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Abstract

This paper considers the nonlinear optimization problems aris-
ing in robust control synthesis for discrete linear systems with
polytopic time-varying uncertainty. Here a linear objective
function is minimized under nonlinear matrix-valued func-
tion constraints. An iterative semidefinite programming (SDP)
method is used to this class of problems. The benefit of the new
approach is that the sub-problems in the iterative SDP are all
based on linear matrix inequalities (LMIs) and can be solved
efficiently. Iterative SDP based algorithms are then proposed
for the robust stabilization and optimal control problems, re-
spectively. A numerical example is used to compare the SDP
and LMI based design which shows that the SDP one is less
conservative.

1 Introduction

Robust control synthesis problems for uncertain linear systems
have been widely studied in the last 15 years. Recently a new
linear matrix inequality (LMI) [1, 6] based criterion was pro-
posed for discrete linear systems with polytopic uncertainty
[3]. Here

x (k + 1) = A (k) x (k) (1)

where A (k) is an uncertain matrix and belongs to a convex
cone, i.e., at any time instant k, it can be expressed as

A (k) =
l∑

i=1

µi (k) Ai

The parameter vector µi (k)T = [µ1 (k) µ2 (k) ...µl (k)] is a
function of uncertainties. Using this criterion results in an LMI
problem, the feasibility of which guarantees the stability of the
system given in equ. (1) (See Section 2 for detail). Simul-
taneously a parameter-varying Lyapunov function is obtained
from the optimization result. The quadratic Lyapunov function,
which is widely used in robust control [5], can be regarded as a

special case of parameter-varying one. Thus the design based
on the new criterion is more flexible and less conservative.

However, applying this criterion in the controller design will
result in a non-LMI problem of the form,

min dT x

subject to A (x) < 0

where d is a given vector, x is a vector containing all the de-
cision variables, A (x) is a nonlinear matrix function and < 0
means negative definite. Note that the constraint in this opti-
mization problem is nonlinear and in general it cannot be con-
verted into LMIs, which means it may not be solved using the
current LMI packages.

Iterative semidefinte programming (SDP) is a commonly used
approach in the BMI optimization problem. An optimal solu-
tion can be found by solving a series of linear optimization sub-
problems, which are constructed from linearizations of the ob-
jective function and constraints of the original nonlinear prob-
lem. In the iterative SDP method, one importance issue is to
calculate the appropriate move limit for each sub-problem [2].
If the move limit is too large, the optimization procedure may
not converge. If it is too small, the convergence will be very
slow.

In this paper, two new iterative SDP algorithms are devel-
oped for robust control designs. By solving some linear sub-
problems, a state feedback controller is found to robustly sta-
bilize the uncertain system. A controller is then optimized to
minimize the given objective function for the specified initial
condition. A major difference from the general iterative SDP
method is that the move limit is not computed for each sub-
problem. Instead, it is incorporated into the objective function
so that convergence of the move limit can be achieved.

The paper is organized as follows: the problems are formulated
in Section 2. In Section 3 the nonlinear optimization problems
are established for the two robust controller design problems of
interest. Then two iterative SDP algorithms to provide numeri-
cal solution are proposed in Section 4. In Section 5 a numerical
example illustrate the efficiency and the advantages of the new
approaches. Section 6 concludes the paper.



2 Preliminaries

Consider the discrete uncertain linear dynamic system

x (k + 1) = A (k) x (k) + B (k) u (k) (2)

where x (k) ∈ R
nx is the system state, u (k) ∈ R

nu the control
signal and y (k) ∈ R

ny the output. The time-varying uncertain
matrix triple [A (k) | B (k)] belongs to a polytopic cone,

[A (k) | B (k)] ∈ (3)

Co {[A1 | B1] , [A2 | B2] , ..., [Al | Bl]}
At any time instant k, the matrices in (2) can be expressed as,

[A (k) | B (k)] =
l∑

i=1

µi (k) [Ai | Bi] (4)

where the uncertain parameter

µ (k) = [µ1 (k) , µ2 (k) , ...µl (k)]

satisfies the condition
l∑

i=1

µi (k) = 1 µi (k) > 0 (5)

∀i = 1, 2, ..., l

To stabilize the uncertain linear system in equ. (2), a robust
state feedback controller

u (k) = Fx (k) (6)

is designed, where F ∈ R
nx is the feedback gain. The optimal

control problem then involves choosing a state feedback con-
troller so that the following objective function is minimized.

J∞ =
∞∑

i=0

(
‖x (k)‖2

Q1
+ ‖u (k)‖2

R

)
(7)

where Q1 ≥ 0 and R > 0 are suitable weight matrices.

In both cases, the closed-loop systems are in the form of (1).
To begin, the stability criterion proposed in [3] is included here
for completeness.

Theorem 1 [3] The uncertain linear system (1) is stable if
there exist matrices Gi and Qi > 0 such that[

Gi + GT
i − Qi ∗

AiGi Qj

]
> 0 (8)

∀i, j = 1, 2, ..., l

and the Lyapunov function is given as

V (x (k) , k) = xT
l∑

i=1

µi (k) Q−1
i x (9)

Note that the using this criterion gives a parameter-varying
Lyapunov function (9) depending on the uncertain time-
varying parameter µ (k). Clearly this is more general than the
quadratic Lyapunov function V (x) = xT Px, which is a spe-
cial case of (9) by letting matrices Qi = Q be constant and
choosing matrix P to be P = Q−1.

3 Controller designs

3.1 Robust controller

Suppose F to be the robust state feedback gain matrix for the
system (2). The closed-loop system then can be written as

x (k + 1) = [A (k) + B (k) F ] x (k) (10)

Clearly, from (4) at any time instant k, the matrix A (k) +
B (k) F satisfies,

A (k) + B (k) F =
l∑

i=1

µi (k) (Ai + BiF ) (11)

According to Theorem 1, the following lemma is then obtained.

Lemma 2 The uncertain system (2) is robustly stabilized by
the state feedback controller (6) if there exist matrices Gi ∈
R

nx×nx , Qi > 0 ∈ R
nx×nx such that the follow inequalities

hold.
[

Gi + GT
i − Qi ∗

(Ai + BiF )Gi Qj

]
> 0 (12)

∀i, j = 1, 2, ..., l

and the Lyapunov function is given in (9).

Proof. The result can be directly achieved by applying Theo-
rem 1 to the closed-loop system (10).

Remark 1 In the case that Gi = G, i = 1, 2, ...l are constant,
letting FG = Y , the inequalities (12) are linear, which can
be solved by using any LMI packages. Obviously, this is more
conservative than solving (12) directly.

Remark 2 Solving inequalities (12) gives a state feedback
controller for stabilizing the time-varying uncertain system (2).
If the uncertain system is time independent, the inequalities
(12) simplify to,

[
Gi + GT

i − Qi ∗
(Ai + BiF )Gi Qi

]
> 0 (13)

∀i = 1, 2, ..., l

Letting matrices Gi = G be constant, from using the same
approach as in Remark 1 these inequalities can be recast as
LMIs and used in robust controller design for linear systems
with time-invariant uncertainty [4].

3.2 Optimal robust controller

As pointed out in Lemma 2, the controller that satisfies the
inequalities (12) robustly stabilizes the uncertain system (2),
from which a Lyapunov function is found for the closed-loop
system. To find an optimal state feedback controller which



minimizes the objective function in equ. (7), suppose further
that the Lyapunov function satisfies that,

V (x (k + 1) , k + 1) − V (x (k) , k) < (14)

−
(
‖x (k)‖2

Q1
+ ‖u (k)‖2

R

)

Summing (14) from k = 0 to ∞, because x (∞) = 0, it follows
that

V (x (0) , 0) > J∞ (15)

Thus the optimal robust control problem is now re-casted to as
one of finding an upper bound V (x (0) , 0) for the objective
function (7).

Theorem 3 The optimal robust feedback gain F can be ob-
tained by solving the following optimization problem (if it ex-
ists).

min
Qi,Gi,F

γ

subject to [
1 ∗

x (0) Qi

]
> 0 (16)

and




Gi + GT
i − Qi ∗ ∗ ∗

[Ai + BiF ] Gi Qj ∗ ∗
Q

1/2
1 Gi 0 γI ∗

R1/2FGi 0 0 γI


 > 0 (17)

∀i, j = 1, 2, ..., l

Proof. See Appendix A.

Similarly, letting Gi = G be constant, optimization problem
in Theorem 3 is an LMI problem and can be solved using any
LMI packages.

4 Iterative semidefinite programming

Note that in the constraints (12) and (17), the inequalities are
not linear for the optimization variables F and Gi. The de-
sign problems of Section 3 thus cannot therefore be solved by
directly applying the current LMI packages.

Iterative semidefinte programming is one of the most straight-
forward nonlinear optimization methods. The basic idea is
to recursively solve a series of linearly approximated sub-
problems, where each intermediate solution is the starting point
for the subsequent sub-problem. The linear part of the Taylor
series expansion is generally adopted as the approximation to
the nonlinear problem. A similar strategy is employed here
whereby the nonlinear matrix inequality is decomposed into a
sequence LMIs, solving which gives an optimal solution for the
original nonlinear problem.

4.1 Robust controller design via SLP

By linearizing the nonlinear inequalities, the kth sub-problem
(12) thus can be formulated as,

min
�Gi,k,�Qi,k,�Fk

l∑
i=1

λk (‖�Gi,k‖ + ‖�Qi,k‖) (18)

subject to
[

Gi,k + GT
i,k − Qi,k ∗

(Ai + BiFk) Gi,k Qj,k

]
+ (19)

[ �Gi,k + �GT
i,k −�Qi,k ∗

(Ai + BiFk)�Gi,k + Bi�FkGi,k �Qj,k

]

> 0
∀i, j = 1, 2, ..., l

where Fk, Gik and Qik are the kth starting points. The co-
efficient λk is added here to force the sub-problems to con-
verge to zero quickly. The sequence {λk} can be chosen as
limk→∞ λk = ∞. The (k + 1)th iterate is revised with respect
to the solution of the kth sub-problem as follows.

Fk+1 = Fk + �Fk (20)

Gi,k+1 = Gi,k + �Gi,k

Qi,k+1 = Qi,k + �Qi,k

∀i = 1, 2, ..., l

From equ. (18) it can be seen that, if the problem is feasible,
the differences �Fk,�Gi,k and �Qi,k will tend to zero. Con-
sequently a feasible solution is found for the nonlinear problem
described by (12).

The kth sub-problem can be re-cast as an LMI one. Note the
constraints (19) are already LMIs, and the norm optimization
objective (18) is equivalent to the following problem,

min
�Gik,�Qik,�Fk

l∑
i=1

λk (gi,k + qi,k) (21)

subject to
[

gi,kI ∗
�Gi,k gi,kI

]
> 0 (22)

[
qi,kI ∗
�Qi,k qi,kI

]
> 0

∀i = 1, 2, ..., l

In this way each sub-problem can be solved efficiently using
any LMI toolbox packages.

Notice that the move of the feedback gain �Fk is not included
in the optimization objective (18). According to our numerical
experiments, if �Fk is included, the sequence of the differ-
ences {�Fk} , {�Gi,k} and {�Qi,k} may not converge. Ac-
tually from the constraints (19), it can be seen that if �Gi,k

and �Qi,k tend to zero, the norm bound of �Gi,k and �Qi,k

will force the sequence {�Fk} to converge to zero as well.



In addition, different technique from the general linear pro-
gramming is used to compute the move limit. Due to the re-
quirement that the matrices on the left side of inequality con-
straints must be positive definite, applying the move limit al-
ways results in a non-feasible LMI sub-problem if the starting
point is far away from the feasible solution. In the new ap-
proach, the norms of difference matrices �Gi,k and �Qi,k are
added to the objective function, which forces these differences
tend to zero. When these norms are small enough, a group of
feasible solution must be found.

Summarizing, the algorithm for the design of the robust con-
troller can be described as follows.

Algorithm 1

1. Initialize the matrices F1, Gi,1 and Qi,1 with random val-
ues and set k = 1.

2. Solve the kth LMI optimization problem (21) subject to
the constraints (19) and (22). If the optimization problem
is not feasible, then the controller design problem cannot
be solved by the SLP algorithm. The iteration is stopped.

3. Update the starting point using (20) and set k = k + 1.

4. If the inequalities (12) are satisfied for the new values of
Fk, Gi,k and Qi,k, a feasible solution is found. Otherwise
go to step 2 and continue.

4.2 Optimal controller design via iterative SDP

Consider the nonlinear optimization problem in Theorem 3. As
before, the kth sub-problem can be formulated as follows.

min
�Gik,�Qik,�Fk,�γk

l∑
i=1

λk (gi,k + qi,k) + γdk (23)

subject to [
1 ∗

x (0) Qi,k + �Qi,k

]
> 0 (24)




Gi,k + GT
i,k − Qi,k + �Gi,k + �GT

i,k −�Qi,k

[Ai + BiFk] (Gi + �Gi) + Bi�FkGi

Q
1/2
1 (Gi,k + �Gi,k)

R1/2 (FkGi,k + �FkGi,k + Fk�Gi,k)

∗ ∗ ∗
Qj,k + �Qj,k ∗ ∗

0 (γk + �γk) I ∗
0 0

(
γk+�γk

)
I


 > 0

(25)

[
γdk ∗
�γk γdk

]
> 0 (26)

and inequalities (22). The inequalities (24) and (25) are from
the linearization of (16) and (17), respectively, and the inequal-
ity (26) gives the norm bound on �γk.

A feasible solution is found, by solving this optimization prob-
lem. However the value of γ may not optimal. To obtain an
optimal γ, the objective function is adapted to.

min
�Gik,�Qik,�Fk,�γk

l∑
i=1

λk (gi,k + qi,k) + γdk + �γk (27)

An optimal γ can then be found by minimizing the value of
�γk. The algorithm for the design of the optimal robust con-
troller is then described as follows:

Algorithm 2

1. Initialize the matrices γ1, F1, Gi,1 and Qi,1 with random
values and set k = 1.

2. Set the initial optimization objective to (23).

3. Solve the kth LMI optimization problem subject to the
constraints (24,25,26, 22). If the optimization problem is
not feasible, then stop the iteration.

4. Update Fk+1, Gi,k+1 and Qi,k+1 using (20) and set
γk+1 = γk + �γk, the set k = k + 1.

5. If the inequalities (16) and (17) are not satisfied for the
new values of Fk, Gi,k and Qi,k, go to step 3 and continue.
Otherwise, if the optimization objective is (27), then an
optimal solution is found.

6. Change the optimization objective to (27) in kth sub-
problem and go to step 3.

Note that this algorithm actually contains two steps. The first
step is to find a feasible solution for the objective function (23).
If it is found, the objective function is then changed to (27) to
optimize the value of γ.

It should be noted that the solution obtained by the iterative
SDP may not be globally optimal due to the nonlinearity of the
optimization problems. Thus the initial values are quite im-
portant since different initial values may give different optimal
solutions. An alternative for finding an appropriate group of
initial values is to solve the simplified LMI problems. By set-
ting the matrices Gi = G to be constant, both inequality con-
straints (12) and (17) can be cast as LMIs. If they are feasible,
a group of initial values is obtained by solving LMIs and can
then subsequently be used in iterative SDP.

5 Numerical example

This example is taken from ([7]) and consists of a two-mass-
spring system as shown in Figure (1).



 

m1 m2 
K 

x1 x2 

Figure 1: Coupled spring-mass system

Using Euler’s first-order approximation for the derivative and
a sampling time of 0.1s, the following discrete-time state-
space equations are obtained by discretizing the continuous-
time equations of the system.

x (k + 1) =




1 0 0.1 0
0 1 0 0.1

− 0.1K
m1

0.1K
m1

1 0
0.1K
m2

− 0.1K
m2

0 1


x (k)

+




0
0
0.1
m1

0


 u(k) (28)

y(k) = x2(k)

where x =
[
x1 x2 x3 x4

]T
is system state, x1, x2 are

the positions of body 1 and 2, and x3, x4 are their respective
velocities. Also, m1 and m2 are the masses of the two bodies
and K is the spring constant.

Here it is assumed that the mass m2 and the spring constant K
are uncertain such that

m2 ∈ [0.1, 1] ,K ∈ [0.5, 10]

By applying Algorithm 1, a robust state feedback gain can be
quickly found. The sequence of norms of the optimization vari-
ables is listed in Table 1.

k norm
1 4.5157 × 105

2 1.2803 × 105

3 16.7759
4 0.0928
5 0.0081
6 7.2270 × 10−13

Table 1: Norms of optimization variables in each sub-problems

From these values it can be seen that the iterative SDP method
converges rapidly since the final solution is obtained after solv-
ing 6 sub-problems

To design the robust optimal controller, both the LMI based
approach, in which the G matrix is set to be constant, and the
iterative SDP algorithm are used. The control objective is to
regulate the uncertain system from initial condition to origin
with the matrices in objective function (7) given as

Q1 = I , R = 1

0 50 100 150
0
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0.4

0.5
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0.7

0.8

0.9

1

Time (s)

x2

LMI approach
SLP approach

Figure 2: System outputs from the different robust design ap-
proaches

With the initial condition to be
[

1 1 0 0
]
, the upper

bound computed from the LMI based design is

γlmi = 855.2675

and the one from the iterative SDP design is

γsdp = 630.6379

The iterative SDP based design thus gives a lower upper bound.
Applying the controllers from both designs to the uncertain
system, the outputs are given in Fig. 2.

Both designs are based on the same objective function and
adopt parameter-varying Lyapunov functions. Using a constant
matrix G to approximate the inverse of Qi gives a LMI based
problem. But obviously better optimal solution can be obtained
by choosing different Gi for each Qi. From Fig. 2 it can be
seen that the closed-loop system resulting from the iterative
SDP based design settles faster. In addition, since the optimal
upper bounds depend on the Lyapunov functions, it also shows
that two different Lyapunov functions are obtained.

6 Conclusion

In this paper two nonlinear programming problems are formu-
lated for the robust state feedback controller designs for linear
systems with polytopic uncertainties: robust stabilization and
optimal control problems. Compared to the LMI formulations,
the associated nonlinear based design is then less conservative
but difficult to be solved. To solve these optimization problems
under the nonlinear matrix-valued inequality constraints, new
iterative semidefinte programming (SDP) algorithms are devel-
oped, in which the sub-problems are LMIs and can be solved
efficiently. A numerical example is included which shows the
efficiency and the advantage of the new algorithms.

A Proof of Theorem 5

Proof. Suppose that the Lyapunov function V (x (k) , k) =
x (k)T

P (k) x (k), where the matrix P (k) > 0 is time-varying



positive definite. First, letting γ = V (x (0) , 0), the problem
of minimization of V (x (0) , 0) can be reformulated as

min
P (0),γ

γ

subject to
γ = x (0)T

P (0) x (0) (29)

Letting that P (k) = γQ (k)−1 and using the Schur comple-
ment, this optimization problem is equivalent to

min
Q(0),γ

γ

subject to [
1 ∗

x (0) Q (0)

]
> 0 (30)

Defining that Q (k) =
∑l

i=1 µi (k) Qi , it can be seen that the
left side of inequality (30) is the convex combination of the left
side of inequalities (16), from which the inequalities in (16)
are thus established. It is then proved that condition (14) is
guaranteed by the inequalities in (17). The condition (14) can
be written as

x (k + 1)T
P (k + 1) x (k + 1) −

x (k)T
P (k) x (k) + x (k)T

Q1x (k) +

u (k)T
Ru (k) < 0

Recalling the system equation (2) and the controller in equ. (6),
it follows that

x (k)T {[A (k) + B (k) F ]T ×
P (k + 1) [A (k) + B (k) F ] −
P (k) + Q1 + FT RF}x (k) < 0

This is satisfied for all x (k) if,

[A (k) + B (k) F ]T P (k + 1) × (31)

[A (k) + B (k) F ] − P (k) +
Q1 + FT RF < 0

Since P (k) = γQ (k)−1, from the Schur complement, it fol-
lows that (31) is equivalent to




Q (k) ∗ ∗ ∗
[A (k) + B (k) F ]Q (k) Q (k + 1) ∗ ∗

Q
1/2
1 Q (k) 0 γI ∗

R1/2FQ (k) 0 0 γI




> 0 (32)

Since inequalities (17) hold, the matrices Gi are non-singular.
Letting G (k) =

∑l
i=1 µi (k) Gi and multiplying (32) from the

left by

diag
(
G (k)T

Q (k)−1
, I, I, I

)

and from the right by

diag
(
Q (k)−1

G (k) , I, I, I
)

inequality (32) is converted to the form,



G (k)T
Q (k)−1

G (k) ∗ ∗ ∗
[A (k) + B (k) F ]G (k) Q (k + 1) ∗ ∗

Q
1/2
1 G (k) 0 γI ∗

R1/2FG (k) 0 0 γI




> 0 (33)

Also, recalling that Q (k) =
∑l

i=1 µi (k) Qi > 0 and since

(Q (k) − G (k))T
Q (k)−1 (Q (k) − G (k)) ≥ 0

gives

G (k)T
Q (k)−1

G (k) ≥ G (k) + G (k)T − Q (k)

Thus inequality (33) holds if



G (k) + G (k)T − Q (k) ∗ ∗ ∗
[A (k) + B (k) F ]G (k) Q (k + 1) ∗ ∗

Q
1/2
1 G (k) 0 γI ∗

R1/2FG (k) 0 0 γI




> 0 (34)

Observe that the left side of inequality (34) is a convex combi-
nation of the left side of (17), i.e.

B (k) =
l∑

i=1

l∑
j=1

µj (k + 1) µi (k)Bi,j

where Bi,j , B (k) are the left sides of inequality (17) and 34,
respectively. The theorem therefore is proved as required.
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