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Abstract

We present a global stabilization algorithm for the Planar Ver-
tical Takeoff and Landing (PVTOL) aircraft, with bounded in-
puts. We first stabilize the altitude of the aircraft and then take
care of the horizontal position and the roll angle. The control
strategy is based on the use of nonlinear combinations of linear
saturation functions bounding the thrust input and the rolling
moment to arbitrary saturation limits. We provide global con-
vergence of the state to the origin. Note that the methodology
that we present here, is similar to previous works that we al-
ready proposed for such a system. The interest of this alter-
native control strategy relies on the fact that the altitude of the
aircraft is first stabilized, which is more reliable for implemen-
tations on real experiments.

1 Introduction

The existing design methodologies for the flight control of the
Planar Vertical Takeoff and Landing (PVTOL) aircraft model
are numerous. This particular system is, indeed, a simplified
aircraft model with a minimal number of states and inputs but
retains the main features that must be considered when design-
ing control laws for a real aircraft. Since, the system possesses
special properties such as, for instance, unstable zero dynamics
[5], several methodologies for controlling such a system have
been proposed.

Hauser et al. [5] in 1992 applied an approximate I-O lineariza-
tion procedure which results in bounded tracking and asymp-
totic stability for the V/STOL aircraft. In 1996, Andrew R. Teel
[14] illustrated his central result of nonlinear small gain theo-
rem using the example of the PVTOL aircraft with input cor-
ruption. His theorem provided a formalism for analyzing the
behavior of control systems with saturation. He established a
stabilization algorithm for nonlinear systems in so-called feed-
forward form which includes the PVTOL aircraft. The same
year, Martin et al. [8] presented an extension of the result pro-
posed by Hauser et al. [5]. Their idea was to find a flat output
for the system and to split the output tracking problem in two
steps. Firstly, they designed a state tracker based on exact lin-

earization by using the flat output and secondly, they designed
a trajectory generator to feed the state tracker. They thus con-
trolled the tracking output through the flat output. In contrast to
the approximate-linearization based control method proposed
by Hauser et al., their control scheme provided output track-
ing of non-minimum phase flat systems. They have also taken
into account in the design the coupling between the rolling mo-
ment and the lateral acceleration of the aircraft (i.e. � �� �).
Sepulchre et al. [11] applied a linear high gain approximation
of backstepping to the approximated model neglecting the cou-
pling. In 1999, Lin et al. [6] studied robust hovering control
of the PVTOL using nonlinear state feedback based on optimal
control. Reza Olfati-Saber [9] proposed a configuration stabi-
lization for the VTOL aircraft with a strong input coupling us-
ing a smooth static state feedback. M. Saeki et al. [10] offered a
new design method which makes use of the center of oscillation
and a two-step linearization. In fact, they designed a controller
by applying a linear high gain approximation of backstepping
to the model. A paper on an internal-model based approach
for the autonomous vertical landing on an oscillating platform
has been proposed by Marconi et al. [7]. They presented an
error-feedback dynamic regulator that is robust with respect to
uncertainties of the model parameters and they provided global
convergence to the zero-error manifold.

Recently, in [3, 4, 15], we developed new control strategies
which coped with (arbitrarily) bounded inputs and which pro-
vided global convergence to the origin. In the proposed pa-
per, we present a global stabilizing algorithm for the control of
the PVTOL aircraft. The proposed methodology is an alterna-
tive of our previous approaches, where we also use saturation
functions in the control design. Here, the main contribution is
to stabilize first the altitude of the aircraft, which is more re-
liable for the stabilization purposes of aircraft. The approach
takes into account the idea of a possible implementation of such
methodology on a real experiment. Moreover, the methodol-
ogy requires relatively less calculations than the previous one.
The paper is organized as follows. In section 2, we recall the
equations of motion for the PVTOL aircraft and state the con-
trol objective. In section 3, the proposed approach is presented.
Simulations are shown in section 4 and conclusions are finally
given in section 5.



2 The PVTOL aircraft model

The PVTOL aircraft dynamics, depicted on Figure 1, are mod-

Figure 1: The PVTOL aircraft (front view)

elled by the following equations [5]
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(1)

where �, � denote the center of mass horizontal and vertical
position and � is the roll angle of the aircraft with the hori-
zon. The control inputs �� and �� are respectively the thrust
(directed out the bottom of the aircraft) and the angular accel-
eration (rolling moment). The constant “�	” is the normalized
gravitational acceleration. The parameter � is a (small) coeffi-
cient characterizing the coupling between the rolling moment
and the lateral acceleration of the aircraft. Its value is in gen-
eral so small, that � � � can be supposed in (1) (see for in-
stance [5, �2.4]). Furthermore, several authors have shown that
by an appropriate coordinate transformation, we can obtain a
representation of the system without the term due to (� �� �)
[9, 10, 12]. Consequently, in this study we choose to consider
the PVTOL aircraft dynamics with � � �, i.e

�� � ��� ��� � (2)

�� � �� ��� � � 	 (3)

�� � �� (4)

whatever this means that � has been neglected. Our control
objective is to stabilize the PVTOL aircraft to the origin with
bounded inputs, i.e. ���� � �� and ���� � �� for some positive
constants �� and ��.

3 Global stabilizing control law

In the proposed control strategy, we first stabilize the altitude
of the aircraft, by using the control input ��. The controller
is obtained by defining the following desired behavior for the
altitude �. Let us, therefore, define the variable �� as follows

�� � ��
�� ��� � ����
 �� � ���
� � ���� (5)

where the functions ���
�� are twice differentiable linear sat-
urations. Furthermore, we define the desired behavior for the

position � and then, the variable ��:
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where 	 is a positive constant greater than unity. The definition
of linear saturation functions ���
�� is described below.

Definition 3.1 Given positive constants 
 and � , with 
 �
� , a function � 
 �
� �
 is said to be a linear saturation for


��� if it is a continuous, nondecreasing function satisfying

(a) �
�� � � when ��� � 

(b) ��
��� �� for all � 	 �


A second definition in terms of linear saturation functions is
also given and will be extensively used throughout the paper.

Definition 3.2 Given positive constants 
, � , � with 
 �
��� �����, a function � 
 �
 � �
 is said to be a 2-level
linear saturation for 

����� if it is a continuous, nonde-
creasing function satisfying

(a) �
�� � � for all � 	 ��
�
�
(b) �� � �
�� � � for all � 	 
�����
(c) �
�� � �� for all � � ��
(d) �
�� � � for all � 
 �

By selecting

�� �
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���

���


	 � ��� (7)

with �� � �
� (this will be proved in the stability analysis).

Then from (3) and when ��� � ��, �� � ��. In the stability
analysis, we will prove the existence of a time �� 
 �, such that
� ��� �
��� � ����� � ��, �� 
 �� for some initial-condition-
independent positive constant ��, i.e. ��� �
�� is bounded.
Therefore, � � �, which will be proved in the stability analysis
and results from [13] and then, �� � �. The reduced system
becomes

�� � � ��� �
	 � ��� (8)

�� � �� (9)

At this stage, the only remaining input is the angular accelera-
tion ��. The idea is to choose ��, such that ������ ��
�� � ��,
by means of the definition of a desired roll angle �� and using
�� � �. Therefore, we define the following desired roll angle

�� � ������
���� (10)

The objective is to determine an appropriate �� that makes �
follow the desired motion expressed in (10). Consequently
and using �� � �, we will see in the stability analysis that
������ ��
�� � ��. Nevertheless, the second-order dynamics
(4) do not permit �� to give directly any desired form to �.
The idea is, then, to achieve �
�� � ��
�� as � � �. �� and
�� could have been simply selected as linear stabilizing state
feedbacks, i.e. �� � �	��� � 	�� �� and �� � �	��� � 	�� ��,
with 	�� � �, ��� � � 	� �, as is actually proposed in [10] and
[11]. Moreover, a similar tracking version could be consid-
ered for �� in (4), i.e. �� � ��� � 	��
� � ��� � 	��
 �� � ����,



with 	�� � �, �� � 	� �, as exposed in [10]. Nevertheless,
such approaches do not seem to be appropriate whenever � �

and �� are (physically) bounded inputs. This constitutes the
interest of the present study: to provide a solution to our con-
trol problem whenever �� and �� are furnished by actuators
with (output) saturation limits (which is a realistic case). In
other words, we take ���� � �� and ���� � �� for some finite
positive (constants)�� and��. Notice, from (3), that�� � 	 is
a necessary condition for the PVTOL to be stabilizable at any
desired position. Indeed, any static condition implies that the
aircraft weight be compensated. In such scenario, the selected
functions ��, ��, and �� are based on the stabilization approach
proposed in [13]. Therefore, they are defined in terms of linear
saturation [13, Def. 1] functions.

Let us now state the main result of our paper.

Theorem 3.1 Consider the PVTOL dynamics (2)–(4) with in-
put saturation bounds �� � 	 and �� � �. Let us define
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where 	 is a positive constant greater than unity and the func-
tions ���
�� are twice differentiable linear saturations for given


�� ���� � ���� such that ��� �

���

� �� � 	� � and

�� � ���
����� ���
 �� � ���
 ����

����
 �� � ���
 ���� � � � ���� (14)

where
�� � ������
���� (15)

and the functions ��	
�� are linear saturations for given


�	���	� such that the following conditions are satisfied

(a) ��� ���� � ��

(b) ��� ���� � ���

(c) ��� � ���� � ���� � 
��

(d) ��� ���� � ���� � �������
�

��

�

�
� 
��

(e) ���� � ���� ���� ���� ���� �
�
�

Then, provided 	 is sufficiently large,

(1) global asymptotic stabilization of the closed-loop system
dynamics (2)–(4),(11)–(14) towards 
�� ��� �� ��� �� ��� �

�� �� �� �� �� �� is achieved, with

(2) ���
��� � �
�������


	 ����� � �� and
���
��� ���� ���� � ��, �� 
 �,

Proof. Property (2) of the statement is a direct consequence of
the definitions of ��, ��, ��, and ��. Its proof is consequently
straightforward. The proof of property (1) is divided in two

parts. The first part shows that the bounds on ��, ���, and ��� are
directly influenced by the parameter 	. The second part details
the closed-loop stability analysis.

First part

Let us begin by noting, from the strict increasing property
of ������
�� and the definition of �� in (12) that ���
��� �
������

�

��

�

�
� ��� , �� 
 �, which shows the direct influ-

ence of 	 on��� . From the definition of �� (15), one can easily
verify that
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and
�� �� �� ��� �
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(18)

Using (11), let us calculate the time derivative of ��, when
��
��� � ��

��� �
���
�� ��

����
��
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(19)

Let us also calculate ��� which will be used in the sequel.

��� � �����
 �� � ���
� � ���� ��� � ����
� � ��� 
 �� � ���� (20)

with
�� � �� ��� � � 	 (21)

Let us note that twice differentiability of ���
�� (� � 	� �,
� � 	� �) on �
 ensures boundedness of � ���
�� and �����
��
on ����� � ��� � (see [1, Theo. 4.27]), i.e. there exist positive
(real) constants ��� and ��� (� � 	� �, � � 	� �) such that������
���� � ��� and

�������
���� � ��� , �� 	 ����� � ��� �. Taking
into account the functions ���
�� chosen in the present paper
(see Appendix A), we will simplify the calculations and con-
sider that

������
���� � 	 and
�������
���� � 	, �� 	 ����� � ��� �.

On the other hand, � ���
�� � �����
�� � � when ��� 
 ��� . Con-
sequently, for any nonnegative scalar �,

��������
���� � �
�
�� and���������
���� � �

�
�� , �� 	 �
, ��� � � 	� �. Therefore, recalling

that �
�

is less than unity, we obtain
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 �. Using �
�

�

�

� 	 and assuming the existence of a

time �� 
 � such that � ��� �
��� � ��, �� 
 ��, for some
initial-condition-independent positive constant ��, i.e. ��� � is
bounded1, it results from the above that
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(22)

�� 
 �� (see (16)), showing the boundedness of ���, but also
the direct influence of 	 on its bound. Furthermore, assuming
the existence of a time �� 
 �� 
 � such that � ��
��� � � 	�,
�� 
 ��, for some initial-condition-independent positive con-
stant � 	�

2 and using (11), (19) and (18), we have
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(see (17)), which shows that the bound of ���
� 
 ��� is directly
influenced by 	 too.

Second part: closed-loop stability analysis

Firstly, as mentioned in the previous part of the proof, we will
show the existence of a time �� 
 � such that � ��
��� � � 	�,
�� 
 ��, and a time �� 
 �, �� 
 �� such that � ��� �
��� � ��,
for some initial-condition-independent positive constants � 	�

and ��. For that reason, let us introduce the following posi-
tive function �� � ���. Differentiating �� with respect to time,
we obtain

��� � �� ��
����
���� � ���
 �� � ���
 ����

����
 �� � ���
 ���� � � � ����� (27)

Observe that condition (b) implies ��� � ��� and from Def-
inition (3.2), since ��� � ���, then ��� � ���. Then, if
� ��� � ����������� it follows that ��� � �. Therefore, there

1In the second part of the proof, such an assumption will be proved to be
satisfied with �� � ������� and�� � ���������������������

.
2Such an assumption will be proved to be satisfied with ���

� ��� �
��� ���� in the second part of the proof.

exists a time �� 
 � such that � ��
��� ������������ � � 	�,
�� 
 ��.

By using condition (c) it then follows that the argument of � ��

in (27) is in its linear part, for � 
 ��. Hence, for � 
 ��,
�� � ���
���� � �� � ���
 ���� � ���
 �� � ���
 ���� � � � ���.
Let us now introduce a new variable: � � � � ��. We propose
the following positive function �� � ��. Its time derivative
becomes, for � 
 ��

��� � ���
����
��������
 ��������
�����
 ��������� (28)

From condition (b), it follows that if ��� � ������������
��� then ��� � �. Hence, there exists a time �� 
 �� such that
��
��� ���� ���� ���� ���� , �� 
 ��. Since

��� � � ��� � �� � ��� ���� ���� ���� ���� (29)

�� 
 �� and since � ��
��� ���� ���� ���� � � 	�, �� 
 ��,
then ��
��� � ��������������������� � �� �� 
 ��
and then � ��� �
��� � ���
��� � ��, �� 
 ��. Therefore,
�� 
 ��, ��� �
�� is bounded. By using condition (e), it yields
�
�� � �� � �

� , �� 
 �� and the argument of ���
in (11),

is in its linear part, for � 
 ��. Now, by using condition (d),
it follows, as above, that the argument of ��� in (28) is in its
linear part, for � 
 ��. We then have, for � 
 ��

�� � ���
����� 
� �� � ���
 ����� ���
 ������ 
� � ��� (30)

From the first part of the proof, we see that a sufficiently
large k can be chosen such that � ���

� 
�� and � 	��
�

����
��� 
���. Therefore, the arguments of the saturations
���, ��� and ��� in (30) are respectively in their linear parts
and we finally obtain that � follows the desired trajectory �� as
���. The 
�� ��� subsystem is given by

�� � ����
 �� � ���
� � ���� (31)

where global stability is obtained from Theorem 2.1 in [13].
Then � � � and �� � �. Therefore, the 
�� ��� subsystem, in
the limit when � � ��, can be expressed as

�� � �
	

	
���
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�� ���� (32)

Finally, global stability of system (32) follows from Theorem
2.1 in [13]. �

4 Simulation results

In this section, we present some simulation results using
MATLAB and SIMULINK in order to observe the per-
formance of the proposed control law. In particular, we
started the PVTOL aircraft at the following initial conditions,
i.e. 
�
��� ��
��� �
��� ��
��� �
��� ��
��� � 
��� �� ��� �� ��� � ��.
Note that the aircraft initial roll angle exceeds �

� . In fact, in
contrast to some approaches which require that the roll an-
gle be restricted to (� �

� �
�
� ) (see for instance [3, 5, 9]), the

proposed method allows �
�� 	 �
, �� 
 �. We have cho-
sen a thrust saturation bound �� � 	� and a rolling mo-
ment saturation bound �� � �. The linear saturation func-
tions are described in Appendix A; the following parameters



were taken: ��� � 	, 
�� � ���, ��� � ���, 
�� � ���,
��� � ���, 
�� � ���, ��� � ���, 
�� � ���, ��� � �,

�� � ���, ��� � �����, 
�� � �����, ��� � �����,

�� � �����, ��� � �����, 
�� � �����, ��� � �����,
and 
�� � �����. The results are shown on Figures 2 and
3. Observe that the inputs �� and �� remain within their sat-
uration bounds. On the other hand, the time response of �
is large compared to the one of �. This is due to the restric-
tions on the choices of parameters and especially the parameter
	. Indeed, our algorithm requires to choose a suitably large
parameter 	, in order to have the appropriate bounds for ���
and ��� (see the second part of the stability analysis). In the
present case, we have chosen 	 � ���� to ensure that condi-
tion (d) (i.e. ��� � ��� � ���� � �������

�

��

�

�
� 
��)

is satisfied. The parameters slow down directly the perfor-
mance of the horizontal motion through ��. We also provide
simulations with the same control law and the same parame-
ters as above, but with different initial conditions, in order to
look at the performance of the proposed control law. Figures
4 and 5 show the results for the following initial conditions:

�
��� ��
��� �
��� ��
��� �
��� ��
��� � 
	�� �� 	�� �� �� ��. No-
tice that the altitude of the aircraft is first stabilized with a good
performance. Then, the horizontal motion converges to zero
with satisfaction, taking into account that �� and �� are small
and bounded.
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Figure 2: System states with initial states 
��� �� ��� �� ��� � ��

5 Conclusions

Based on the results presented in [13] a global stabilization
control scheme is proposed for the PVTOL aircraft. Compared
to the previous works, the exposed solution stabilizes first the
altitude of the aircraft and takes into account input saturation
bounds. Simulations support the theoretical results and some
real experiments have already been performed on a real proto-
type of the PVTOL aircraft by using vision. The experimental
platform will be described in a future paper.
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Appendix A

A family of twice differentiable 2-level linear saturations is pre-
sented below. All the linear saturations (including those in-
volved in ��) used to get the simulation results of Section 4
were actually defined this way.
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Figure 5: System states with initial states 
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control inputs
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Figure 6: Twice differentiable 2-level linear saturation, as de-
fined by (33)–(34), for 

����� � 
	� �� ��, and its first and
second derivatives with respect to its argument.

The form of (33)–(34) taking 
 � 	 and � � � (
 � � �),
and those of its first and second derivatives with respect to its
argument, are shown on figure 6.
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tive Nonlinear Control. Springer-Verlag London, 1997.

[12] P. Setlur, Y. Fang D. Dawson, and B. Costic. Nonlinear
tracking control of the VTOL aircraft. In Proceedings of
the ���� Conference on Decision and Control CDC’01,
2001.

[13] A. R. Teel. Global stabilization and restricted tracking
for multiple integrators with bounded controls. Systems
& Control Letters, 18:165–171, 1992.

[14] A. R. Teel. A nonlinear small gain theorem for the analy-
sis of control systems with saturation. IEEE Transactions
on Automatic Control, 41(9):1256–1270, 1996.

[15] A. Zavala, I. Fantoni, and R. Lozano. Global stabiliza-
tion of a pvtol aircraft with bounded inputs. In IFAC
Latin-American Conference on Automatic Control CLCA,
Guadalajara, Mexico, December 2002.


	Session Index
	Author Index



