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Abstract

Most of the existent linear matrix inequality based conditions
for robust stability of time-delay systems in polytopic domains
are expressed in terms of constant Lyapunov-Krasovskii func-
tions. This note presents a simple way to extend these condi-
tions in order to construct parameter-dependent functions that
provide less conservative results, in both delay-independent
and delay-dependent situations.

1 Introduction

During the last decades several works have dealt with the prob-
lem of stability of time-delay systems [9], [14], [18], [23].
One of the most popular techniques for the stability analysis
of this kind of linear systems is undoubtedly the one based on
Lyapunov-Krasovskii functionals [17], [32].

Since the numerical efficiency of these conditions for stability
is a major concern, most of them have been rewritten as lin-
ear matrix inequalities (LMIs) which can nowadays be solved
by polynomial time interior point algorithms [2], [11]. Sev-
eral LMI conditions assuring robust stability appeared, in both
delay-independent (i.e. the stability does not depend on the size
of the time delay) [4], [21], [31], [34] and delay-dependent sit-
uations [3], [12], [19], [20].

For stabilizability purposes, including H∞ or H2 norm opti-
mization criteria, several results were developed as extensions
of the stability analysis based on Lyapunov-Krasovskii func-
tions. As a natural consequence, for the uncertain linear sys-
tems with time-delay, quadratic stability and quadratic stabiliz-
ability concepts [1] were used to accomplish with robust sta-
bility analysis, robust control and robust filter design [6], [7],
[15], [16], [19], [22], [24], [26]. For uncertain systems in poly-
topic domains, a simple evaluation of the feasibility of a set of
LMIs defined at the vertices of the polytope provides sufficient
conditions for the existence of a robust feedback gain or a full
order linear filter. However, the analysis of stability based on
constant Lyapunov functions can sometimes provide very con-
servative results. Some recent works introduced the analysis of
robust stability and other closed-loop properties by means of

parameter dependent Lyapunov functions [8], [10], [13].

Very recently, systematic ways to test for the existence of pa-
rameter dependent Lyapunov functions have appeared, as in
[5], [28], where an augmented LMI formulation with extra ma-
trix variables yields sufficient conditions for the robust stability
of a polytope of matrices. Another simple and efficient way to
construct such Lyapunov matrices can be found in [29], [30].

This note exploits the methodology first introduced in [29],
[30] to provide less conservative sufficient conditions for
the robust stability of time-delay systems with uncertain
parameters in polytopic type domains. The key idea is to
use homogeneity properties of the LMIs and simple alge-
braic manipulations to derive sufficient conditions for the
negative definiteness of the Lyapunov-Krasovskii functional
time-derivative associated to the time-delayed system. As a
result, a feasibility LMI test formulated at the vertices of the
uncertainty polytope provides parameter dependent matrices
for that functional. To illustrate the technique proposed,
some existent LMI conditions for the stability of time-delay
systems are here extended to cope with robust stability in both
delay-dependent and delay-independent cases. The conditions
proposed encompass previous results based on quadratic
stability and are illustrated by means of some examples.

Notations. <+ is the set of nonnegative real numbers.
I denotes the identity matrix of appropriate dimensions.
Cτ = C([−τ, 0], <n) denotes the Banach space of contin-
uous vector functions mapping the interval [−τ, 0] into <n

with the topology of uniform convergence. ‖ · ‖ refers
to either the Euclidean vector norm or the induced ma-
trix 2-norm. ‖ φ ‖c= sup

−τ≤t≤0

‖ φ(t) ‖ stands for the

norm of a function φ ∈ Cτ . When the delay is finite then
“sup” can be replaced by “max”. Cv

τ is the set defined by
Cv

τ = {φ ∈ Cτ ; || φ ||c< v, v > 0}. The symbol ? stands for
symmetric blocks in the LMIs.

2 Preliminaries

Consider a continuous-time linear system given by

ẋ(t) = Ax(t) + Aτx(t − τ) (1)

with the initial conditions

x(t0 + θ) = φ(θ),∀θ ∈ [−τ, 0], t0, φ ∈ <+ × Cv
τ (2)



where x ∈ R
n is the state, τ > 0 is a constant time-delay1.

The matrices A and Aτ are not precisely known, but belong to
a polytope type uncertain domain D given by

D =
{

(A,Aτ )(ξ) : (A,Aτ )(ξ) =

N
∑

j=1

ξj(A,Aτ )j ;

N
∑

j=1

ξj = 1 ; ξj ≥ 0
}

(3)

in such a way that any matrix pair inside the domain D can
be written as a convex combination of the vertices (A,Aτ )j of
the uncertainty polytope. In the LMIs that follow, Aj and Aτj

appearing separately are related to the vertex (A,Aτ )j of D,
j = 1, . . . , N .

The objective we pursue in this paper consists in providing
less conservative sufficient conditions for the robust stability of
system (1)-(3) in both delay-dependent and delay-independent
contexts. For this, we will use some quadratic Lyapunov func-
tionals depending on the parameter ξ.

3 Delay-dependent conditions

In the literature, there are several LMI conditions assuring
delay-dependent robust stability for linear systems described
as in (1)-(3). The following result is from [6].

Lemma 1 Consider the state delayed uncertain linear system
(1) with (A,Aτ )(ξ) ∈ D and a scalar τ̄ > 0 given. This system
is stable for any constant time delay τ such that 0 ≤ τ ≤ τ̄ if
there exist symmetric positive-definite matrices X , X1 and X2

with appropriate dimensions satisfying













Π11 X1A
′
τj X2A

′
j τ̄XA′

j τ̄XA′
τj

? −X1 0 0 0
? ? −X2 0 0
? ? ? −X1 0
? ? ? ? −X2













< 0 (4)

Π11 , X(Aj + Aτj)
′ + (Aj + Aτj)X

∀ j = 1, · · · , N

Note that the above result exploits the convexity of the set of
LMIs defined at the vertices of D and that matrices X , X1 and
X2 are constant for all A,Aτ ∈ D. A line search on τ̄ can be
easily implemented in order to provide the maximum value for
the time-delay such that the uncertain system (1)-(3) maintains
its stability. When τ̄ = 0, one recovers the classical quadratic
stability result for the uncertain system ẋ(t) = (A + Aτ )x(t)
expressed in the block (1, 1) of (4).

1For simplicity, only the case of a single delay is presented. The extension
of the results to handle multiple time delays is straightforward.

The following theorem exploits the homogeneity of the above
set of LMIs in order to provide less conservative stability con-
ditions which have as a particular case the quadratic stability of
system (1)-(3) with respect to uncertainties and time-delay.

Theorem 1 Consider the state delayed uncertain linear system
(1) with A,Aτ ∈ D and a scalar τ̄ > 0 given. This system is
stable for any constant time delay τ such that 0 ≤ τ ≤ τ̄

if there exist symmetric positive-definite matrices Wj , Xj and
Yj , j = 1, . . . , N with appropriate dimensions satisfying

Mj ,













Θ11 XjA
′
τj YjA

′
j τ̄WjA

′
j τ̄WjA

′
τj

? −Xj 0 0 0
? ? −Yj 0 0
? ? ? −Xj 0
? ? ? ? −Yj













< −I

(5)

Mjk ,













M11 M12 M13

? −Xj − Xk 0
? ? −Yj − Yk

? ? ?

? ? ?

M14 M15

0 0
0 0

−Xj − Xk 0
? −Yj − Yk













<
2

N − 1
I

j = 1, . . . , N − 1 ; k = j + 1, . . . , N (6)

with
Θ11 , Wj(Aj + Aτj)

′ + (Aj + Aτj)Wj

M11 , Wj(Ak + Aτk)′ + (Ak + Aτk)Wj

+ Wk(Aj + Aτj)
′ + (Aj + Aτj)Wk

M12 , XjA
′
τk + XkA′

τj ; M13 , YjA
′
k + YkA′

j

M14 , τ̄(WjA
′
k + WkA′

j) ; M15 , τ̄(WjA
′
τk + WkA′

τj)

Proof: The aim is to prove that W (ξ), X(ξ) and Y (ξ) are
positive definite parameter dependent Lyapunov matrices given
by

W (ξ) =

N
∑

j=1

ξjWj ; X(ξ) =

N
∑

j=1

ξjXj ; Y (ξ) =

N
∑

j=1

ξjYj

N
∑

j=1

ξj = 1 ; ξj ≥ 0

such that

M(ξ) ,













Υ11(ξ) Υ12(ξ) Υ13(ξ)
? −X(ξ) 0
? ? −Y (ξ)
? ? ?

? ? ?



Υ14(ξ) Υ15(ξ)
0 0
0 0

−X(ξ) 0
? −Y (ξ)













< 0 (7)

Υ11(ξ) , W (ξ)(A(ξ) + Aτ (ξ))′ + (A(ξ) + Aτ (ξ))W (ξ)

Υ12(ξ) , X(ξ)Aτ (ξ)′ ; Υ13(ξ) , Y (ξ)A(ξ)′

Υ14(ξ) , τ̄W (ξ)A(ξ)′ ; Υ15(ξ) , τ̄W (ξ)Aτ (ξ)′

holds for all (A,Aτ )(ξ) ∈ D. The left-hand side of equation
(7) can be rewritten as

M(ξ) =

N
∑

j=1

ξ2
j Mj +

N−1
∑

j=1

N
∑

k=j+1

ξjξk Mjk

Imposing conditions (5)-(6) and taking into account that ξjξk

is always nonnegative, one gets

M(ξ) < −

(

N
∑

j=1

ξ2
j −

2

N − 1

N−1
∑

j=1

N
∑

k=j+1

ξjξk

)

I ≤ 0 (8)

since

(N−1)
N
∑

j=1

ξ2
j −2

N−1
∑

j=1

N
∑

k=j+1

ξjξk =
N−1
∑

j=1

N
∑

k=j+1

(ξj−ξk)2 ≥ 0

(9)
This proves that (7) holds for all (A,Aτ )(ξ) ∈ D. The stability
with respect to any time-delay τ such that 0 ≤ τ ≤ τ̄ follows
from [6]. 2

Note that if the constraints W = Wj , X = Xj and Y = Yj ,
j = 1, . . . , N are imposed, one recovers the quadratic stabil-
ity conditions of time-delay systems as in (4). In this case, the
constraints (6) are redundant and do not need to be taken into
account. The main idea of the above theorem is to exploit the
homogeneity of the left-hand side of (5) (the robust stability
of the vertices is indeed a necessary condition for the stability
of the entire polytope), that is, if there is a feasible solution
(Wj , Xj , Yj) such that the LMIs hold, then (ρWj , ρXj , ρYj)
is also a feasible solution for all ρ > 0. This fact allows to im-
pose −I as the right-hand side of (5) without loss of generality.
Moreover, with the above conditions, stable systems which are
not quadratically stable can be tested with respect to their ro-
bust stability against time-delays (until now, the conditions to
verify the robust stability for state-delayed uncertain systems
were based on quadratic stability assumptions).

Using similar ideas, it is possible to obtain less conservative
LMI conditions for state delayed uncertain systems in convex
bounded domains from other existing conditions in the litera-
ture. For instance, consider the LMIs presented in [25] which
are reproduced in the next lemma.

Lemma 2 Consider the state delayed uncertain linear system
(1) with (A,Aτ )(ξ) ∈ D and a scalar τ̄ > 0 given. This system
is stable for any constant time delay τ such that 0 ≤ τ ≤ τ̄ if

there exist symmetric positive-definite matrices P , Q, X and Z

and matrix Y with appropriate dimensions satisfying




Γ11 −Y + PAτj τ̄A′
jZ

? −Q τ̄A′
τjZ

? ? −τ̄Z



 < 0 ; j = 1, . . . , N

(10)
[

X Y

Y ′ Z

]

≥ 0 (11)

with
Γ11 , A′

jP + PAj + τ̄X + Y + Y ′ + Q

Proof: See [25]. 2

The extension of the above conditions following the lines of
Theorem 1 is given below.

Theorem 2 Consider the state delayed uncertain linear system
(1) with (A,Aτ )(ξ) ∈ D and a scalar τ̄ > 0 given. This system
is stable for any constant time delay τ such that 0 ≤ τ ≤ τ̄ if
there exist symmetric positive-definite matrices Pj , Qj , Xj and
Zj and matrix Yj , j = 1, . . . , N with appropriate dimensions
satisfying





R11 −Yj + PjAτj τ̄A′
jZj

? −Qj τ̄A′
τjZj

? ? −τ̄Zj



 < −I

j = 1, . . . , N (12)
[

Xj Yj

Y ′
j Zj

]

≥ 0 ; j = 1, . . . , N (13)

and




N11 N12 N13

? −Qj − Qk τ̄(A′
τjZk + A′

τkZj)
? ? −τ̄(Zj + Zk)



 <
2

N − 1
I

j = 1, . . . , N − 1 ; k = j + 1, . . . , N (14)

with

R11 , A′
jPj + PjAj + τ̄Xj + Yj + Y ′

j + Qj

N11 , A′
jPk + PkAj + τ̄(Xj + Xk) + Yj + Yk

+ Y ′
j + Y ′

k + Qj + Qk

N12 , −Yj − Yk + PjAτk + PkAτj

N13 , τ̄(A′
jZk + A′

kZj)

Proof: It follows similar steps as in the proof of Theorem 1. 2

Note again that the results of Theorem 2 encompass the
quadratic stability based results of Lemma 2, since if there ex-
ist P = Pj , Q = Qj , X = Xj and Z = Zj and matrix
Y = Yj satisfying (10)-(11), then (12)-(13) also holds and (14)
becomes redundant.

Following similar manipulation, many other LMI based condi-
tions for the robust stability of uncertain systems could be im-
proved. When discrete-time systems are under investigation,
similar manipulation as in the lines depicted in [29] can be fol-
lowed.



4 Delay-independent conditions

Delay-independent stability conditions for system (1)-(3) can
be encountered in many references in the literature [27]. A
sufficient condition formulated in terms of LMIs is reproduced
below.

Lemma 3 Consider the state delayed uncertain linear system
(1) with (A,Aτ )(ξ) ∈ D. This system is stable for any constant
finite time delay τ if there exist symmetric positive-definite ma-
trices P and S with appropriate dimensions satisfying
[

A′
jP + PAj + S A′

τjP

? −S

]

< 0 ; j = 1, . . . , N (15)

Note that the above condition does not depend on the size of
the time delay τ . The extension of the above result to the case
where P and S are respectively replaced by the parameter de-
pendent Lyapunov functions

P (ξ) =

N
∑

j=1

ξjPj ; S(ξ) =

N
∑

j=1

Sj ;

N
∑

j=1

ξj = 1 ; ξj ≥ 0

(16)
is presented in the following theorem.

Theorem 3 Consider the state delayed uncertain linear sys-
tem (1) with (A,Aτ )(ξ) ∈ D. This system is stable for any
constant finite time delay τ if there exist symmetric positive-
definite matrices Pj and Sj , j = 1, . . . , N with appropriate
dimensions satisfying
[

A′
jPj + PjAj + Sj A′

τjPj

? −Sj

]

< −I ; j = 1, . . . , N

(17)
[

Ω11 A′
τjPk + A′

τkPj

? −Sj − Sk

]

<
2

N − 1
I

j = 1, . . . , N − 1 ; k = j + 1, . . . , N (18)

with

Ω11 , A′
jPk + PkAj + A′

kPj + PjAk + Sj + Sk

In the affirmative case, P (ξ) and S(ξ) given by (16) are pa-
rameter dependent quadratic functions that verify
[

A(ξ)′P (ξ) + P (ξ)A(ξ) + S(ξ) Aτj(ξ)
′P (ξ)

? −S(ξ)

]

< 0

(19)
for all (A,Aτ )(ξ) ∈ D.

Proof: To show that conditions (17)-(18) imply (19), just
follow similar steps as the ones used in the proof of Theorem
1. From (19), it can be proved using standard manipulations
that the augmented state vector

[

x(t) x(t − τ)
]′

decreases
asymptotically to the origin independently of the time-delay τ

[23]. 2

Other extensions could be formulated using the manipulation
presented here or similar. However, the extension of the present
technique to the case of polytopic uncertain systems with sat-
urating actuators, as studied in [33], requires special attention
and has to be investigated more deeply.

5 Illustrative Examples

In this section, some examples illustrate the previous results.

Example 1. A first example has been randomly generated in
order to provide a system whose stability is time-dependent.
The two-vertices are given by

(A, Aτ )1 =

([

−1.3451 0.6510
0.6135 −0.3007

]

,

[

0.0025 −0.7350
0.0859 −0.0086

])

(A, Aτ )2 =

([

−0.1849 0.1202
−0.9822 0.1787

]

,

[

−0.3219 0.1123
0.4372 −0.1571

])

The aim here is not to compare conditions from Lemmas 1
and 2 to show that one is less conservative than the other, but
to illustrate that both LMI conditions (4) and (10)-(11) can be
considerably improved for the analysis of uncertain systems
using the ideas presented in this paper.

From Lemma 1, the maximum value of τ for which the LMIs of
(4) admit a feasible solution has found to be τLemma1 = 0.354.
Using the extension provided by the results of Theorem 1, one
gets τTheorem1 = 0.599.

If the alternative LMI conditions of Lemma 2 were used, the
maximum allowed time delay while robust stability is pre-
served is τLemma2 = 0.522, while the improved results of The-
orem 2 yield τTheorem2 = 1.480.

As it can be seen, the use of parameter dependent matrices
allows the robust stability test to yield less conservative results.

Example 2. As second example, consider the uncertain
state delayed linear system given as in (1)-(3) with the
following vertex matrices

(A, Aτ )1 =

([

−0.6649 0.7192
0.3376 −0.3726

]

,

[

−0.0032 0.0034
0.0016 −0.0018

])

(A, Aτ )2 =

([

−1.3117 −0.7129
−0.4754 −0.2641

]

,

[

−0.0063 −0.0034
−0.0023 −0.0013

])

(A, Aτ )3 =

([

0.0218 0.0583
−0.5268 −1.1624

]

,

[

0.0001 0.0003
−0.0025 −0.0056

])

Without taking into account the vertex (A,Aτ )3, the uncertain
system is verified to be stable independently of the time-delay
τ through the conditions of Lemma 3. The same is no longer
true when vertex #3 is included in the analysis (the condition
of Lemma 3 fails). Nevertheless, a feasible solution is obtained
from the LMIs of Theorem 3, assuring for the entire uncer-
tainty domain the robust stability independently of the size of
the time-delay τ . Once again, it is clear that the extension pro-
vided by Theorem 3 proposes less conservative robust stability
analysis results.



6 Conclusion

A very simple LMI-based sufficient condition for robust stabil-
ity of uncertain time-delay linear systems in convex bounded
domains has been presented in this paper. With these con-
ditions, less conservative results than the ones existing in the
literature are obtained in both delay-dependent and delay-
independent cases. Moreover, the manipulations presented
here give the main lines based on which many other LMI-based
analysis conditions can be significantly improved.
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