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Abstract

Adaptive pole-placement control of linear discrete systems in
presence of saturating input is considered. Controllers in two
structures with anti-windup compensation are analysed and
compared. Simulations of second-order systems with time de-
lay are given.

1 INTRODUCTION

It is well known that the presence of saturating actuators can
cause a windup behaviour in the control system. There are
many anti-windup compensators (AWCs) known in the cor-
responding literature. In the context of adaptive control with
AWC, an important issue, besides the stability, is the conver-
gence of the control law. Both stability and convergence of
adaptive pole-placement control with AWCs have been exami-
ned in [1], [2] and [3] for a deterministic discrete-time ARMA
system.

In [1] and [2], a conventional RST pole-placement controller
with a simple compensator is considered, while in [3], and
AWC based on a generalised conditioning technique (GCT) is
introduced into the RST controller. In both cases, the recur-
sive least-squares (RLS) algorithm is used to identify the unk-
nown parameters and to show the stability and convergence of
the adaptive pole-placement control. A basic idea of GCT is
presented in [4].

In this paper, both approaches are comparatively analysed
where, in extension to [1] and [3], a time delay is directly in-
troduced to the ARMA model. Moreover, the performance of
adaptive pole-placement controller with AWC is analysed with
respect to time delay and location of the poles of the system.

As it is shown later in the paper, the performance of the control
depends strongly not only on the identification process, rate of
convergence of the system output signal to the given reference
signal, but also essentially on system’s damping factor, connec-
ted with the location of the poles on a z plane.

2 CONVENTIONAL RST
STRUCTURE

The system is given by the following deterministic discrete-
time ARMA model

A(q−1)yt = B(q−1)ut−d , (1)

where yt and ut denote the output and the constrained input
respectively and d ≥ 1 is a time delay. The polynomials of the
unit delay operator q−1

A(q−1) = 1 + a1q
−1 + · · · + anAq−nA , (2)

B(q−1) = b0 + b1q
−1 + · · · + bnBq−nB (3)

are relatively prime with unknown parameters θ =
= [a1, . . . , anA, b0, . . . , bnB ]

T .

The control signal ut applied to the system is constrained by
the saturation function

ut = sat(vt; α) , (4)

where vt is the calculated, i.e. the unconstrained, control si-
gnal. The aim of the designed controller is to ensure tracking
of a bounded set-point rt by the system output yt, given the
properties of the closed loop specified by the stable polyno-
mial AM (q−1) and taking into account the possible saturation
of the control signal. The unknown system parameters suggest
the use of an adaptive controller.

To obtain a control law, a standard diophantine equation has to
be solved which for the linear case, i.e. in the absence of the
saturation, has the following form

A(q−1)R(q−1) + q−dB(q−1)S(q−1) = AM (q−1)A0(q
−1) ,

(5)
where R(q−1), S(q−1) are controller polynomials (of orders
nB + d − 1, nA − 1 ) and AM (q−1) is a given closed-loop
polynomial. In this case, the control signal is calculated as
follows

R(q−1)vt = −S(q−1)yt + T (q−1)rt , (6)



where polynomial T (q−1) is chosen as

T (q−1) =

[

AM (1)

B(1)

]

A0(q
−1) . (7)

When the constraint gets active and the control system becomes
nonlinear, the controller equation takes the form

R(q−1)ut = −S(q−1)yt + T (q−1)rt . (8)

Since the above equation may not have a solution for arbitrary
sequences of the output and the reference signals, the constra-
ined control such that the latter equation holds, may not exist.
Taking into consideration that R(q−1) is monic, the control si-
gnal applied to the system is derived according to the following
equations

vt = (1 − R̂(q−1))ut − Ŝ(q−1)yt + T̂ (q−1)rt , (9)
ut = sat(vt; α) ,

which represent an indirect adaptive control law. In the case
of saturation, i.e. when equation (8) may not have a solution,
one requires a definition of a new modified reference signal rr

t

which is obtained by solving (9) for ut

rr
t =

1

t̂0

(

(t̂0 − T̂ (q−1))rr
t + R̂(q−1)ut + Ŝ(q−1)yt

)

.

(10)
The signal rr

t may be interpreted as being the closest to rt such
that the controller can move the output in the presence of satu-
ration. The constrained control signal is then generated accor-
ding to the following equation

vt = (1 − R̂(q−1))ut−Ŝ(q−1)yt + t̂0rt + (T̂ (q−1) − t̂0)r
r
t ,

ut = sat(vt; α) , (11)

which ensures that equation (8) has a solution.
The adaptive control law gives a BIBO stability of the closed-
loop system provided that the system is stable, polynomials
Â(q−1), B̂(q−1) are coprime and polynomial T̂ (q−1) is sta-
ble [1].
In the case of a tracking error feedback controller, the polyno-
mial T (q−1) is chosen as follows

T (q−1) = S(q−1) , (12)

and the adaptive controller equation is

vt = (1 − ∆(q−1)R̂(q−1))ut − Ŝ(q−1)et , (13)
ut = sat(vt; α) ,

where et = yt − rt. The diophantine equation in this case takes
the form

∆(q−1)A(q−1)R(q−1) + B(q−1)S(q−1)q−d−1 =

= AM (q−1)A0(q
−1) , (14)

where ∆(q−1) = 1−q−1 is introduced to guarantee the asymp-
totic tracking property. The stability and convergence analysis
of the considered indirect adaptive control is given in [2].

3 GENERALISED CONDITIONING
TECHNIQUE

Consider the ARMA model (1), the constraint (4) and the con-
troller (6). Let the desired closed-loop system be

yt =
BM (q−1)

AM (q−1)
rt−d . (15)

For the purpose of controller design the following factorisa-
tions are performed

B(q−1) = B+(q−1)B−(q−1) , (16)
BM (q−1) = KB′

M (q−1)B−(q−1) , (17)

where B−(q−1) is a polynomial comprising stable zeros of the
system that are not cancelled in the closed-loop system and
B′

M (q−1) is a monic polynomial with the new zeros that are
introduced to the closed-loop system. The gain K is chosen to
satisfy the equation

BM (1)

AM (1)
=

KB′

M (1)B−(1)

AM (1)
= 1 . (18)

The controller polynomials R(q−1), S(q−1) are obtained by
solving the following diophantine equation

A(q−1)R(q−1) + B(q−1)S(q−1)q−d =

= AM (q−1)A0(q
−1)B+(q−1) , (19)

where A0(q
−1) is the observer polynomial. To obtain

a unique solution of the latter equation, polynomials A(q−1)
and B(q−1) must be coprime and nR < nA. The controller
polynomial T (q−1) is given by

T (q−1) = KB′

M (q−1)A0(q
−1) . (20)

In the case of a saturated control the controller internal states
may be subjected to the windup phenomenon resulting in per-
formance detoriation, thus the AWC has to be used to prevent
the latter. Below, the AWC based on GCT [3] is used, where
polynomial T (q−1) is factorised as follows

T (q−1) = T2(q
−1)T1(q

−1) , (21)

and T2(q
−1) is stable. A filtered setpoint is introduced

rf,t =
T1(q

−1)Q(q−1)

L(q−1)
rt (22)

with stable polynomials Q(q−1) and L(q−1). Using (22) as
a setpoint, the controller (6) can then be rewritten as follows

Q(q−1)R(q−1)vt = −Q(q−1)S(q−1)yt + (23)
+T2(q

−1)L(q−1)rf,t .

When the control signal saturates then the internal states of the
controller are not consistent with the constrained control in-
put applied to the system. In order to restore the consistency,
a modified setpoint rr

f,t is defined in such a way that using it in



the controller (23) instead of a filtered reference signal causes
the controller output vt to be equal to ut.
Assuming that rr

f,t has been introduced for all past time instants
such that for all past values the controller output is not satura-
ted, the present control signal can be calculated as follows

vt = (1 − Q′(q−1)R(q−1))ut +
t2,0

q0
rf,t + (24)

−Q′(q−1)S(q−1)yt +
1

q0
(T2(q

−1)L(q−1) − t2,0)r
r
f,t ,

where Q′(q−1) = Q(q−1)
q0

.

Since the modified filtered setpoint is chosen so that ut = vt,
from the latter equation one obtains

ut = (1 − Q′(q−1)R(q−1))ut +
t2,0

q0
rf,t + (25)

−Q′(q−1)S(q−1)yt +
1

q0
(T2(q

−1)L(q−1) − t2,0)r
r
f,t ,

that is

Q(q−1)R(q−1)ut = −Q(q−1)S(q−1)yt + (26)
+T2(q

−1)L(q−1)rr
f,t .

By comparing (24) and (26) a modified filtered reference signal
is obtained

rr
f,t = rf,t +

q0(ut − vt)

t2,0
. (27)

Using (25) and (27) the final adaptive control law can be writ-
ten

vt = (1 − Q′(q−1)R̂(q−1))ut − Q′(q−1)Ŝ(q−1)yt +

+
t̂2,0

q0
rf,t + (T̂2(q

−1)L(q−1) − t̂2,0)r
r
f,t , (28)

ut = sat(vt; α) .

The adaptive control law gives a BIBO stability of the closed-
loop system provided that the system is stable, polynomials
Â(q−1), B̂(q−1) are coprime and polynomial T̂2(q

−1)L(q−1)
is stable [3].

4 SIMULATION RESULTS (A)

Two second order systems are considered in the simulations

a) A(q−1) = 1 − 1.8q−1 + 0.9q−2, B(q−1) = 1 + 0.5q−1

(poles p1 = 0.9 + 0.3i, p2 = 0.9 − 0.3i);

b) A(q−1) = 1 − 1.6q−1 + 0.64q−2, B(q−1) = 1 + 0.5q−1

(poles p1 = 0.8, p2 = 0.8).

The initial values of the estimates of the parameters are ta-
ken as half of their true values, the initial value of matrix P

is taken as P (0) = 10 · I for implementation of RLS algori-
thm. The closed-loop characteristic polynomial is chosen to

be AM (q−1) = 1 − 0.5q−1 + 0.06q−2 (poles p1 = 0.2,
p2 = 0.3), A0(q

−1) = 1 and Q(q−1) = 1 − 0.15q−1,
L(q−1) = 1 − 0.05q−1, B+(q−1) = 1 + b1

b0
, B−(q−1) = b0,

B′

M (q−1) = 1 + 0.5q−1, T2(q
−1) = K. The reference signal

filter parameters are chosen to have fixed values to emphasize
the need of tuning them in order to obtain good performance.
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Fig. 1: Output signals with and without AWC (RST), d = 1
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Fig. 2: Output signals with and without AWC (RST), d = 3
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Fig. 3: Control signals with and without AWC (RST), d = 3

5 CONCLUSIONS (A)

Figure 1 depicts the performance of RST-controlled system (a)
with d = 1, α = 1 showing the advantage of the controller
comprising an AWC in faster error regulation. The latter is
absent when GCT controller is considered (Figure 4) for the
same parameters due to intendedly improperly adjusted para-
meters of the filter (27). For d = 3 with α = 1 an increase in
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Fig. 4: Output signals with and without AWC (GCT), d = 1
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Fig. 5: Output signals with and without AWC (GCT), d = 3
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Fig. 6: Output signals with and without AWC (RST), d = 1
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Fig. 7: Output signals with and without AWC (RST), d = 3
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Fig. 8: Output signals with and without AWC (GCT), d = 1
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Fig. 9: Output signals with and without AWC (GCT), d = 3

the performance can be readily observed when AWC is applied
(Figures 2, 3 and 5). Furthermore, in GCT case (Figure 5) any
tracking is impossible for the system without windup compen-
sation, whereas in the uncompensated RST case a rate of tran-
sients is aimlessly reduced. As it can be seen in the Figure 3,
AWC causes the constrained control signal not only to desatu-
rate, but prevents it from resaturating improving the adaptation
conditions (for remaining cases vt and ut are not presented).
For system (b) (Figures 6–9) the conclusions are similar, but
in contrast to oscillatory system, in the case of d = 3 tracking
is possible, but the resulting closed-loop system is slower than
the chosen closed-loop model.

6 SIMULATION RESULTS (B)

For comparative purposes additional simulations have been
performed for non-adaptive case, where the point of interest
are sums of absolute errors given as

EAE =
150
∑

t=1

|et| =
150
∑

t=1

|rt − yt| (29)

for the system without AWC and for the system with AWC as

EAE,AWC =

150
∑

t=1

|et,AWC | =

150
∑

t=1

|rt − yt,AWC | . (30)

In order to evaluate the performance, a difference in quality of
control ∆AE = EAE − EAE,AWC is introduced, which is



greater than zero if AWC improves the performance and less
then zero if otherwise.

Two different sets of simulations have been performed, with
B(q−1) given as in Section 4 and αmin = 3A(1)

B(1) , aiming to
analyse the influence on the performance of the location of:

• complex poles

where polynomial A(z−1) represented in z domain takes
the form

A(z−1) = (1 − z−1(σ + ωi))(1 − z−1(σ − ωi)) , (31)

and the real part of the poles, i.e. σ, changes from 0 to
1, and ω changes from 0 to 1. Simulations have been run
only if the absolute value of the conjugate poles is less
than one (the zero-value plane presented in the pictures is
shown as a reference for ∆ surfaces).

• real poles

where polynomial A(z−1) takes the form

A(z−1) = (1 − z−1z1)(1 − z−1z2) , (32)

and the both poles change from 0 to 1.

The GCT method enables additional tuning of the performance
by reference signal filter design. Because its parameters should
correspond to model parameters, saturation level and setpoint
values, a special choice of parameters of the filter (22) for mi-
nimumphase second-order model is proposed. Let p1 and p2

denote poles of stable A(z−1), then

% = max(|p1|, |p2|) , (33)
Q(q−1) = 1 +

(

(1 − %)ξ − 1
)

q−1 , (34)

L(q−1) = 1 − (1 − %)ξq−1 , (35)

where 0 < ξ ≤ 1 is the damping factor obtained from classical
root locus theory for the second-order systems. The suggested
filter (33–35) takes into consideration model parameters and
setpoint values only, forcing the initial values of the filtered
reference signal for slow models and reducing the amplitude
and rate of transients for oscillatory ones.

7 CONCLUSIONS (B)

The application of an AWC into RST controller results in per-
formance improvement for complex-poled systems with slow
modes (Figures 10 and 11), but with presence of performance
degradation for some cases of A(z−1), which is reduced for
d = 3. For real-poled systems the improvement caused by the
introduction of the AWC is clearly visible (Figures 12 and 13),
even for systems slower than the chosen closed-loop model.

In the case of GCT AWC with tuned reference signal filter (Fi-
gures 33–35) there is no difference in between performance for
d = 1 or d = 3 for both types of systems, i.e. complex-poled
(Figures 14–16) and real-poled (Figures 17–19), which would

not hold if the reference signal had fixed parameters. For the
introduced cases it can be stated that the greater the improve-
ment in performance visible is, the less tight constraint is. Most
of the negative values of the ∆AE correspond to the lack of
tracking with output revolving around zero, which disorts the
information carried by the performance index.

It is to be mentioned that further performance improvement for
the GCT case can be made by incorporating additional rules
for the reference signal filter in order to make its parameters
depend on the α

αmin

ratio, which has been omitted in the paper.

In general, the AWC circuit incorporated into the pole–(zero)–
placement controller enables one to assure tracking even for
α = αmin for large values of d, but at the cost of the increase in
complexity of the controller, as in the GCT case. Furthermore,
occasionally the improvement may not be worth introducing
the compensation into the controller, which could be read as a
drawback of the applied AWCs.
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Fig. 10: ∆AE (RST), d = 1, α = 2αmin, (a)
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Fig. 11: ∆AE (RST), d = 3, α = 2αmin, (a)
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Fig. 12: ∆AE (RST), d = 3, α = 2αmin, (b)
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Fig. 13: ∆AE (RST), d = 3, α = 2αmin, (b)
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Fig. 14: ∆AE (GCT), α = 2αmin
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Fig. 15: ∆AE (GCT), α = 5αmin
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Fig. 16: ∆AE (GCT), α = 8αmin

8 REFERENCES
1. Abramovitch D.Y. and Franklin G.F. (1990), On the

Stability of Adaptive Pole-Placement Controllers with

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

−20

−10

0

10

20

z
1

z
2

Fig. 17: ∆AE (GCT), α = 2αmin

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

−20

−10

0

10

20

z
1

z
2

Fig. 18: ∆AE (GCT), α = 4αmin

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

−20

−10

0

10

20

z
1

z
2

Fig. 19: ∆AE (GCT), α = 6αmin

a Saturating Actuator, IEEE Trans. on Automat. Contr.,
vol. 35, no. 3, pp. 303-306.

2. Chaoui F.Z., Giri F., and M’Saad M. (1997), Adaptive
Control in Presence of Input Saturation Constraint. An
Input-Output Approach, Proc. of the ECC, Brussels.

3. Walgama K.S. and Sternby J. (1993), On the Convergence
Properties of Adaptive Pole-Placement Controllers with
Anti-Windup Compensators, IEEE Trans. on Automat.
Contr., vol. 38, no. 1, pp. 128-132.

4. Walgama K.S., Rönnbäck J. and Sternby J. (1992), Ge-
neralisation of Conditioning Technique for Anti-Windup
Compensators,IEE Proc.-D,vol.139, no.2, pp. 109-118.


	Session Index
	Author Index



