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Abstract

For any two n-th order polynomials a(s) and b(s), the Hurwitz
stability of their convex combination is necessary and sufficient
for the existence of a polynomial ¢(s) such that ¢(s)/a(s) and
¢(s)/b(s) are both strictly positive real.

1 Introduction

The strict positive realness (SPR) of transfer functions is an
important performance specification, and plays a critical role
in various fields such as absolute stability/hyperstability theory
[15, 20], passivity analysis [11], quadratic optimal control [3]
and adaptive system theory [16]. In recent years, stimulated by
the parametrization method in robust stability analysis [1, 4, 6],
the study of robust strictly positive real systems has received
much attention, and great progress has been made [2, 5] [7]-
[10] [12]-[14] [17]-[19] [21]-[35]. It was proved in [9, 21] that
the strict positive realness of an entire interval transfer function
family can be guaranteed by the same property of only eight
prespecified vertex transfer functions in this family. However,
most available results in the literature belong to the category of
robust SPR analysis. Valuable results in robust SPR synthesis
are rare. The following fundamental problem is still open [14,
18, 22, 23] [25]-[28] [30] [31]-[34]:

Suppose a(s) and b(s) are two n-th order Hurwitz polynomi-
als, does there exist, and how to find a (fixed) polynomial c(s)
such that ¢(s) /a(s) and ¢(s)/b(s) are both SPR?

By the definition of SPR, it is easy to know that the Hurwitz sta-
bility of the convex combination of a(s) and b(s) is necessary
for the existence of polynomial ¢(s) such that ¢(s)/a(s) and
¢(s)/b(s) are both SPR. In [13, 14, 19], it was proved that, if
a(s) and b(s) have the same even (or odd) parts, such a polyno-
mial c¢(s) always exists; In[2, 13, 14, 17, 22, 23, 25, 27, 30, 31],
it was proved that, if n < 4 and a(s),b(s) € K (K is a stable
interval polynomial set), such a polynomial c(s) always exists;
Recent results show that [22, 23, 25, 27, 28, 30] [32]-[34], if
n < 6 and a(s) and b(s) are the two endpoints of the convex

combination of stable polynomials, such a polynomial ¢(s) al-
ways exists. Some sufficient condition for robust SPR synthesis
are presented in [2, 5, 10, 17, 22, 23, 27], especially, the design
method in [22, 23] is numerically efficient for high-order poly-
nomial segments or interval polynomials, and the derived con-
ditions are necessary and sufficient for low-order polynomial
segments or interval polynomials.

This paper presents a constructive proof of the following state-
ment: for any two n-th order polynomials a(s) and b(s),
the Hurwitz stability of their convex combination is necessary
and sufficient for the existence of a polynomial ¢(s) such that
c(s)/a(s) and ¢(s)/b(s) are both SPR. This also shows that
the conditions given in [22, 23] are also necessary and suffi-
cient and the above open problem admits a positive answer.
Some previously obtained SPR synthesis results for low-order
polynomial segments [22, 23, 25, 27, 28, 30] [32]-[34] become
special cases of our main result in this paper.

2 Main Results

In this paper, P stands for the set of n-th order polynomials of
s with real coefficients, R stands for the field of real numbers,
O(p) stands for the order of polynomial p(-), and H® C P"
stands for the set of n-th order Hurwitz stable polynomials
with real coefficients.

In the following definition, p(-) € P™,q(-) € P", f(s) =
p(s)/q(s) is a rational function.

Definition 1 [3, 16, 29]
real(SPR), if

() 0(p) = 0(q);

(if) f(s) is analytic in Re[s] > 0, (namely, ¢(-) € H™);

(i) Re[f(jw)] > 0, Vw € R.

If f(s) = p(s)/q(s) is proper, it is easy to get the following
property:

Property 1 [3, 9, 16, 20] If f(s) = p(
rational function, ¢(s) € H", and Vw €
then p(s) € H™ U H™ L.

f(s) is said to be strictly positive

s)/q(s) is a proper
R,Re[f(jw)] > 0,

The following theorem is the main result of this paper:



Theorem 1  Suppose a(s) = s" + a;s" ' +--- +a, €
H",b(s) = 8" + bys" ! +---+b, € H", the necessary and
sufficient condition for the existence of a polynomial ¢(s) such
that ¢(s)/a(s) and ¢(s)/b(s) are both Strict Positive Real, is

Ab(s) + (1 —Na(s) € H*, A € [0,1].

The statement is obviously true for the cases when n = 1 or
n = 2. We will prove it for the case whenn > 3.

Since SPR transfer functions enjoy convexity property, by
Property 1, we get the necessary part of the theorem.

In what follows, the notation [z] stands for the largest integer

that is smaller than or equal to the real number = and (y),

stands for the remainder of the nonnegative integer y divided

by the positive integer z L.

To prove sufficiency, we must first introduce some lemmas.
Lemma 1 Suppose a(s) = s™ +a;s"" ' +---+a, € H",

then a(s) = s" ' + ays" 2+ + a,_1 € H", where 2

o = agnfi)z(aian—l — ai—lan)(n—l—i)g’i =1,2,---,n—1,
A Ap—1

ap=1,q,=0ifl <0orl>n.

Proof it can be directly proved by using Hurwitz criterion.

Lemma 2 Suppose a(s) = s™ + a;s""' + -+ +a, € H",

then B(s) = s 1 + B1s" 2 +---+ 3,1 € H* 1, where

3 Bi = (a1ai41 — ai+2)(i)2(az+1)<i+1>2ai =12,---,n-1,
a

aozl,al:Oifl<00rl>n.

1For example, [1.5] = 1,[0.5] = 0,[—1.5] = —2, etc., and {(0), =
0,(1), = 1,{11), = 2, etc..
2For example, when n = 3, we have:

aijas — ag
a = —— a2 = a2.

a2
whenn = 4, we have:

a203 — 0104
o] =a1,2 = ——, (3 = Q3.

a3
whenn = 5, we have:
ajaq4 — as azaq — G205
a = ——,a2 =a2,03 = ————————
a4 aq

, 04 = Q4.

whenn = 6, we have:

a205 — G106 a4a5 — a306

a1 = a1, oz = , 3 = 43,04 = , 5 = Q5.
as as
SFor example, when n = 3, we have:
ag
B1 =aiaz — a3, B2 = —.
a1
whenn = 4, we have:
a3
B1 = aiaz — a3, B2 = —, B3 = a1a4.
a1
whenn = 5, we have:
as as
B1 =aia2 —a3, B2 = —,B3 =aitas —as,f4 = —.
al ai

whenn = 6, we have:

as as
B1 = a1a2 — a3, B2 = a_”BS =a1a4 —as,P4 = a—,ﬁs = a1as.
1 1

Proof it can be directly proved by using Hurwitz criterion.

Lemma 3 Suppose a(s) = s"+a1s" "' +---+a,, € H", then,

forevery k € {1,2,---,n—2}, the following quadratic curve is
an ellipse in the first quadrant (i.e., z; > 0, =1,2,---,n—1)
of the R"~! space (z1, 2, -, 2Zn_1) *:

ci—i—l —4ckck+2 = 0,
Cl:07
le{l,2,---,n},l £k k+1,k+2,

and this ellipse is tangent with the line

cp = 0,
le{1,2,---,n}l#k+1,k+2,
and the line
Ccp = 0,
le {1,2,"',”},l7ék,k+1,
n .
respectively, where ¢ := Z(—l)lﬂajmm,j,l,l =
7=0
1,2,---,n,a0 = 1,29 = 1,a; = 0ifi < Oori > n,and

z;=0ifi<0ori>n—1.

4When n = 3, the ellipse equation is (see [27, 28] for details):
(agzl —airs — (1,3)2 - 4(0,1 - J:l)agl'z =0.
When n = 4, the two ellipse equations are (see [25] [30]-[32] for details):

(ale + T3 —ai1xs — a3)2 — 4(0,1 - .1:1)((131)2
—a2z3 — asx1) = 0,
asx3 =0,
(a3z2 — a2w3 — asx1)? — 4(az2z1 + 73
—ai1x — a3)a433 =0,
a1 —x1 =0.

When n = 5, the three ellipse equations are (see [33] for details):

(a2z1 + 3 — @172 — a3)? — 4(a1 — z1)(as + azz2
+a124 — 0223 — 0421) = 0,

a4T3 —a3x4 —asx2 =0, asz4 =0,

(a5 + a3z2 + a174 — a2w3 — a4z1)? — 4(a271 + T3
—a1z2 — a3)(asx3 — azrs — asxz2) = 0,

ap —T1 = 01 a5T4 = 05

(aaz3 — azz4 — asz2)? — 4(as + azr2 + a174
—a2x3 — a4z1)aszs =0,

a1 —x1 =0, a2x1 +x3 —ai1z2 —az = 0.

When n = 6, the four ellipse equations are (see [34] for details):

(a2z1 + 3 — @122 — a3)® — 4(a1 — z1)(as + a3z + @174
—X5 — a2x3 — (141:1) =0,

a6T1 + 4T3 + a2T5 — a3xT4 — asx2 = 0,

asx4 — a4Ts — aez3 = 0, agxs = 0,

(a5 + a3w2 + @124 — o5 — a223 — aa71)? — 4(azzT1 + T3
—a1z2 — a3)(aeT1 + a3 + a2x5 — a3z4 — asx2) = 0,

a1 —x1 =0, asT4 — aaxs — agx3 = 0, agzs =0,

(a6%1 + a4%3 + a2x5 — a3wa — asw2)? — 4(as + a3zx2 + 0174
—&5 — a223 — a4x1)(as5T4 — asxs —asx3) =0

a1 —x1 =0, a2x1 + 23 —a122 — a3 =0, agzs =0,

(asza — asws — aex3)? — 4(asT1 + asz3 + asxs
—a3z4 —asx2)aexs =0,

a1 —x1 =0, a2x1 + 23 —a122 —az =0,

as + azx2 + a1x4 — r5 — a2x3 — aqr1 = 0.

—N———



Proof Since a(s) is Hurwitz stable, by using mathematical
induction, and by Lemmas 1 and 2, Lemma 3 is proved by a
direct calculation.

For notational simplicity, for a(s) = s +a;s" ' +---+a, €
H" b(s) = s"+bis" 1 +---+b, € H*Vk € {1,2,--- n—
2}, denote

Q% ={ (21,22, -, Tn1)|Chyq — 4CkCry2 <0,
aqg=0,1€{1,2,---,n},l £k k+1,k+2},
and
ng = (rcl,:cg, . ',CL’n_l)‘di+1 - 4dkdk+2 <0,
d=0,1€{1,2, - ,n},l #kk+1k+2},
n .
where C = E (—1)l+]aj.7}21,j,1 s d; =
=0
n .
E(—l)l+'7bj$21_j_1,l = 1,2,"',TL, ay = labO =

j=0
l,z0 =1,a; =0andb; = 0ifi <0ori>n,and z; = 0 if
i<Qori>n-—1.

In what follows, (A, B) stands for the set of points in the line
segment connecting the point A and the point B in the R™~!

space (x1,%2, " *,Zn_1), Not including the endpoints A and
B. Denote
Qe ::{ (x17x27"'7$n—1)|

(T1,22,7++,Tn—1) € U?:_ﬁi<jgn72(A’i7Aj)7
VA; € Qi€ {1,2,---,n —2}}

and
Ob ;:{ (_7;17_(1;27...,:1;"71)' \
(@1, @2, &n—1) € Ui icj<n—2(Bi, Bj),
VB; e Qi€ {1,2,---,n —2}}.
Lemma 4 Suppose a(s) = s™ + a1s"t + -+ a, €

H"b(s) = s" +bys" L +---+b, € H,if QN QP # ¢,
take (z1,Ta, -+, Tn_1) € Q2N NP and let c(s) = s" 7 +
(xy —€)s" 24+ ao8™ 3+ 4+ 2, 05+ (2,1 +¢) (cisa

sufficiently small positive number), then for @ and @ we
a(s) — b(s)
c(jw) c(jw)
have Vw € R, Re[—= > 0 and Re[ —= > 0.
i) B)

Proof Suppose (z1,z2,---,Tn_1) € Q%N N°, let ¢(s) =
s (21 —€)s" 2+ a8 3+ 4 xp_25+(Tpo1+E),€ >
0, ¢ sufficiently small.

Yw € R, consider

c(jw) 1 2(n—1) 2(n—2)
e - = —FFF0|Ciw + cow
GG = TaGw) P :
+ -+ epm1w? + ¢y
—(jw)" 2 +¢
+Re[——F———
; a(jw) ]
— 2(n—1) 2(n—2)
[aGa) P e

+o o+ Cno1w? + cp]

G+ el))

n .

E (—1)l+‘7aj$gl_j_1,l = 132a e, M, g =
j=0
l,xg = 1,a; = 0ifi < Qori >mn,andz; = 0ifi <0
ori > n — 1, and &w?) is a real polynomial with order not
greater than 2(n — 2).

where ¢ :=

c(jw)

)] >0, lett = w?, we

In order to prove that Vw € R, Re|

a(jw
only need to prove that, for any e > 0, ¢ sufficiently small, the
following polynomial f; (¢) satisfies

fl(t) = Cltn_l + CQtn_2 + -+ Cn_lt + Cn
+e(t"t —&(t)) > 0, Vt € [0, +00).
Since (z1,x2, -, T,—1) € Q% by the definition of Q% it is

easy to know that
g1(t) == c1t™ eot™ 2 e _qttc, >0, V€ (0,4+00).

Moreover, we obviously have f;(0) > 0, and for any ¢ > 0,
when ¢ is a sufficiently large or sufficiently small positive num-
ber, we have f;(t) > 0, namely, there exist 0 < ¢; < t5 such
that, foralle > 0, ¢ € [0,%1] U [t2, +00), we have f1(t) > 0.

Denote
M; = inf t
1 teg’tﬂgl(),
Ny = sup [t"7' —&1))l.
tE[t1,t2]

. M .
Then M; > 0and N1 > 0. Choosing 0 < € < Fl’ by a direct
1
calculation, we have

fl(t) = Cltn_l + Cgtn_2 +---+cepit+ oy
+e(t"t —&(t)) > 0, Vt e [0,+00).
Namely,
vw e R,Re[UY) ) 5 g
a(jw)
Similarly, since (21, xa, - - -, Tn_1) € QF, there exist 0 < t3 <

t4 such that, forall ¢ > 0, ¢ € [0,t3] U [t4, +00), we have
fa(t) > 0,where

fz(t) = dltn_l + d2tn_2 + - 4+ dp_1t+d,

+e(t™1 —d(t)),
dl = Z(—I)H_jbjszl_j_l, l = 1, 2, e, N,
j=0
where bp = 1,20 = 1,b; = 0ifi <0ori > n,and z; = 0 if
i <0ori>n—1,andd(w?) is a real polynomial with order
not greater than 2(n — 2) which is determined by the following
equation:

—(jw)" % +¢

Rl (jw)

_ (=¢) _ 2(n-1) | 3,2
1= BGwp T A

Denote

g2(t) = dltn_l + thn_2 + -+ dpt+ dn,



My = inf go(t),

tE[ts,t4]

N; = sup |t"_1
te[ts,t4]

—d(t))!.

Mo
Then My > 0and N, > 0. Choosing 0 < € < —=, we have

Ny’

c(jw)

VYw € R, Re[b(jw)

]>0.

: My M :
Thus, by choosing 0 < € < min{Fl,FQ}, Lemma 4 is
2

proved.

Lemma 5 Suppose a(s) = s™ + a18""* + -+ + a, €
H" b(s) = s+ bys" L +---+ b, € H*, if Ab(s) + (1 —
Na(s) € H*, X € [0,1],then Q* N Q¥ # ¢

Proof IfVA € [0,1],ax(s) := Ab(s) + (1 — Na(s) € H™,
by Lemma 3, for any A € [0,1], Qo2 k = 1,2,---,n — 2,
are n — 2 ellipses in the first quadrant of the R™"~! space
(Z1,%2,+, Tpn—1).

VA € [0,1], denote

Q2 ={ (21,22, -, Tn-1)|
(mlax2a"'a$n 1) € Uz 1,i<j<n— Q(A)\iaA)\j)a
VA)\Z'EQ;,’LE{I,2 . ,n—2}}

Apparently, when A changes continuously from 0 to 1, 2%
will change continuously from Q¢ to Q°, and Q27 will change
continuously from ¢, to Q%, .k =1,2,---,n — 2.

Now assume Q2 N Qb = ¢, by the definitions of Q¢ and Q°
and Lemma 3, Ju; > 0, u2 > 0,u1 # ai,u1 # by, and
3k € {1,2,---,n — 2}, such that the following hyperplane L
inthe R™~! space (z1,2, -+, Tn_1)

T T Ty
L: 24244200
U1 U2

=1
Un—1

separates Q¢ and P, meanwhile, L is tangent with

Q93---,98, 5,  and Q. simultaneously (or tangent
with Q2 Qb -, Q’;(n%) and Q. simultaneously).

Without loss of generality, suppose that L is tangent with
021, 0%, -+, 02, _, and Q°; simultaneously.

As before, the notation [z] stands for the largest integer that
is smaller than or equal to the real number = and (y), stands
for the remainder of the nonnegative integer y divided by the
positive integer z.

Since L is tangent with Q%,,Q%,,-- -, Q?(n—2) and Q’;E simul-
taneously, note that a(s) is Hurwitz stable and w; > 0,u; #
a1,u2 > 0, using mathematical induction, by a lengthy cal-
culation [22, 23, 25] [27, 28] [30]-[34], we know that the
necessary and sufficient condition for L being tangent with

Q3Q%---, 0%,y  simultaneously is °

RN it SR (4 B &4

S0 2 Cau{te? 2 =0 )

1=0
and

_ = Mm _
Uj = (_1) J _3747 7n_17 (2)
where ag = 1.
[u] l

Sinceu; = (1) 2 u§J>2u22 , 7=3,4,---,n—1,Lis

tangent with sz by a direct calculation, we have

RN et RN B

Y02 b2 =0 (9
=0

where by = 1.

From (1) and (3), we obviously have VA € [0, 1],

3 n ?

S5 e,z

i=0

=0 @

where ay; := ai-{—)\(bi—ai), ag=1,bp=1,:=0,1,2,---,n
(4) and (2) show that L is also tangent with 272 (VA € [0, 1]),
but L separates Q“ and Q” , and when X changes continuously

from 0 to 1, Q‘“ WI|| change continuously from Q“ to Qb
which is obV|oust impossible. This completes the proof

From Theorem 2.4 in [23], or the proof of Lemma 5 in [28], we
have

Lemma 6 Suppose a(s) = s™ + a1s" ' + -+ + a, €
H",b(s) = s" +bys" L +---+b, € H",c(s) = s"1 +
218" 2 4+ -~ + z,_q, If Vw € R, Re[c(J,w)] > 0 and

o) a(jw)

jw
Re > 0, take

5
¢ (s):=c(s) +d-h(s), § >0, d sufficiently small,

SWhen n = 3, we have (see [27, 28] for details):
uiu2 — aju2 —asu1 +as = 0.
When n = 4, we have (see[25] [30]-[32] for details):

ulug — alug — asuius + aguz + aguy = 0,
U3 = —uU1U2.

When n = 5, we have (see[33] for details):

2 2 —
U1U; — A1U; — G2U1U2 + a3u2 + aqu1 —as =0,
U3 = —U1U, U4 = fu%.

When n = 6, we have (see[34] for details):

wiud — a1ud — a2uiul + asul + aguiuz — asuz — agur =0,
U3 = —UIU2, Ug = —u%, uy = ulué.



(where h(s) is an arbitrarily given monic n-th order polyno-

¢ (s) ¢ (s)

mial), then ———= and ——= are both strictly positive real.
a(s) b(s)

The sufficiency of Theorem 1 is now proved by simply com-

bining Lemmas 3-6.

Remark 1 From the proof of Theorem 1, we can see that this
paper not only proves the existence, but also provides a design
method. In fact, based on the main idea of this paper, we have
proposed a geometric algorithm with order reduction for robust
SPR synthesis which is very efficient for high order polynomial
segments [26].

Remark 2 The method provided in this paper is constructive,
and is insightful and helpful in solving more general robust
SPR synthesis problems for polynomial polytopes, multilinear
families, etc..

Remark 3 Our main result in this paper can also be extended
to discrete-time case. In fact, by applying the bilinear trans-
formation of the unit circle into the left half plane, Theorem
1 can be generalized to discrete-time case as well. Moreover,
in discrete-time case, the order of the polynomial obtained ac-
cording to our method is bounded by the order of given poly-
nomial segment [27, 29].

Remark 4 If @ and @ are both SPR, it is easy to know
a(s) — b(s)
c(s)

is also SPR.

that 1

VA€ 0. 1) o T (= e)
Remark 5  The stability of polynomial segment can be
checked by many efficient methods, e.g., eigenvalue method,
root locus method, value set method, etc. [1, 4, 6].

Remark 6 By using similar method, we can constructively
prove the existence of SPR synthesis for low order (n < 4)
interval polynomials. Namely, when n < 4, the Hurwitz sta-
bility of the four Kharitonov vertex polynomials is necessary
and sufficient for the existence of a fixed polynomial such that
the ratio of this polynomial to any polynomial in the interval
polynomial set is SPR invariant [22, 23, 25, 27, 30, 31]. The
SPR synthesis for high order interval systems is currently under
investigation.

Finally, we give an the example to show that our method is very
effective.

Example 1 Suppose a(s) = s8 + 12s% + 70s* + 30053 +
500s%+600s+300, b(s) = s®+145°+60s*+280s> +490s2 +
650s + 400. It is easy to see that the convex combination of
the two polynomials a(s) and b(s) is robustly Hurwitz stable.
Using our method, we can get (12,49,,48,,99,0) € Q%=

then for <ls) and @ we have Yw € R, Re[c(J,w)] > 0 and
() " b(s) aljo)

c(jw) ) 6 .

Re[—=—=] > 0. Thus, let &(s) := c(s) + 055,86 > 0,6 suffi-

b(jw)
ciently small, e.g., take § < 0.06, then the design requirement
has been met.

Note that, in the Example 1, ¢(s) is not unique.
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