite their obvious importance in aerospace applications,the FP-NARX model follows the generic NARX form (when
a single flight is isolated), it does allow for the “expansion’ of

*Research supported by the European Commission (Growth Project GR[P[:I.é basic NARX structure in a physically motivated way.
2000-25261, ADFCSII).

fCorresponding author. The Virtual Sensor obtained via a FP-NARX model should be
thus capable of reconstructing the Angle-of-Attack (AoA) sig-




World block includes the wind and turbulence effects. Turbu-

v v ATMOSPHERE lence is generated on-line via Dryden type second-order filters
’| ENGINES Ii (Dryden spectra) [3], and its intensity may be selected as light,
oA l;gvt\)lgéut I ’AIRCRAI—_F ’C\)/t/gi I?DE7 moderate, or severe.
Fcc o actuaTiON T The Sensors Block includes three Sensor Modules providing
DATA digitized sensor signals. Each module is equipped with appro-
SIGNALY BUS ] priate sensor transducers and transducer failure modes. Two
uix «—| SENSORS [¢_ of the Sensor Modules include an Air Data Computer (ADC),
| SVITEHES :Eﬂgg;\gr‘ON an Attitude Heading System (AHS), and pilot command sen-
«—| LINKAGES [, PILOT INPUT sors, while the third one is equipped with a Global Positioning
System (GPS) and an Air Data Computer (ADC). Two Air-
SAFETY flow Direction Indicators (ADI) are located directly opposite
MONITOR and aligned, one on each side of the fuselage. This allows for
DISPLAYS|—> PILOT [—» CONTROLS|— the computation of an estimate of the Angle-of-Attack (AcA).

Each ADI measures the local airflow direction at the vane lo-

Figure 1: Functional diagram of the aircraft model [3].  cation, and each ADI vane has two position transducers in

order to provide independent information to each one of the

nal for any flight and under any environmental conditions. The&wo ADCs. Each Sensor Module is equipped with a standard
assessment of the designed AoA Virtual Sensor performanc&ger/Monitor (V/M) fault detection and isolation block. The
based upon its ability to reconstruct the signal of interest inbasic sampling frequency of the overall systend(sH z, al-
variety of cases and with validation flights (flights not used ithough certain subsystems run at different frequencies.
estimation).

The rest of this paper is organized as follows: A brief d&8 The Functional Pooling NARX (FP-NARX)
scription of the synthetic (simulation) environment of the small Design Methodology

commercial aircraft used in the study is presented in Section

2. The Functional Pooling NARX design methodology is prethe Functional Pooling NARX (Nonlinear AutoRegressive
sented in Section 3, and its application to AoA Virtual Sens¥fith eXogenous excitation) methodology postulated for Vir-
design in Section 4. The designed Virtual Sensor is asses&] Sensor design is an identification procedure aiming at es-

in Section 5, and the conclusions drawn from this study a@blishing a dynamical system model from data obtained from
summarized in Section 6. many different flights, each one corresponding to potentially

different aircraft and environmental conditions. The methodol-

) . ogy consists of tw@hases
2 Overview of the aircraft model 9y ! e

The study is based upon a detailed aircraft model implementd@) Basic NARX structure determination,
within theMATLAB /Simulink ™ environment (synthetic en-

vironment). The functional diagram of the model is presente
in Figure 1 [2, 3].

Ejb) Functionally Pooled NARX model determination.

3.1 Basic NARX structure determination

The Aircraft block represents the aircraft's nonlinear dynany; order to account for the highly nonlinear dynamical relation-
ics using a six degree-of-freedom model. It calculates the iGsing hetween the signal under reconstruction (virtual sensor
tal (aerodynamic, engine, gravitational) forces and momentgy, 1) and the measurable signals used for this purpose (vir-
and computes the resulting accelerations along the body axXg§) sensor inputs), a stochastic Multiple-Input Single-Output
as well as the corresponding angular rates. The inputs 10 #j{fso) Nonlinear AutoRegressive with eXogenous excitation

block are: The wind and/or turbulence, engine thrust, aero XIARX) model structure of polynomial form is adopted.
namic forces and moments obtained from primary (elevators,

ailerons, rudder) and secondary (flaps, slats, stabilizers, dife MISO NARX polynomial model structure is of the form:
brakes) surfaces, the land gear mechanism, and the aircraft con-
figuration (weight, geometry). The Flight Control Laws block Y[t = 0o + Z 0i, i [t] + Z 0i1iz i [t i [t] +
implements the control laws in a parametrized way, allowing " t1e2
for the selection of various gain scheduling strategies. ot Z Oi, i, 00 [t] - - pi,[t] + e[t] =

il,...,il

The Actuation System block describes the nonlinear behavior

. \ . . L
of the aircraft’s primary and secondary actuators. The Pilot B 9 1
block generates the desired pilot actions and transforms the pi- = ylt]= Z i pilt] + eft] @)
lot commands into surface commands (deflections). Engine dy- =0
namics is modelled by a first-order system in order to produederet designates normalized discrete time<1,2,..., N),
the corresponding thrust (forces and/or moments). The Outsidlethe data lengthy[¢] the Virtual Sensor output, andt] the



model error assumed to be a zero mean uncorrelated sequewnith.y.;.,, [t] designating the model-based simulated siggial,
The termsp; [t] generally are delayed versions of either the outhe actual signal, aniil|| Euclidean norm. The selection proce-
put y[t] (autoregressive, AR, terms) or one of the inpuf] dure incorporates those terms which provide a significant SDC.
fori = 1,2,... (exogenous, X, terms). Th#s designate the Finally note that the ERRand§(NMSE), terms in SDG may
corresponding model parameters, with the number of indidas also computed as averages over a number of flights.
indicating the number op; [t] terms being multiplied together.

The AR order,n,, designates the maximum delay appearing»>  Functionally Pooled NARX model determination.

in the model with regard tg[t], while the X order for the-

th input, n,,,, designates the maximum delay appearing in tide basic NARX model structure developed through data ob-
model with regard ta;[t]. tained from a single “representative” flight and the procedure

Inthe last f fih dek. [#l desianates theth of the previous subsection may be confirmedhaslequateor
n the fast jorm ot th€ mo .e‘b"“ esignates theth regressor, representing the aircraft dynamics under various flights.
generally being a monomial consisting of products of various

©i[t]'s. Let the maximum degree of nonlinearity pfit] (i = The Functionally Pooled NARX (FP-NARX) model structure
1,2,...,L) bel, and note thapo|t] 29 (constant term). In aims at overcoming this difficulty by postulating a model suit-

this representation the model parameter corresponding to @€ for all flight conditions and estimated from data obtained
i-th regressor is designatedés from multiple flights (under different aircraft and environmen-

tal conditions).
In the present (first) phase of the methodology, the basic NARX . . )
model structure is determined via a single (‘representative’)'€ first step in developing the FP-NARX model structure is
flight. Since the NARX model of equation (1) is linear in thdased upon the observation that the basic NARX model param-

parameters, estimation, based upon minimization of a quadr&grs are flight dependent. This implicitly indicates the inade-
function of the error, may be achieved via linear regressidiacy of the basic NARX structure under multiple flight sce-
The forward orthogonal least squares estimator [5, 1] is a coffft"0S, and is, of course, unacceptable within the present con-
putationally efficient procedure for determining the terms to §8Xt: The approach postulated for overcoming this difficulty is
included in the model (model structure). Indeed, the orthof@s€d upon modification of the basic NARX structure by allow-
onality property of this estimator results in a particular simpf89 the model parameters to be functions of measurable flight
structure determination procedure, which is based upon an agiy@ntities, say, [i], £2[t], ..., £,[t]. Based on this, the model
iliary model defined such that the terms in it are orthogonal @ auation (1) may be expressed as:

each other over the data set. According to this procedure the I
determlnanor_] of the_ model structure is accomplished via the ;1) — Zﬁi(gl [t], a[t], ..., £4[t]) - pilt] +€[t] ()
Error Reduction Ratio (ERR) criterion: =0

N 2 92 . ) . .

ERR — Zt:]\lf gi wilt] 100% (2 Withthev;’s presently being of the form:

i1 Y2l r1 _
with w;[t] andg; designating the-th regressor and the corre-  Ji(€alt], Calt], -, Lglt]) = @iy + Y iy, - 1] +
sponding parameter of the auxiliary model, respectively. The J=1
guantity ERR provides an indication of which term should be 2 ; i ,
included in the model by assessing the percentage contribution +> an,, B+ D a6 (7)

j=1 j=1

of thew;[t] regressor to the reduction of the total mean-squared
prediction error [5]. Each auxiliary coefficiept can be esti- ;.1 a;. . designating the coefficient of projection of thh

J

mated sequentially and independently, which is advantagequ§qe| parameter on thé[t] functions. Albeit this model struc-
when estimating nonlinear models with large numbers of cafjze follows the generic NARX form when a single flight is iso-
didate terms. lated, it does allow for the “expansion” of the basic form in a
Since the objective of the present study is the design of a Virtudlysically motivated way as it permits the use of physical in-
Sensor, the simulation capability is also important, and for tH#ght in the selection of the measurable quantities affecting the
reason the following Structure Determination Criterion (SD@Yiginal model parameters.

is used: The model of equation (6) may be re-written’as
SDC, = - ERR; + - §(NMSE), 3)

wherea andg are selected constants af{tNMSE), designates y[t] = [pT [t] @ € [t]} -a + eft] (8)
the reduction in the Normalized Mean Square Simulation Error —_—
when thei-th term is added to the model. The NMSE is defined wTt]
as follows: with: . .

é[t] = y[t] — Ysim [t] (4) p[t] = [pO [t] .- PL [t]] (9)

NMSE = || é[t] H2 % 100% (5) 1Bold face lower/upper characters designate vector/matrix quantities, re-

spectively.

Iylt] 112



T

) 2 L0t O, ] (10) _ 16
g

S 12r

A . . .

a=[al:al:. . :af]” (11) g

D ogt
aié[aiofail_l...ail_TlE... faiql...aiqr ]T (12) <o(

' ’ ’ o < 1 1 1 1
with ® designating Kronecker product [7, pp. 27-28]. 40 20 40 60 80 100

The Functionally Pooled NARX (FP-NARX) model structure Time (sec)

valid for every flightk, may be then specified as follows: Figure 2: Typical Angle-of-Attack (landing flight regime; light

turbulence).

] = wilt]- It vk 13
wl) = wild-atal] () (09 ot Sl
ex[t] ~ NID(0,07,) (14) —_
S 0.8 3 0
COV[ek, 61] = 0'5 -0kl (15) N —1.2 = —10W
o < i W 20
a : common for all flights (independent &j (16) = 05 = -8
where the subscript designates the flight, NID() stands for % O-ZSM 5785 /
Normally Independently Distributed with the indicated meat 0 » -9
and variance, CovJ-] designates covariance of the indicatec i 40 B 30
quantities, and, ; the Kronecker delta= 0 for i # j, = 1 for g 25W S 15M
=) & 10 ® 0
. A 0 20 40 60 80 100
Assuming the availability of data of lengt¥i (¢t = 1,2,...,N) & 0 Time (sec)
from thek-th flight, and employing equation (13), leads to the = 40W
following matrix equation: > 30
0 20T_40 60 80 100
e =D ate (17) ime (%)

Figure 3: Virtual Sensor input signals for the flight of Figure 2
Further assuming the availability of data from a totaléfdif-  (janding flight regime; light turbulence).

ferent flights £ = 1,2,..., M) and pooling the equations of
the form (17) together (one on top of the other) leads to the

expression: 4 Functional Pooling NARX Design of an AoA
y=Q-a+te (18) Virtual Sensor
with: The FP-NARX methodology is now used for the design of
an Angle-of-Attack (AoA) Virtual Sensor. Preliminary re-
Y1 2 €1 sults have indicated that it is beneficial to split the aircraft's
y A Y2 Q2 £ el €2 flight envelope into three distinct flight regimes, according to

: : : Flap/Slat (F/S) configuration (corresponding to landings =
Yur Qv e 40°/25°, take-off, F/S = 20°/25°, and clean flightF/S =

0°/0°), and design a separate Virtual Sensor for each one. The
rocedure followed for each regime is that of Section 3, with
r. ht data obtained from the simulation model described in
Q&ction 2. The flights used are characterized by light turbu-
lence and “sufficient” amounts of aircraft maneuvering through
pilot commands on the stick, wheel, and pedal.

A simple estimator for the pooled model parameter vector mﬁ
be based upon minimization of the trace of the sample er
covariance, that is:

J2 TraceCovie] (19)
(the tilde over a quantity indicating sample) which leads to tﬁlé1 Landing flight regime
(suboptimal) Ordinary Least Squares (OLS) estimatonfor Basic NARX structure determination. Within the landing
flight regime, basic NARX structure determination is based
b= (QTQ>_1 Ty (20) uponM = 10 flights, each ong&t =90 sec (N = 4SOQ sam-
ples) long. The AoA sensor signal for a representative flight is

with the hat designating estimator/estimate. Estimates of @lreesented In Figure 2.
variouso?, s are subsequently obtained. Various possible Virtual Sensor input signals and NARX struc-
tures are considered. Input and model structure selection is



Degree (=1 (=2 (=2 (=2

Monomial Monomial Monomial Monomial
Xterm p; [t] = U1 [t — 1] p5[t] = u% [ﬂ pll[t] = ul[t — 1] U [t] p17[t] = us [t — 1] . U4[t — 1]
palt] = uslt — 1] pelt] = ui[t] praft] = wit — 1) - uslt — 1] pis[t] = ualt] - uglt]
pslt] = walt — 1] pr[t] = u2[t] p1slt] = wi[t — 1] - waft — 1] prolt] = walt] - uglt — 1]
palt] = ue[t — 1] pslt] = ui[t —1]  piaft] = ua[t] - urlt] p20lt] = us[t — 1] - uglt — 1]
polt] = w3t — 1] pislt] = ualt] - uslt] pa1t] = ue[t — 1] - ur[t]

piot] = uilt — 1]  pie[t] = ualt] - uelt]
uy: vertical acceleration (Az),: longitudinal acceleration (Ax)3: dynamic pressure (P)
uy: true airspeed (V)ys: elevator (E)ug: stabilizer (S)u: pitch angle €)
AR order: n, =0 max X order: n,, =1 delay: d; =0
AR terms: 0 Xterms: 21 constant term= 0
Initial degree of polynomial nonlinearity : = 2
Functional dependencies of the forn®); (uzt], us[t]) = as, + as, , - u2lt] + iy, - walt] + aiy , - uift]
Effective degree of polynomial nonlinearity ¢/ = 4

Table 1: FP-NARX model structure for the landing flight regime.

based upon the methodology described in subsection 3.1 [eq! =152 N

- . - N ok oty i (@)

tion (3); « = 0.2, 8 = 0.8] for various flights being included ) PR AN

in the model. This procedure leads to the selection of seve < 14.7 A A \

Virtual Sensor inputs, as indicated in Table 1. The time his < FTTW \

tories of these signals, for the flight presented in Figure 2, a s 14-%7 48 49 50 51
presented in Figure 3. The initial NARX degree of polynomia @ [~ - acual aox ~ /"\w..‘..\““ ‘ (0)
nonlinearity, AR and X orders, as well as input delays, are stc& 75l /,."""“"" -/ AN

lectedasl =2, n, =n, =1, ;=0 (i=1,..,7), T "7 ™ e
respectively. < ) T

The procedure leads to a basic NARX structure characteriz__ 0.28§
by 22 terms, including a constant term (details in Table 1). A:_§’

n, = 0, the basic NARX model is, in this case, of the Finite); 0
Impulse Response type. n 0.2 ‘ ‘ ‘ ‘
Functionally Pooled NARX model determination. The 0 20 40 60 80 100

. : : . Time (sec)
Functional Pooling procedure is based updn= 30 differ-

ent flights characterized by light turbulence aivtl = 90 sec  Figure 4: AoA Virtual Sensor performance for a validation
(N = 4500 samples) duration. The procedure leads to a Ffight within the landing flight regime: (a) detail, (b) complete
NARX model with parameters being polynomial functions dfight, (c) simulation error{ — actual AoA,— Virtual Sensor
us|t] (longitudinal acceleration) and [t], u3[t] (true airspeed AoA).

and its square). The final Virtual Sensor model has an effective

polynomial degree of’ = 4 (details in Table 1). dation flight from within the take-off flight regime is presented
in Figure 5, while a summary of the results corresponding to
all three flight regimes is presented in Figure 6. This summary
indicates the maximum values of the Mean Simulation Error
Similar FP-NARX model structures are selected for the oth@VISE) and Peak Simulation Error (PSE) for all training (esti-
two regimes. The Virtual Sensor inputs and basic NARX strugiation) and all validation flights in each regime. The MSE and
ture ¢, ny, n.,, d;) are the same as in the landing flight regimd?SE quantities are defined as:

4.2 The take-off and clean flight regimes

N
. 1
5 AO0A Virtual Sensor Assessment MSE = max (N Z | éxlt] ) (21)
t=1
AO0A Virtual Sensor assessment s, for the landing flight regime,
based upon data obtained duri2g additional flights charac- PSE= max (| é[t] |) (22)
terized by light turbulence andt = 100 sec (N = 5000 k.t

samples) duration. The results corresponding to a typical vali- . . g - : :
dation flight are presented in Figure 4 which presents the actln hich k- designates thé-th flight within each flight regime

) . ande[t] the simulation error [equation (4)]. It is obvious that
AOA, th? Virtual Sensor based AoA, and the_|r discrepancy (ethe performance of the developed AoA Virtual Sensor is very
ror) during a large (15.2 degrees) AoA working range.

good in all three flight regimes, with the peak error not exceed-
The performance of the AoA Virtual Sensor with a typical valiing 1.1 degrees.
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