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Abstract 

This paper considers the application of a higher order sliding 
mode control algorithm to the problem of precision-limit 
positioning of a direct drive system in the presence of 
friction. Precision-limit positioning requires that the precision 
error is equal to the resolution of the sensor.  Such high levels 
of control performance have not been generally considered 
possible because of the problems encountered  in accurately 
modelling static friction. This paper employs a recently 
developed model of static friction and develops a higher order 
sliding mode position control algorithm. This algorithm does 
not require the output derivative (or velocity) to be measured 
or observed and merely employs the position error 
measurement to generate the control signal. This coincides 
with a fundamental requirement of precision limit positioning 
that only digital position measurement is used by the 
controller.  Simulation and experimental results show good 
correlation. It is demonstrated that higher order sliding mode 
control is an appropriate technique for such precision limit 
position control.  

1 Introduction 

In recent years, higher order sliding mode controllers have 
received a great deal of attention in the literature [1-2,5,11-
15]. This class of controllers is effectively a natural 
generalisation of classical sliding mode controllers. Such 
classical sliding mode controllers have sought to drive some 
appropriately defined switching function, s, to zero by 
employing a discontinuous control signal which effectively 
causes the first total derivative of s to be discontinuous. 
Higher order sliding mode controllers seek to render 

0.. )1( ==== −rsss & and the discontinuity is seen to act on 
)(rs . Classical sliding mode controllers are thus seen to be the 

special case of higher order sliding mode controllers obtained 

when r=1. The specific interest in higher order sliding mode 
controllers has occurred mainly as they provide a natural 
framework to smooth the discontinuity of the control signal 
that is present in classical sliding mode control. Although a 
number of papers in the literature consider theoretical issues 
in the area of higher order sliding mode controllers and a 
number of simulation studies exist, very little is reported on 
the practical application of such higher order sliding mode 
controllers.  

This paper reports the application of a second order sliding 
mode controller to the precision limit positioning of the 
experimental facility shown in Figure 1.  The plant is a direct 
drive DC torque motor mounted on ordinary ball bearings. 
The motor is driven by a linear amplifier. Two optical 
encoders with different resolutions are mounted to measure 
the rotor position. The resolution of the coarse encoder is 
86,400 count/rev or, equivalently, 15 arcsec/count, while that 
of the fine encoder is 1,620,000 count/rev or, equivalently, 
0.8 arcsec/count. The rotor angle is measured simultaneously 
by these two encoders. The outputs are compared to 
guarantee that the data obtained is correct. However, only one 
encoder is used in the feedback loop in each test. The data 
acqisition and control is accomplished by a PC-486/66 
together with a D/A converter and an A/D converter. Both 
D/A and A/D converters have a resolution of 12 bits.  The 
system is effectively a direct drive system in the presence of 
friction. The control objective is to ensure a zero-count steady 
state error with 100% repeatability . Consider 

fuxcxm τ−=+ &&&                             (1) 

where x denotes the position, m denotes the mass, fτ  is the 

friction force, u is the control input and c  is the damping 
coefficient in the slip phase. It is noted that, based on the 
usual Amonton-Coulomb friction model where static friction 
is essentially considered to be a dead-zone nonlinearity, any 
point ( )0, =xx &  in the state space is an equilibrium point 
when u is less than the maximum static friction. Therefore, 
the control u can be eliminated as the desired position is 



reached. However, this is not the case in practice. 
Experimental studies show that if a mass is moved a small 
distance in the operating range where static friction 
dominates, it will not stay there when the force is removed. 
This is effectively due to a nonlinear spring retraction. This 
also happens in a positioning system. The control force u 
becomes small as the mass m gets close to the desired 
position. It finally gets stuck due to static friction. The point it 
sticks at is usually not exactly the desired set point. In such a 
positioning system, the behaviour switches from that shown 
in Figure 2(a) to 2(b) as will be described in the next section. 
As the plastic module gets work hardened, the behaviour of 
the system is very close to that of a mass-spring-damper 
system. Therefore, to stay at the desired position, say dx , a 
final holding force to compensate the spring force is required. 
If this force is removed, the mass bounces back and leaves 
the desired position. Although the system given in (1) looks 
simple, it, in fact, consists of two different systems: a type-1 
slip system and a type-0 stick system. Since the two systems 
are quite different, it is natural to consider applying different 
control strategies for different phases to achieve a good 
response and this dual mode control philosophy has been 
reported in the literature, see for example [6]. Control design 
for coarse positioning in the slip phase has been well 
developed throughout the control literature. This study 
initially thought to concentrate on fine positioning in the stick 
phase using higher order sliding mode techniques. However, 
as will be seen from the experimental results, the single 
controller developed for the stick phase yields good 
performance in the slip phase also. This simplifies the 
controller design and implementation. The outline of the 
paper is as follows.  Section 2 describes the friction model. 
The higher order sliding mode control design approach is 
covered in section 3.  Simulation and experimental results are 
presented in section 4.   

2 Description of Friction Model 

The friction model developed in [8] as shown in Figure 2(a) 
is used for this study. The model consists of four elements - a 
plastic module, a nonlinear spring module, a viscous damper 
and a hook. These elements are assumed massless. During the 
slip phase, the tangential contacting force between the hook 
and ground can be described as a function of velocity. Such a 
representation describes the dynamic friction and has been 
proposed by many investigators. During the so-called pre-
sliding motion1, the hook sticks at the position where it is, 
and this model is reduced to that shown in Figure 2(b). In this 
model, the damper c is a standard linear damper and the 
nonlinear spring module and plastic module are as described 
below. 

                                                           
1 The term pre-sliding is used here to describe a fundamental 
property of the friction dynamics and is not related to the 
sliding mode control technique used here. 

Nonlinear spring module: Consider the nonlinear spring 
shown in Figure 3. Let sσ  be the applied external force and 

sx  be the elongation then the relation between sσ  and sx  
follows the Preisach type hysteresis with loop congruency 
being obeyed in both the input and output senses. It has been 
shown in [7] that, for such hysteresis, the equation of each 
branch of the motion can be expressed as 
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where ( )⋅h  is a nonnegative monotonically non-increasing 
function and rx  is the active reverse point, i. e., the starting 
point of the current branch of motion. It is noted that the 
slope at each point is a function of the relative absolute 
change of sx  with respect to the active reverse point, in 
contrast to other models [3,4]. An appropriate expression for 
( )⋅h  in the pre-sliding motion is 
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where 1k , 2k  and β  are positive scalars. A typical response 
of the nonlinear spring is shown in Figure 4. If the hysteresis 
is treated as a spring then ( )⋅h  can be considered as the spring 
constant. For very small displacements, the nonlinear spring 
can be linearized. 

Plastic module: Consider the plastic module shown in 
Figure 5. Let σ  be the applied force and px  be the 

extension, then it follows that: 
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where α  is a positive scalar and f(s) is a monotonically 

increasing function with f(0) = 0 and 0)(

0
=

=sds
sdf . In this 

model, hx  is monotonically non-decreasing and stands for 

the accumulated work hardening and px  is the final plastic 

deformation. It is noted that when ( ) hxf >σ , new plastic 

deformation occurs. This deformation is referred to as creep 
motion. On the other hand, if ( ) hxf ≤σ , there is no new 

deformation. The module is work hardened. As a result, 
( )σf  stands for the maximum amount of work hardening 

corresponding to the applied force σ . An appropriate 

expression for f is 
λ

σ
σ

n

f =)( , where n > 1 and 0>λ  are 

both constants. A typical response of the plastic module is 
shown in Figure 6.  



The pre-sliding motion is a combination of these modules as 
shown in Figure 2(b). Corresponding experimental and 
simulation results have been compared in [8]. They show 
very good consistency.   

3. Higher Order Sliding Mode Control 

Sliding Mode Control (SMC) is known to be a robust control 
method that is appropriate for controlling uncertain systems. 
High robustness is exhibited against external disturbances, 
measurement error and unmodelled plant dynamics. It is also 
relatively straightforward to implement the resulting 
algorithms.  Fundamentally, sliding mode control design is a 
two stage process. Firstly, the sliding manifold is designed. 
The requirement here is that the zero dynamics of the system 
with respect to a suitable output (the sliding variable, s ) 
exhibits desired behaviour. Secondly, a control is designed to 
force the system trajectories to the designed sliding manifold, 
which is defined as 0=s , and ensure they remain there. In 
classical sliding mode control, the sliding variable is selected 
such that it has relative degree one with respect to the control. 
The control then acts on the first derivative (with respect to 
time) of the sliding variable ( s& ) to keep the system 
trajectories in the sliding set 0=s . Essentially, the 
discontinuous control signal acts on the first derivative of s . 
This condition effectively limits the choice of sliding 
variable. 

The concept of higher order sliding mode control has recently 
gained a great deal of attention in the literature [5,12,16]. In 
higher order sliding mode control, the control acts on higher 
derivatives of the sliding variable. For example, the case of 
second order sliding mode control corresponds to the control 
acting on the second derivative of the sliding variable, 
namely s&& , and the sliding set is defined as 0== ss & . It is 
readily seen that such a higher order sliding mode control 
provides a natural means to alleviate one of the perceived 
problems of classical sliding mode control, namely chattering 
of the control signal. Several such second order sliding 
algorithms have been presented in the literature 
[1,2,11,13,14].  In [11,13] 2-sliding algorithms were 
presented to stabilise second order uncertain nonlinear 
systems but these use knowledge of the output-derivative, s& , 
to implement so called twisting or drift algorithms. The super 
twisting algorithm in [11] does not require this output 
derivative to be measured.  However, it has been developed 
for systems with relative degree one with respect to the input 
and, if applied to systems of relative degree two, develops 
limit cycle behaviour; the conditions for controller parameter 
selection are no longer valid.  

In [1,2] an optimised version of the twisting algorithm was 
presented. However, this requires at least knowledge of the 
sign of the output-derivative which is implemented by 
incorporating a memory element into the controller. A new 
second order sliding mode control algorithm has recently 
been developed for systems of relative degree two with 
respect to the input in which s&  is not measured or observed 

[10]. Further, it is not assumed that the sign of s&  is 
detectable.  To describe the algorithm, consider a second 
order  single input single output (SISO) system of the 
following type 
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where Ff ≤≤ (.)0 and maxmin (.)0 GgG ≤≤<  are 
uncertain, bounded functions. It is required to stabilize the 
output  1y  of this system using a sliding mode control with 
the condition that neither measured nor observed  2y  is 
available to the controller. The system output 1y  can be 
considered as the suitable sliding variable. The following 
second order sliding algorithm is suggested to steer 1y  to 
zero exponentially and achieve the control task. The 
algorithm is defined by the following control law. 
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where 0,0,
min

0 ≥>>> Wk
G

Fuλ . This algorithm is here 

applied to the fine position control problem described in 
Section 2. The bounds on (.)g  depend only upon the range 
of variation of m/1  where m is the mass. The bounds on 

(.)f  depend on variation in c, the damping coefficient in the 
slip phase, the range of variation of  m/1 , 1k , 2k  and the 
magnitude of the friction torque. The accurate simulation 
model of the pre-sliding behaviour was used to determine 
these bounds and hence evaluate the controller parameters. It 
should be noted that the integral term in this higher order 
sliding mode control algorithm is needed to give the holding 
force required in the steady-state for precision limit 
positioning. 

4 Experimental Results 

The system used in this research to conduct experiments is 
shown in Figure 1. Experimental procedures follow those 
described in [7]. Figure 8 shows the simulation results 
obtained from applying a 1 count, 5 counts and 10 counts step 
command to the pre-sliding system simulation model. The 
precision limit positioning task is accomplished in each case. 
Figure 9 shows the corresponding experimental results. Here 
the digital output from the coarse encoder is used by the 
control signal. Again the precision limit positioning task is 
accomplished. Figure 10 shows a large movement task. It is 
seen that the designed second order sliding mode controller is 
able to accomplish precision limit positioning in this phase of 
movement also. As was commented earlier, previous studies 



would consider a two stage controller design for each phase 
of motion. Note that the second order sliding mode controller 
was implemented with exactly the same algorithm and 
identical sets of parameters for both phases of motion. 
Traditional sliding mode control algorithms, effectively first 
order sliding modes, do not necessarily have the integral term 
required to prescribe the holding force in the steady state. 

5 Concluding Remarks 

The design of a second order sliding mode control system for 
precision limit positioning in the presence of friction has been 
discussed. A second order sliding mode control algorithm has 
been employed that does not require measurement or 
estimation of the velocity. Implementation results have been 
presented and the performance of the second order sliding 
mode controller has been found to be as predicted by 
simulation studies. It has been shown that the second order 
sliding mode controller is straightforward to tune and 
implement and is capable of giving good performance in both 
the pre-sliding and sliding phases of operation. The results 
have been achieved using position error measurement only 
with no measurement or estimation of velocity. 
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Figure 1(a) Block diagram of system hardware 

 

 

 

Figure 1(b) Schematic diagram of the test platform 

 

 

 

 
Figure 2(a) Model of friction 

c
m

u

viscous damper

plastic module nonlinear spring
module

 
Figure 2(b) Static Friction Model 

 

 

 

 

 

 

 

 

 

Figure 3. Nonlinear spring module 
 

 

 

Figure 4 Typical response of the hysteresis non-linearity of  

the nonlinear spring module 
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Figure 5. Plastic module 

Figure 6. Typical response of the plastic module 

 
Figure 7. Control system block diagram 

 
 

 

 

 
Figure 8 Simulated step responses (1 count, 5 

counts, 10 counts) 

 
Figure 9 Experimentally measured step responses (1 

count, 5 counts, 10 counts)  

 

 
Figure 10 Experimentally measured step response (864000 

counts) 
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