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tion, Visual Servoing, Nonlinear control. cently, in [5] a new algorithm for visual servoing of an under-
actuated dynamic rigid body system, such a helicopter, based on
Abstract exploiting the passivity-like properties of rigid body motion has

been proposed. In this paper we use the method presented in
In this paper, we study the dynamics and the control using vis(2) (Z%D visual servoing) that consists of combining visual fea-
features of a four rotor vertical take-off and landing (VTOLJjures obtained directly from the image, and features expressed
vehicle known as the X4-flyer while stabilizing with quasiin the Euclidean space. More precisely, a homography matrix is
stationary flight above a planar target. A new control strategyéistimated from the planar feature points extracted from the two
presented using the homography matrix, it is based on saturafiages (corresponding to the current and desired poses). From
functions for bounding the orientation of the UAV (unmannethe homography matrix, we will estimate the relative position
air vehicle) in order to keep the target in the camera’s field of the two views.

view. The purpose of this paper is to study how we can use the ap-

proach given in [9] to control an autonomous hovering system.
1 Introduction First, we propose a simplified dynamic model of a four-rotor

vertical take-off and landing (VTOL) vehicle known as the X4-

Unmanned air vehicles (UAV) are becoming of a major interéfler. Then we propose a control design based on separating the
in modern control theories. Several authors have contributiggns|ational from the rotational rigid body (airframe) dynamics
in the development of dynamic modelling [8, 6]. Their highlys) The control strategy is new because it takes into account
coupled dynamics and their small size provide an ideal testigimit for the orientation of the X4-flyer in order to keep the

ground for many complex control techniques. But the proble@get in the camera’s field of view. We will prove the stability
that arises in this kind of applications is the difficulty of¢ gych strategy based on saturation functions.
measuring non-inertial variables as position, orientation, and

linear velocity. One way of overcoming the problem is th .
use of vision sensor. Typically, a vision system onboard The X4-flyer dynamic model

UAV. mc_ludes a Global Posmonmg System (GPS), an Inemq,lhe X4-flyer is a system consisting of four individual electric
Navigation Senso_r (INS) anq a hlgh-tech_c_amera. So, almg s, linked to a rigid cross frame as shown in Figure 1. It op-
all control strgtegles are b.u'lt around a vision sensor. Inde&qﬂes as an omnidirectional UAV. Vertical motion is controlled
some works in the domain of control design, dEd'CatEdd&% collectively increasing or decreasing the power of all four

helicapters, propose fo use stereovision systems in the lan Stors. Lateral motion is achieved by controlling differentially

maneuvers qf v thg purpose Of. estimating the IocaFi e motors generating a pitch/roll motion of the airframe that
and orientation of the helicopter landing pad. The veh|0ﬁ

clines the collective thrust and leads to lateral acceleration.

considered in th's paper is an _autonomous hoverlpg §ystengW control is derived from the reactive couple applied to the
capable of quasi-stationary, vertical take-of and landing in N&3fframe due to rotor drag. Diagonally opposite rotors turn in

hover flight conditions. opposite directions (cf. Fig. 1) leading to a balanced torque dis-
tribution in hover conditions. To apply yaw control, the speed

All visual servoing techniques that involve reconstruction of tref a pair of diagonal motors is increased while it is decreased in

target pose with respect to the camera are cafledition based the opposing pair. This generates a torque around the vertical

visual servoindPBVS). This kind of techniques lead to a Carteaxis while maintaining the total thrust.

sian motion planning problem. Its main drawback is the needl?ét F* = {E,, E,, E.} denote a right-hand inertial or world

a perfect knowledge of the target geometric model. The S8Gime such tha

dcl K 4 based visual BYS) ai . denotes the vertical direction downwards
ond class known asnage based visua ser_vow(gs ) ams into the earth. Lef = (z,y, z) denote the position of the centre
to control the dynamics of features in the image plane direc

71 Classical IBVS hods h he ad f bei b mass of the object in the framié* relative to a fixed origin
[7]. Classica methods have the advantage of being robyst,... | o » _ (E%, B2, B9} be a (right-hand) body fixed

W.'th respe_ct to callbr_at|on errors, howeve_r they suffer_from trﬂaame for the airframe. The orientation of the airframe is given
high coupling dynamics between translation and rotational n}%, arotationR : F — F*, whereR € SO(3) is an orthogonal



and thus the projected points obey

tn*T . )
pi%<RT—|— T >pi, i=1,... k. (9)

tnxT

The projective mappingl := (RT + ) is called a homog-
] raphy matrix, it relates the images of points on a target plane
Figure 1. A prototype X4-flyer. when viewed from two different poses (defined by the coor-
dinate systemd¢” and F*). More details on the homography
rotation matrix. matrix could be found in [4]. The homography matrix contains
the pose informatior{R, ) of the camera. However, since a
projective relationship exists between the image points and the
ﬂgmography, it is only possible to determifle(using only im-
age points equations) up to a scale factor. There are numerous
proaches for determining, up to this scale factor, cf. for

Let V € F denote the linear velocity ard € F denote the
angular velocity of the airframe both expressed in the body fix
frame. Letm denote the mass of the rigid object andlet
R3%3 be the constant inertia matrix around the centre of m
(expressed in the body fixed frant®. Newton’s equations of

. . 4 : ) example [1].
motion yield the following dynamic model for the motion of a
rigid object: ExtractingR andd% from H can be quite complex [9, 13,12, 3].
. However, one quantity = d—(i can be calculated easily and
§ =iV (1) directly:
mV =-mQxV+F (2) .
. nTt T tn*
R = Rsk(Q?), 3) r=1+ =det(H) = det(R" + ).

} dx d*
IN=-0xIN+T. 4)
. . . There are certain special cases where it is relatively straight for-
The notation si€?) denotes the skew-symmetric matrix SUCQ/ard to compute important parameters from an unscaled esti-
that sK<2)v :3 {2 x v for the vector cross-product and any mate of the homography matré{. An important case is where
"eCtOT“ € R°. The vector forces and the vector torques afie target plane is perpendicular to the line of sight of the world
described as follows frame @* = (0,0,1)T). Inthis case, the first two columns &f
F =mgRTes — uges (5) are scaled versions of the first two columns/of This special

(6) case is particularly useful in stabilizing a UAV over a landing

pad, as long as the camera is mounted beneath the vehicle so as
In the above notationg, is the acceleration due to gravity. Thehe line of sight is vertically downward. This case will be used
inputs (uy,uz, u3,us) are derived from the individual motorin the simulation (section 4).
control signals (cf. [4]).

I' =uieq + uses + uszes

R 1)
3 Motion Estimation

3.1 Camera Projection and Planar Homography

Visual data is obtained via a projection of real world images 'T/'
onto the camera image surface. This projection is parameter-
ized by two sets of parameters: intrinsic (i.e., those “internal” P
parameters of the camera such as the focal length, the pixel as- :

pect ratio etc.) and extrinsic (the pose - position and orientation
of the camera). The pose of the camera determines a rigid body
transformation from the world or inertial franfé* to the cam- /”P.

era fixed frame” (and vice-versa). One has

P*=RP+¢ (7) Figure 2: Camera projection diagram showing the desif€q (

. . .. . andthe current{) frames
as a relation between the coordinates of the same point in body )

fixed frame P € F) and in the world frameR* € F™*).

Let p is the image of the poinf* andp* is the image of the 3.2 visual servoing control strategy

same point viewed when the camera is aligned with frdffe

(see fig.2). When all target points lie in a single planar surfatiethis section, visual servoing is based on Lyapunov control de-
one has sign and on saturation functions. By exploiting equations (1)-

x T

IMost statements in projective geometry involve equality up to a multiplica-

tn .
‘Ré*v 1=1,...,k, (8) tive constant denotet.

P, =R Py
Pt




(4), we derive a control strategy for limiting the robot orientaKnowing that
tion.

e
3

*
hS)

*

To simplify the derivation, it is assumed that the camera fixed | _ ,
frame coincides with the body fixed frame F. I|Px||  nTp

Let P’ denote the observed point of reference of the planar tﬂr'?ollows that we can reformulate the erroin terms of avail-
get, andP* be the representation d? in the camera fixed able information

frame at the desired position (Figure 2). The dynamics asso-

ciated with the stabilization of the camera around the desirkgt us define

position P* fully determine two degrees of freedom (pitch and

roll) in the attitude of the airframe. The yaw of the airframe ( «T ok
€1 = R

must be separately assigned. In this paper we use the classical nnTp rp — RTp*> (12)
‘yvaw’, ‘pitch’ and ‘roll’ Euler angles(¢, 6,1) commonly used p

in aerodynamic applications [10]. Although these angles are not . . . -

globally defined they provide a suitable local representation fom the above dlscussu_)n and equations desc“b'”g the system
all quasi-stationary manoeuvres undertaken by an X4-flyer. amics, the full dynamics of the errey may be rewritten as

yaw angle trajectory is specified directly in terms of the angle

¢4, the desired yaw angle. The relationship between the Euler 1

angles used and the rotation matrix is € = HP*H’U (12)
CoCp  SySoCy — CySy  CySeCe + SySe mv = —uyRes + mges (13)

R= CoSp  SypSeSp T CyCyp  CpSeSp — SyCo . (10) R
—So Sy Co CyCo R = RSk(Q) (14)
IN=-QxIQ+T (15)

The visual servoing problem considered is:

Find a smooth state feedba¢k,, us, us,us) depending only Define
on the measurable states (the observed paifie homography 0:=¢€ +v (16)

matrix .H’ the translational and angular velociti¢¥, 2), and Let S; be the first storage function for the backstepping proce-
the estimated parameters (R.r) from the homography mati ( dure. Itis chosen for the full linear dynamics Eqn’s 12-13

which provide a partial pose estimation), such that the following

error . .
S1 = 5116112 + 5ol (17)
_ T p _ _ . - _
(e=R(P =R P"), 0=0-¢) Taking the time derivative of; and substituting for Eq. 12 and
is asymptotically stable. 13 yields
Note: e ando are not defined in terms of visual information. In d T .
the sequel, these errors will be transformed to quantities that are @Sl =pd v+ (6 +v)" (mges — uaRes) (18)

expressed in terms of visual information.
. iy wherep = ﬁ.
Recall that the current and desired positiBnand P* of the

observed point are not known and the only information that weplying classical backstepping one would assign a virtual vec-
have are given by their projections, the estimated matrand torial control for L (us Res)?

the ratio,r, between the distancesandd* which is given by

the determinant of the homography matfix us(Re3)® := mges + mv + md (19)

Following [9], the camera can be controlled in the image space.

i@ i i o d
and in the Cartesian space at the same time. They propose tA§ choice is sufficient to stabilizé, if the term (us Res)

use of three independent visual features, such as the image'¥{e € available as a control input.df Res=(uq Res)? then
ordinates of the target point associated with the ratielivered

by determinant of the homography matrix. Consequently, let us S = —116]1% = (2 = p)6Tv — [|v||?
consider the reference poift lying in the reference plam and

define the scaled cartesian coordinates using visual informatiomegative definite/p < 1.

as follow: - L :
«T o« Note that the vectorial input can be split into its magnitude

rp that is linked directly to the motor torques, and its virtual (or
desired) directior?ze3, that defines two degrees of freedom in
2The following shorthand notation for trigonometric function is used: the airframe attitude dynamics (Eqn’s 14-15). In this case, the
cg = cos(B), sg:=sin(f), tg:=tan(B). magnitude and its virtual (or desired) direction of the vectorial
term become:

nTp




ensures global stabilization of the linear dynamics when equa-

tion 23 is used as control input of the translational dynamics
mges +muv + 0

|4

Now, to determine the fully desired rotation matfiy we have

to find the constraint of the yaw parameter using another vector.
Lete; be the desired orientation. We define the veetovhich  consider the storage functics), = L||v|[2. The derivative of
belongs to the plane built by the two vectesand Raes (0 € g, is given by

span{Rges, e1 }) and we impose that = Rye; (by this way,c

will be perpendicular tdRe3). We obtain S, = —vT'Sap(v+ Sat(d))

lug| = ||mges +mv +mié||; Raes = (20)

Proof Recalling Eg. 13 and Eq. 23, it yields

v = —Sab(v + Sat (9))

__a+t aRges - with o7 Ryes = 0 1) Using conditions on Satoupled with the fact that/; < Lo, it
ller + aRges| follows thats, < 0 (V|vy| > 3L2) (v(, represents a com-

Herea is a real number obtained by solving the two above eq gnent of the vector). Consequently, it exist a finite time

. . . . 1 after which all components of the linear velocity vector
';:(rzgz.a'sl':he final equation for the desired matfty can be de- v < %LQ (¥t > T}). The control law Eq. 23 becomes then
Ry = [O’ oA (Rd€3) Rd63] (22)
usRqes = mges +m(v + Say(9)), Vi>Ty

3.2.1 Limiting The X4-flyer Orientation

Now consider the evolution of the tertnfor t > T;. Let S;
In the theoretical developments based on the backstepping ($eestorage function associated with the téris; = 1||6][%).
[5]), the proposed law of control assures an exponential convBkriving S it yields
gence towards the desired position. It seems to us, however, that i
this type of convergence is not recommended when the vehicle S5 =0" ((p—1)v— Sat(6))
is initially far from this position. Indeed, the dynamic model
based on quasi-stationary conditions (hover conditions) is n@sing the second condition of the proposition, one can observe
valid anymore, because the dynamics of such a convergegitg the components of the vectdhbecome smaller than/;
will provoke a different flight mode. Moreover, the target imaggiter a finite timel,. After T, the control law becomes
may leave the field of view of the camera during the evolution
of the vehicle. To avoid such situations, it is necessary to insure
that the focal axis of the camera is close to the gravity direc-
tion. In the sequel, we propose to use small gains technique . . . .
(for example the technique of saturation functions presented B§urlng exponential stability after the tird. A
Teel in [11]). This technique seems well adapted to our probsing the saturated control law (Eq. 23), the derivative of the
lem. Indeed, if the orientation is saturated, we can insure thiaét storage function becomes
the X4-flyer will remain in quasi-stationary manoeuvres during ~
all the operation. Sy = —=1[6]1* = (2= p)sTv—[]v]* = (6+v) " ua|*(R—T)Raes

ugRges = mges + m(v+9), Vt>Th

The orientationR?e5 is a function of the terms andd. In order
to limit the orientation, we add a saturation on the two termsWhere
ando. Therefore, Eq. 19 becomes B RRY; and|us® = |lmges +m Sat(v + Sat (5))||
ugRge3 = mges +m Sak(v + Sat (9)) (23) According to the above proposition, the system with such a sat-
) i ) ) _urated input is globally asymptotically stable if the new error
whv_ere _Sé(i.:r) is a continuous, nondecreasing saturation functiQgym 7 _ 1 converges to zero. Now, it only remains to control
satisfying: the attitude dynamics involving the err@r— 1.

TSat
o 2TSag(z) > 0 forall z # 0. 3.2.2 Attitude dynamics control

e Sat(x) = z when the components of the vecterare

smaller tharL; (|z(,| < L:. The next step of the control design involves the control of the

attitude dynamics such that the erf@r- I converges exponen-
e |Sat(z)| < M;forallz € R. tially to zero. We will use a quaternion representation of the
rotation to obtain a smooth control fét. The attitude devia-

Proposition 3.1 The following choice of the saturation funclion & is parameterized by a rotatignaround the unit vecta.
tions [11] Using Rodrigues’ formula ([10]) one has

1 1—0p - - -
M; < SLivy;, —5 L Lis M, R =TI +sin(3)sk(k) + (1 — cos(7))sk(k)?



The quaternion representation describing the deviafiois The time derivative of’ becomes

given by [2]
k _ k.
—57103577 - §H770||2V (32)
7j := sin %IZ, flo 1= cos %; with [|7[|* + 75 = 1 Let us define the Lyapunov function candidate for the attitude
deviation :

The deviation matrix? is then defined as follows

N oo 10

R = (i — [17ll*) + 270" + 270sK(7) (24) Sy = il + 311 (33)

The attitude control control objective is to achieve wifer- 7. Taking the time derivative o, and using (32), we obtain
From Eqn 24 this is equivalent tp= 0 and#, = 1. Indeed, it _ k i
may be verified that Sy = —§||77o||2||77|\2 - §||770H2||9H2 (34)

This completes the control design for the attitude dynamics,

B 1Ille = Jt((R— DT(R — 1)) = 23|17 o) Since the time derivative _of the storage function in (34) is def-

l e \/ (( ) ) Va2l (25) inite negative. Then the input of the new control law (eq. 23)

Based on this result, the attitude control objective is to dﬂivelimiting the orientation ensures the exponential stability of the
to zero. Differentiatingn, 10) yields (see [10]) system.

. 1 ~ . 1 = . .
0= 5 (ol + sK(7))<, Mo = —§*TQ (26) 4 Simulation results

In order to evaluate the efficacy of the proposed servoing tech-
nigue with orientation limits, simulation results which concerns
_ the above “X4-flyer” model are presented. The experiment con-
Q= R4(Q2— Q) (27) siders a basic stabilization. The target is five points: four on the

ngces of a planar square and one on its center (see the initials
In order

gmts on fig 4). The available signals are the pixel coordinates
the five points observed by the camera.

whereQ) denotes the error angular velocity

and 2, represents the desired angular velocity.
find the desired angular velocity, we have to consider the tirf
derivative of the desired orientatid®ye;

For this experiment, it is assumed that the plane is perpendicular
to the line of sighti( e. the unit vector normal to the target plane

is equal to the direction of the gravity’ = e3)

Ry = Rask(Q4); Raes = Raessk(Q) (28)

Since differentiating the expressionBfesis quite complex, so
we will design a control law with a high gain virtual contfot. As discussed in the end of section 3.1 the homography ma-
In this way we can neglect the time derivativei®fes. trix has two columns of a rotation matriR”" as the first two

columns. The desired image feature is chosen such that the

Then, by choosing the virtual control as o
y 9 camera set point is located some meters above the square.

O ~ Q¥ = —2kiioi} %Tlg]v%sthe above specification, the eregr(eq.11) is defined as
with parametei: chosen high enough to negle@y. With the e = LTP ~ RTe,
above choice, we then have nTp

The parameters used for the dynamic model are= 0.6,

. k k : -
n= —§Hﬁo|\2ﬁ + o Rav + ksk(ij) Rav I = diag0.4,0.4,0.6], g = 10, d = 0.25 andx = 0.01. Ini-
tially, the X4-flyer is assumed to hover at some meters above the
where ground with thrusts corresponding to necessary forces to main-
tain stationary flightiy =~ mg.
1 .
vi= 04 R 7jof] (29) For the sake of the simulation, the initial position of the X4-

Flyerisz = 10, y = 15, z = —12. Its orientation is fixed as the
identity matrix I3 and it is considered also in hover conditions
(2 = 0). The simulation is presented to validate the proposed
+x (30) control design. It simulates the behavior of the X4-flyer dy-
namics in the ideal case (extraction of the homography matrix
where without disturbance). We will compare the results of the new
control law (with orientation limits) versus the evolution of the
states in the control law (without orientation limits) developed
R " RaQ] + Rj 770( 7ol + sk(77))Ra©2  (31) in [4] (Figure 3). One can notice that the time of convergence

and its time derivative is given by

sz

0
k



for the states following the new law of control is longer than théhe control strategy is based on separating the airframe dynam-
previous law, but instead we see that the variation of the Euies from the motor dynamics. This strategy only requires that
angles are restricted to small values (in this case, in the ordethy system is able to measure—with a video camera— the image
10—3rad). So the new control law which limits the X4-flyer ori-plane mapping features on a planar surface (such as a landing
entation ensures small values for Euler angles, therefore we pa¢l).

sure that the dynamics of the flying vehicle are applicable to the

hqver copd?tions (quasi-st_ationary manoeuvre_s) and t_he objegtferences

will remain in the field of view of the camera. Finally, Figure 4
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