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Abstract

The paper deals with dynamic feedback linearization
of two input continuous time systems. A constructive
procedure based on prolongations is proposed. The
algorithm, which relies on necessary geometric condi-
tions, computes a set of prolongation indices.

1 Introduction

The feedback linearization problem has been widely
studied both in continuous and in discrete time (see
[10] and the reference therein). The first works on
the topic regard the exact linearization problem [2],
[11], [8], [7], [12], [14]. Successive works concern the
computation of the largest linearizable subsystem of
a given dynamics [13], [3].

Dynamic feedback solutions were first considered in
[9]. In [6], sufficient geometric conditions were given
for the solvability of the problem via prolongations
and diffeomorphism. The sufficiency regards two as-
pects: the apriori knowledge of a candidate set of pro-
longation indices; the requirement that the associated
distributions, are the projection of the corresponding
distributions defined on the extended space. In the
same work necessary and suflicient conditions were
given for systems where the number of states minus
the number of inputs is equal to one.

The equivalence of differentially flat nonlinear sys-
tems to dynamic feedback linearizable systems was
first addressed in [4], [5] where the concept of endoge-
nous feedback was introduced. Roughly speaking the
solution is in this case based on the knowledge of a set
of flat outputs, i.e. linearizing output functions de-
pending on the state, the control and its derivatives.
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Algebraic necessary and sufficient conditions for the
solvability of the problem were given in [1] where
it was shown how to associate an infinitesimal
Brunovskii form with a nonlinear system; the exis-
tence of a set of linearizing outputs is equivalent to
the existence of a differential operator transforming
the infinitesimal Brunovskii form into a system of ex-
act one-form. However these conditions are existence
conditions and are not constructive thus not allowing
a direct computation of the dynamic compensator.
Finally, a bound on the number of integrators neces-
sary to achieve linearization was given in [15].

In this paper we propose an algorithm for the compu-
tation of a dynamic compensator consisting of prolon-
gations. The algorithm is based on a set of necessary
geometric conditions which are also sufficient when
the prolongation indices are at most equal to 2. The
procedure is illustrated on an example used in [6] to
enlighten the sufficiency of the proposed result.

The Problem: Consider the continuous time system
2
i= f@)+ Y gl (1)
i—1

where x € R", and f(x),g1(x),92(x) are smooth
maps defined on a open set of R". Find, if there
exists, a dynamic feedback

G = AG+ B, 1=1,2 (2)

with G = (G, Giw) ™y € = (¢F, G, wi = G,
for i = 1,2, such that the extended system

is static feedback equivalent to a linear system, i.e.
there exists a regular static feedback v = a(z,() +
B(x, )w, such that the closed—loop system is diffeo-
morphic to a linear system. In (2) A; and B; of di-
mension respectively p; X u; and p; X 1, are given by

0 I 0
A = <0 O),Bi— <1> If u; = v; we set u; = 0.



Remark.The indices p; will be called prolongation in-
dices and system (1) will be sald dynamic feedback
linearizable with prolongation indices (1, ug). If the
system is dynamic feedback linearizable with prolon-
gations only, then at least one prolongation index can
be set to zero, i.e. 0 = uy < po ([15]). The number
of necessary integrators is related to the dimension n
of system (1) and the number of inputs. In the two

2
input case > p; < 2n—3 ([13]). <
i=1

2 Preliminaries

We will first recall the well known result concerning
the state space exact linearization problem and then
we will study the properties of the extended system
(1-2). Some preliminary results on the properties of
the distributions associated with the original system
(1) are enlightened. These properties are at the basis
of the proposed algorithm for the computation of a
dynamic compensator solving the problem.

2.1 Recalls and notations

The following notation is used. Given a number p, |p|
is its inferior integer; p! := p(p — 1) - - - 1 is the facto-
rial number; given two smooth vector fields f and g;,

adrg; = g1 = %%f — %:égi is the standard Lie

brackets of vector fields and ad’;gi = adf(obdiji_1 9i);
we denote by g = (g1, 92), by G = (G4, G2), by G; the
distribution G, := span{g,-- -, adl]}g}, by Gi, the invo-
lutive closure of G;. The set of distributions G; plays a
crucial role in the solution of the regular static feed-
back linearization problem. We recall the following

result, stated in the general m—input case.

Theorem 1 [7] Suppose that the matrix g(z¢) has
rank m. Then the state space exact linearization
problem is solvable if and only if

i.) G; has constant dimension near zg, for 0 < i <
n—1,
ii.) G,_1 has dimension n

ili.) G; is involutive, for 0 <7 <n — 2.

The loss of involutivity of any of the distributions
G; does not allow to achieve exact linearization via
regular static state feedback. As for dynamic feed-
back linearization, in [6] the problem is solved by
showing that if it is possible to define a partition

of the input vector defined by the set of integers
0=p; <--- < lm, s.t. the distributions

Ag span{g; : p; =0}
Aipr = Aj+adpAj+span{g; : pj=i+1},i>0
satisfy appropriate properties, then the problem is

solvable via prolongations. More precisely

Theorem 2 [6] If locally in a neighborhood Uy of zg
i.) A; is involutive and of constant dimension for
i) dim(An 1) = n

i) [gs,As] € Aypq, Vs, such that us > 1 and Vi,

then system (1) is locally dynamic feedback lineariz-
able with prolongation indices ft1 - -« fi,.

A part from the apriori knowledge of the prolonga-
tion indices, the sufficiency of Theorem 2 is essen-
tially linked to condition iii), while conditions i) and
il) are necessary. In fact, consider the two—input case.
Then, for [ =0,---,n+ e — 1,

Aj = span {917 cwadyg, g2, 7ad;7N292} S C)

Consider the distributions G{ := span {G7 s ad%G}
associated with the extended system (3).

Condition iii) corresponds to verify that the vector
fields ad%.G'; have the form

2 S—Hy ,
Ad5.G; = ]21 ;::0 Uij(C)ad?gj
*

so that the projection of Gf is given by A;, i.e.
m(GF) = A; o w, which is a particular case.
With respect to the present result we will propose an

algorithm which allows the following improvements:

— a constructive computation of a set of prolonga-
tion indices with respect to which the distributions
A; satisfy condition i) and ii) of Theorem 2.

— we will relax condition iii), so that the projection

of G¢ may not coincide with A;.

2.2 The properties of the extended system

Let us thus consider the extended dynamics (1)-(2),
and assume it feedback linearizable. After a possible



reordering of the inputs, 0 = p; < ue. The closed—

loop system is given by

T
& o=

The extended system (3) is thus characterized by the
following vector fields

e <f(93) 22922(93)421)6;1_ <91(()33))7G2_ <£Z>

i@y, I+ g > 0, has the form

l
! i i T (‘T7C)
P

(@) + g1(z)v1 + g2 () C21

(5)
Ao + Bavo

The generic term adi;r
(6)

In (6), for —p; <1 <0, 7/ =0, and ALT* B, = ¢
the canonical vector whose elements are all zero but
the {—th which is equal to one. Instead, when [ > 0,
AHN ‘B; =0 and

min(pu2,l) 1—k

i@, Or=adygity Y chadylgs, ady g CatOIC])

where O(||¢||?) represents terms of order greater than
(r+j—1)!
ri(j—1)! "

one in ¢, and ¢/, =

For the first terms one gets 70(z,() = gi(z),
7 (2, () = ady(4)9i(x) + cigadyy( x)gi( z)Cor, -

The distribution G§ associated with the extended sys-
tem (1-2), is then given by

g5 = span { <91((Jx) ) } e {55*‘2 }

and for i > 0,
(i—p1)
Ge = G¢ +span{<Tl 0 ()> = 172}
; 7
+span {—7 if uo — 7 > 0}
8C27u27i

Since the closed—loop system is linearizable via regu-
lar static feedback, the distributions G{ must be in-
volutive and regular (Theorem 1). This fact induces
a certain number of properties on the Lie brackets of
the vector fields defined on the original system. More
precisely the following result holds true.

Proposition 1 Let system (1) be dynamic feedback
linearizable with prolongation indices 0 = p1 < po

around (zg, (o) = (20,0). Consider for i =0---
fo — 1 the distribution A; defined in (4).
around xg, the following properties hold true

1+
Locally

a) A; has constant dimension and is involutive, for
0<i<n+pu —1

b) dim Apyp,m1 =1
) Vi >0, lad gz, adi 1] € Ay, V(ry,72) s r + 10 =
Z_M2+1,,Z—/,L2+ {%J

The proof of the result with its technical details is
omitted. Let us instead note that if 0 = p; <o <2
the conditions of Proposition 1 become also sufficient
as underlined in the following Theorem.

Theorem 3 System (1) is locally dynamic feedback
linearizable around (zg,0) with prolongation indices
0 = < pe < 2if and only if the conditions of
Proposition 1 are satisfied.

3 Main Result

The algorithm proposed hereafter aims to compute
a set of prolongation indices u; < po with respect
to which the associated distributions A; satisfy the
necessary conditions of Proposition 1. At the generic
step s we will denote by 7, the prolongation index
wi and by Af the distribution A;.

The algorithm starts with u = 9 = 0 and consid-
ers the first index k such that dim A?, = n, while
dim qu < n, which certainly exists due to the
controllability assumption. The generic Step s starts
with a given set of prolongation indices yj 1< ey L
The corresponding distributions A; ! satisfy the con-
ditions of Proposition 1 for j > ks_;. The algorithm
checks if they are satisfied for j = ks_1 — 1 also.
If not, the prolongation indices are modified accord-
ingly. This is done in two phases:

Phase 1 concerns condition a) of Proposition 1: if
AS ! _, is not involutive, the algorithm computes its
1nvolut1ve closure which is contained in A} } . By
construction, after a possible reordering of the inputs

kyoq—pd
d 2

Aff} AS 1 1t span{ad “tg1,a g2},
and A“l =A;" 11 L @757t Assume that 77! =
alad oL gh with a; # 0; then the algorithm sets

—1
g;, which is by con-
Y41

s . s—1 s— N
Ay = AL @ady

struction 1nv01ut1ve, and accordingly uf == pi~



Phase 2 concerns condition ¢) of Proposition 1. The
algorithm checks the condition and adds the nec-

—1
essary elements adt H g; in order to satisfy

it. This operation changes the prolongation indices
which are updated accordingly. As a consequence the
operation must be iterated on the new obtained dis-
tribution until condition c) is satisfied. The previous
operation may in general not preserve the involutiv-
ity for the new distributions, so that the algorithm
computes the first index r such that Al}ﬁr = Ag,gr-

The algorithm

Suppose that the system is locally controllable around
u=20,1ie. dim G, 1 = n, and let k be the first integer
such that dim G = dim span{g, - - - 7ULd’Jig} = n and
dim Grp_; = dim span{g,--- ad’;_lg} < n. Note
that G = G _1 + span {ad gt

Step 0 Set u = pd = 0, ko = k and consider
Ago = {g, adsg,--- ,adl;og}. By construction Ago
satisfies the conditions Proposition 1 since it has con-
stant dimension equal to n.

Stepz 1 Consider A20—1 ={g, adsg,- -,
let Agof
struction AO,,

adjﬁo_1 g} and
1 be its involutive closure. Note that by con-
=A) i+ span{adjﬁog}.

Phase 1: Set p; = dim A — dim A _q If
pr=0 (A _, is 1nvolut1ve) set ki = ko — 1 uz = uf
and go to next step; else there exists p; vector fields,
oi, 1 <1 <py, st

Ako 1= A]\ 1 @Span{az, 1 < 3 < pl} C A]\

Assume that after a possible reordering of the inputs,
A,l\_l = Ago—l = Af_rl + span{ad’}ogl} with A,l\_l of
constant dimension, so that one gets the following
table associated with A}, :

g1 | adsgr | -+ | adP g1 | ad} gy
T
50— || 92 | adsge | --- | adf g
Al

On the left-hand side a column has been added which
takes into account the integrators to be set on the
second input channel. This is done by imposing that
the table second row has the same number of elements
of the first row. Accordingly set u} = 0 and pd = 1.

Step s Let 0 = uifl < /¢L§71 be the prolongation
indices computed at Step s — 1 and consider the as-

sociated distribution Af_:l,

s—1, .
s—1 0 s—1—Hy i . s—1
Ak =A 9172*17"'7112 }

ks—1—

e 1+span{ad

to which is associated the following table:

- Tad )

k57_571
ol fady T | |

Q|
)
1M
[

2™ 1

s—1
ks—1

Again the left-hand side of the table takes into ac-
count the integrators to be added on the second in-
put channel. At each step an integrator is added or
eliminated according to the rule that the number of
elements of any row must be the same.

Phase 1. Consider now AS ! _, which is given by

s— s— ko— ks—1— s
Aks,ll:Akﬁ,ll—ﬁ‘SPa‘n{ad lgl,ad Qzak’s >y

Note that the table associated with AS 1

ply obtained from the table associated Wlth Ai.:l by
eliminating the last element of each row.

_1 is sim-

Let Ai,s_l be the involutive closure of AS ! _, and
setpS:dlmAS 111 dlmA51 1_d.prS—O
(Afil s 1nvolut1ve) set ky = ks ==t

and go to Phase 2; else there exist p, vector fields, o,
1 < ¢ < pg, linear combination of elements of Af_:l,
such that

AS 1

ks—1—

1= AS 1 -1 @®span{o;, 1 <i<py}C Aij,ll

s1,u

Assume that A,\ = AL 11 1@spaun{adf gl}

= Af, with A7 of constaunt dimension. The associ-
ated table is
gi|--- . . ad?sgl
9 el oo ladh T
352,;:5 0€2,1 92 d 92
N

obtained from the table associated with Az;llq by

L sl
adding ad]}”*1 #i " g;. The prolongation indices 0 =
ui < p3, defined by the left-hand-side of the above
table, are updated accordingly.

Phase 2
V(’Fl , 7”2) :

. Check condition c) of Proposition 1, i.e. if

T1+r2:ks—u2+17~-~ks—u2+{%J

[ad}lghad?gg] SRAVAR (8)



If condition (8) is not satisfied for some (r1,72), i.e.

lady g1, adf 2] € A7, while [ad} g1, adg] & AL,

then there exists a vector field » = aladlj‘;*"gl +

agadl;”_”;gg such that [ad;lghad?gg} €A} B 7.

Assume that 7 = aladk”_”fgl, a1 # 0. Update the

table of A} by adding ad 2 “Zgl, and the prolonga-
tion 1nd1ces acc01d1ncrly Let 0 = @i < 5 be the new
prolongation indices, and let

AL
be the associated dlstubutlon Let r be the fir st index
such that ad’, adf ‘g€ Af .. Set k = ks + 1,

rename ks as ks and go back to Phase 2 of Step s.

=A@ span{adl;s’ﬁ“;gi}

Step k* Suppose that the algorithm ends with prolon-
gation indices 0 = p; < po. Consider the extended
system obtained by adding the dynamic compensator
(2) with the above prolongation indices. If g < 2
stop else apply the algorithm on the new system.

Note that at Step s, Phase 1, it is assumed that if
A 11 is not involutive then AS 1 = Ay ! L eT

with 77 " = oy ad o 'g1. The more gener al case when

1 a1 —
=l —aladf o1 +a2ad Zgg, a1, ay # 0, can

be handled as follows: 1f py ~ = 0set g1 = g1 +
g—fgg, and replace accordingly ad}g1 by ad}gi. Add

1

>0
set, ug_l integrators on the second input channel and
iterate the algorithm on the new system. Note also
that if the system is static feedback equivalent to a
linear system the algorithm ends with prolongation
indices p1 = po = 0.

to the table the element ad!;""lgl. Instead if ug_l

The next result states that at the generic step s the
algorithm computes a partition of the inputs and pro-
longation indices 0 = i < p5 with respect to which
the associated distributions A7 for i > ks satisfy the
necessary conditions of Proposition 1. If the algo-
rithm ends and po < 2 then these conditions are also
sufficient (Theorem 3) and the dynamic compensator
defined by the given prolongation indices solves the
problem. Else one must iterate the procedure on the
extended system. In this case the final compensator
may not necessarily have u; = 0.

Theorem 4 Suppose that Step s ends with prolonga-
tion indices 0 = pj < p3. Then A7 ; is involutive
and satisfies the conditions of PlOpOSlthIl 1Vi>0.

The following example is issued from [6] where it was
used to show that it didn’t satisfy the sufficient condi-
tions of Theorem 2 though dynamic feedback lineariz-
able with prolongation indices p; = 0, uo = 3. We
will show how the proposed algorithm computes the
above prolongation indices, thus solving the problem.

Example. Consider the continuous time system

1 = o+ T3Us
o = X3+ x1U”
9.33 = U1 + x2uUs2
j?4 = U2

Step 0. Set uf = pd = 0 and compute the distribu-
tions A9, -+ - A which are respectively
0 0

A = span 0 3+9: a+9: 4 —
0= P B 8 P Bm | 2Ors | Oza

0 1o} 1o}
0 _ AO _ o by
A = A0+span{ 02y’ T ) +m38az3}7

9
Ay = A?+span{a—:m} = R*

Locally around the origin dim(AY) = 4, whereas the
origin is a singular point for A{.

Step 1. [Phase 1] Ay = A? + ad? tg1 and [g1,g2] =
ad? g1, so that A is not involutive and we must com-

pute AY. We have AY = A? + span {a%} = AJ,

g1 | adrgr | adig
0 ul =0
0C21 g2 | adsge with { %
py =1
Aj

Step 2. [Phase 1] Consider Al = {g1, g2,adsg1}. We

have that Al = Ag + span {—8%7 a%} = A3,
g1 | adpgr [ adig
5t | 76 || 2 with{u%_o
Co2 C21 M% 9
A

[Phase 2] Condition ¢) of Proposition 1 is satisfied,
since [adrg2,g1] = g1 € A3. We go to the next step.

Step 3. [Phase 1] Compute A? = {gl,adfgl} which

is involutive so that A? = A? := A},
91 | adrg
a(‘j % ’ with { u =0
S
22 21 u% — 2
———



[Phase 2] Condition ¢) of Proposition 1 is not sat-
isfied, since [go,q1] & AT As [g2,91] € A} @

span{ad;g: }, we set A3 = A? @ span {

Ox1 ?
O0Ca3 9Ca1 with { ﬂé -3
N— ——
AS

2

Condition c) of Proposition 1 is satisfied for the new
distribution A3, with the new prolongation indices.
In fact 7y + 7o = 0 and [go, g1] € A3.

According to the algorithm we must now compute the
first index r such that ad’; [92,91] = ad;+291 S A%H.
In the present case, r = 1 since ad?cgl = 0. We thus
set k3 = 2 and set A3 = A3. The new distribution
A3 is characterized by p = 0 and satisfies condition
¢) so that we can go to next step.

Step 4. [Phase 1] Compute A} = {g1,adsg:} which
is involutive, so that A = A := A},

g1 | adyg i_g
0% 0¢22 /le =3
—_——
Af

[Phase 2] Condition ¢) of Proposition 1 is trivially
satisfied, s.t. we go to next step

Step 5. [Phase 1] compute Aj which is involutive so
that A = Ad := A,

g1 5
) . uy =0
5eom with { 15 =3
~—
N

[Phase 2] Condition ¢) of Proposition 1 is trivially
satisfied. The algorithm ends with p; = pf = 0 and
o = pu5 = 3, the searched prolongation indices. <
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