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Abstract

In this paper, we studyH∞ performance of interval systems.
We show that, for an interval system, the maximalH∞ norm
of its sensitivity function is achieved at twelve (out of sixteen)
Kharitonov vertices. Furthermore, we study robustness of mul-
tivariable systems with parametric uncertainties, and establish
a multivariable version of Edge Theorem. An illustrative ex-
ample is presented.

1 Introduction

Motivated by the seminal theorem of Kharitonov on robust sta-
bility of interval polynomials [1], a number of papers on ro-
bustness analysis of uncertain systems have been published in
the past few years [2–15]. Kharitonov’s theorem states that
the Hurwitz stability of the real (or complex) interval polyno-
mial family can be guaranteed by the Hurwitz stability of four
(or eight) prescribed critical vertex polynomials in this fam-
ily. This result is significant since it reduces checking stability
of infinitely many polynomials to checking stability of finitely
many polynomials, and the number of critical vertex polyno-
mials need to be checked is independent of the order of the
polynomial family. An important extension of Kharitonov’s
theorem is the edge theorem discovered by Bartlett, Hollot and
Huang [2]. The edge theorem states that the stability of a poly-
tope of polynomials can be guaranteed by the stability of its
one-dimensional exposed edge polynomials. The significance
of the edge theorem is that it allows some (affine) dependency
among polynomial coefficients, and applies to more general
stability regions, e.g., unit circle, left sector, shifted half plane,
hyperbola region, etc. Wang and Huang extended Kharitonov’s
theorem to robust performance of interval systems [8]. They
proved that the strict positive realness of an interval transfer
function family can be guaranteed by the same property of only
eight prescribed critical vertex transfer functions in this family.
When the dependency among polynomial coefficients is non-
linear, however, Ackermann shows that checking a subset of a
polynomial family generally can not guarantee the stability of
the entire family [9, 10].

In this paper, we show that, for an interval system, the maximal
H∞ norm of its sensitivity function is achieved at twelve (out
of sixteen) Kharitonov vertices. This result is useful in robust
performance analysis andH∞ control design for dynamic sys-
tems under parametric perturbations. Furthermore, we study

robustness of multivariable systems with parametric uncertain-
ties, and establish a multivariable version of Edge Theorem.
An illustrative example is presented.

2 System Gain Computation

Denote them-th, n-th (m < n) order real interval polynomial
familiesKg(s), Kf (s) as

Kg(s) = {g(s)|g(s) =
m∑

i=0

bis
i, bi ∈ [bi, bi], i = 0, 1, ......,m},

(1)

Kf (s) = {f(s)|f(s) =
n∑

i=0

ais
i, ai ∈ [ai, ai], i = 0, 1, ......, n}.

(2)

For anyf(s) ∈ Kf (s) , it can be expressed as

f(s) = αf (s2) + sβf (s2), (3)

where

αf (s2) = a0 + a2s
2 + a4s

4 + a6s
6 + ......, (4)

βf (s2) = a1 + a3s
2 + a5s

4 + a7s
6 + ....... (5)

For the interval polynomial familyKf (s), define

α
(1)
f (s2) = a0 + a2s

2 + a4s
4 + a6s

6 + ......, (6)

α
(2)
f (s2) = a0 + a2s

2 + a4s
4 + a6s

6 + ......, (7)

β
(1)
f (s2) = a1 + a3s

2 + a5s
4 + a7s

6 + ......, (8)

β
(2)
f (s2) = a1 + a3s

2 + a5s
4 + a7s

6 + ......, (9)

and denote the four Kharitonov vertex polynomials ofKf (s)
as

fij(s) = α
(i)
f (s2) + sβ

(j)
f (s2), i, j = 1, 2 (10)

For the interval polynomial familyKg(s), the corresponding

α
(i)
g (s), β(j)

g (s) and gij(s) ∈ Kg(s) can be defined analo-
gously.

Denote by H the set of all Hurwitz stable polynomials (i.e. all
of their roots lie within the open left half of the complex plane).

For the proper stable rational functionp(s)
q(s) , theH∞ norm is

defined as∥∥∥∥p(s)
q(s)

∥∥∥∥
∞

= sup
{∣∣∣∣p(jω)

q(jω)

∣∣∣∣ | ω ∈ (−∞ , +∞)
}

(11)



Consider the strictly proper open-loop transfer functionP =
g(s)
f(s) , and suppose the closed-loop system is stable under neg-
ative unity feedback. Denote its sensitivity function asS =

1
1+P = f(s)

f(s)+g(s) . Apparently,||S||∞ ≥ 1.

For notational simplicity, define

Ji1j1i2j2(s) = gi1j1(s) + (1 + δejθ)fi2j2(s),
δ ∈ (0, 1), i1, j1, i2, j2 = 1, 2, θ ∈ [−π, π]. (12)

Lemma A Supposeg(s) + f(s) ∈ H. Then, for anyγ > 1,
we have

||S||∞ < γ ⇐⇒ g(s) + (1 +
1
γ

ejθ)f(s) ∈ H, ∀θ ∈ [−π, π].

Lemma B For anyδ ∈ (0, 1), θ ∈ [−π, π], we have

W (s) ⊂ H (13)

⇐⇒

J1111, J1212, J2222, J2121, J1112, J1222,
J2221, J2111, J1211, J2212, J2122, J1121 ∈ H

(14)

whereW (s) =: {g(s)+ (1+ δejθ)f(s)|g(s) ∈ Kg(s), f(s) ∈
Kf (s)}.

The following theorem shows that, for an interval system, the
maximal H∞ norm of its sensitivity function is achieved at
twelve (out of sixteen) Kharitonov vertices.

Theorem A Supposegij(s) + fij(s) ∈ H, i, j = 1, 2. Then

max{|| f(s)
f(s) + g(s)

||∞|g(s) ∈ Kg(s), f(s) ∈ Kf (s)} =

(15)
max{|| fi2j2 (s)

fi2j2 (s)+gi1j1 (s) ||∞|(i1j1i2j2) =
(1111), (1212), (2222), (2121), (1112), (1222),
(2221), (2111), (1211), (2212), (2122), (1121)}

(16)

3 Robust Positivity

Lemma C For any fixedω, β ∈ R, if f(jω) 6= 0, then

<g(jω)− βf(jω)
f(jω)

> 0 (17)

if and only if

f(jω)s + g(jω)− βf(jω) ∈ H (18)

Proof: For any fixedω, β ∈ R, g(jω)− βf(jω) andf(jω) are
fixed complex numbers. Thusf(jω)s + [g(jω)− βf(jω)] is a
first order complex polynomial, and

f(jω)s + g(jω)− βf(jω) ∈ H

⇐⇒ <−[g(jω)−βf(jω)]
f(jω) < 0

⇐⇒ < g(jω)−βf(jω)
f(jω) > 0

(19)

This completes the proof.

Consider the interval complex numbersc0 + jd0, c1 + jd1,
whereci ∈ [c−i , c+

i ], di ∈ [d−i , d+
i ], i = 1, 2. Define the sign

functions

sgn[ci] =


1 ci = c−i

2 ci = c+
i

(20)

sgn[di] =


1 di = d−i

2 di = d+
i

(21)

and define the index setsI1, I2 as

I1 = {(1222), (1221), (2221), (2211), (2111), (2112),
(1112), (1122), (1211), (2212), (2122), (1121)}

I2 = {(1112), (1222), (2111), (2221), (1121), (1211),
(2122), (2212)}

For any two polynomialsh(1)(s), h(2)(s), denote their convex
combination as

L[h(1), h(2)] = {λh(1)(s) + (1− λ)h(2)(s)|λ ∈ [0, 1]} (22)

Lemma D [6] For any fixedβ > 0, the first order complex
polynomial set

W1(s) := {(c1 + jd1)(s− β) + (c0 + jd0)|
ci ∈ [c−i , c+

i ], di ∈ [d−i , d+
i ], i = 1, 2} ⊂ H

(23)

if and only if

{(c1 + jd1)(s− β) + (c0 + jd0)|
(sgn[c0] sgn[d0] sgn[c1] sgn[d1]) ∈ I1} ⊂ H

(24)

Lemma E [1, 8] The first order interval complex polynomial
set

W2(s) := {(c1 + jd1)s + (c0 + jd0)|
ci ∈ [c−i , c+

i ], di ∈ [d−i , d+
i ], i = 1, 2} ⊂ H

(25)

if and only if

{(c1 + jd1)s + (c0 + jd0)|
(sgn[c0] sgn[d0] sgn[c1] sgn[d1]) ∈ I2} ⊂ H

(26)

Theorem B For any fixedω ∈ R, if 0 6∈ Kf (jω) and

min{<gi1j1(jω)
fi2j2(jω)

|(i1 j1 i2 j2) ∈ I1} := β0 > 0 (27)

Then

min{< g(jω)
f(jω)

|g(s) ∈ Kg(s), f(s) ∈ Kf (s)} = β0 (28)

Proof: Sincegij(s) ∈ Kg(s), fij(s) ∈ Kf (s), i, j = 1, 2, we
have

min{< g(jω)
f(jω)

|g(s) ∈ Kg(s), f(s) ∈ Kf (s)} ≤ β0 (29)



Suppose

min{< g(jω)
f(jω)

|g(s) ∈ Kg(s), f(s) ∈ Kf (s)} := β1 < β0

Sinceβ0 > 0, there existsβ2 > 0 such thatβ1 < β2 < β0.
Hence, for any(i1 j1 i2 j2) ∈ I1, we have

<gi1j1(jω)
fi2j2(jω)

≥ β0 > β2 > 0 (30)

Namely

<gi1j1(jω)− β2fi2j2(jω)
fi2j2(jω)

> 0 (31)

By Lemma C, for(i1 j1 i2 j2) ∈ I1, we have

fi2j2(jω)s + gi1j1(jω)− β2fi2j2(jω) ∈ H. (32)

Consider the first order complex polynomial set

W3(s) := {f(jω)s + g(jω)− β2f(jω)|
g(s) ∈ Kg(s), f(s) ∈ Kf (s)} (33)

Apparently, whenω ≥ 0, we have

α
(1)
f (−ω2) ≤ <f(jω) ≤ α

(2)
f (−ω2) (34)

ωβ
(1)
f (−ω2) ≤ =f(jω) ≤ ωβ

(2)
f (−ω2) (35)

α(1)
g (−ω2) ≤ <g(jω) ≤ α(2)

g (−ω2) (36)

ωβ(1)
g (−ω2) ≤ =g(jω) ≤ ωβ(2)

g (−ω2) (37)

By Lemma D,W3(s) ⊂ H. Whenω < 0, the two inequali-
ties on the imaginary parts off(jω), g(jω) above will be re-
versed. By Lemma D,W3(s) ⊂ H. Hence, for any fixed
ω ∈ R, f(s) ∈ Kf (s), g(s) ∈ Kg(s), we have

f(jω)s + g(jω)− β2f(jω) ∈ H (38)

By Lemma C, we have

<g(jω)− β2f(jω)
f(jω)

> 0, ∀f(s) ∈ Kf (s), g(s) ∈ Kg(s)

Namely

< g(jω)
f(jω)

> β2, ∀f(s) ∈ Kf (s), g(s) ∈ Kg(s) (39)

Namely

min{< g(jω)
f(jω)

|g(s) ∈ Kg(s), f(s) ∈ Kf (s)} = β1 > β2

which contradictsβ1 < β2 < β0. This completes the proof.

Corollary A If fij(s) ∈ H, i, j = 1, 2 and

min{ inf
ω∈R

<gi1j1(jω)
fi2j2(jω)

|(i1 j1 i2 j2) ∈ I1} := γ0 > 0

Then

min{ inf
ω∈R

< g(jω)
f(jω)

|g(s) ∈ Kg(s), f(s) ∈ Kf (s)} = γ0 (40)

Proof: Sincefij(s) ∈ H, i, j = 1, 2, by Kharitonov Theorem
[1], Kf (s) ⊂ H. Hence

0 6∈ Kf (jω), ∀ω ∈ R (41)

Moreover, sincegij(s) ∈ Kg(s), fij(s) ∈ Kf (s), i, j = 1, 2,
we have

min{ inf
ω∈R

< g(jω)
f(jω)

|g(s) ∈ Kg(s), f(s) ∈ Kf (s)} := γ1 ≤ γ0

Supposeγ1 < γ0, sinceγ0 > 0, there existsγ2 > 0 such that
γ1 < γ2 < γ0. Sinceγ0 > γ2 > 0, for any fixedω ∈ R, we
have

<gi1j1(jω)
fi2j2(jω)

> γ2 > 0, ∀(i1 j1 i2 j2) ∈ I1 (42)

By Theorem B, we have

< g(jω)
f(jω)

> γ2 > 0, ∀f(s) ∈ Kf (s), g(s) ∈ Kg(s) (43)

Hence, we haveinfω∈R < g(jω)
f(jω) ≥ γ2. Namely

min{ inf
ω∈R

< g(jω)
f(jω)

|g(s) ∈ Kg(s), f(s) ∈ Kf (s)} = γ1 ≥ γ2

which contradictsγ1 < γ2 < γ0. This completes the proof.

By similar analysis, we have

Corollary B If ∀ω ∈ [ω1, ω2], 0 6∈ Kf (jω) and

min{ inf
ω∈[ω1,ω2]

<gi1j1(jω)
fi2j2(jω)

|(i1 j1 i2 j2) ∈ I1} := γ0 > 0

Then

min{ inf
ω∈[ω1,ω2]

< g(jω)
f(jω)

|g(s) ∈ Kg(s), f(s) ∈ Kf (s)} = γ0

Theorem C For any fixedω ∈ R, if 0 6∈ Kf (jω), then

min{< g(jω)
f(jω)

|g(s) ∈ Kg(s), f(s) ∈ Kf (s)} > 0 (44)

if and only if

min{<gi1j1(jω)
fi2j2(jω)

|(i1 j1 i2 j2) ∈ I2} > 0 (45)

Proof: Necessity: Obvious.

Sufficiency: Since

min{<gi1j1(jω)
fi2j2(jω)

|(i1 j1 i2 j2) ∈ I2} > 0 (46)



By Lemma C, for any fixedω ∈ R

fi2j2(jω)s+gi1j1(jω) ∈ H, ∀(i1 j1 i2 j2) ∈ I2 (47)

Consider the first order interval complex polynomial set

W4(s) := {f(jω)s + g(jω)|g(s) ∈ Kg(s), f(s) ∈ Kf (s)}
(48)

By the proof of Theorem B and by Lemma E,W4(s) ⊂ H.
Hence, for any fixedω ∈ R, f(s) ∈ Kf (s), g(s) ∈ Kg(s), we
have

f(jω)s + g(jω) ∈ H (49)

By Lemma C, we have

< g(jω)
f(jω)

> 0, ∀f(s) ∈ Kf (s), g(s) ∈ Kg(s) (50)

This completes the proof.

4 More Technical Tools

For Hurwitz stability of interval matrices, Bialas ’proved’ that
in order to guarantee robust stability, it suffices to check all
vertex matrices [12]. Later, it was shown by Barmish that
Bialas’ result was incorrect [13]. Kokame and Mori eastb-
lished a Kharitonov-like result on robust Hurwitz stability of
interval polynomial matrices [14], and Kamal and Dahleh es-
tablished some robust stability criteria for MIMO systems with
fixed controllers and uncertain plants [15].

In what follows, we will study robustness of a class of MIMO
systems with their transfer function matrices described by

F(s) =


 a11(s) . . . a1n(s)

. . . . . . . . .
an1(s) . . . ann(s)

 : aij(s) ∈ Aij(s)


Aij(s)=conv{b1ij(s), . . . , bmij(s)}

(51)
wherem is a given positive integer.

Definition 1 A polynomial matrix is a matrix with all its en-
tries being polynomials.

Definition 2 SupposeD is a simply-connected region in the
complex plane. If all the roots of the determinant of a polyno-
mial matrix lie withinD, then this polynomial matrix is called
D-stable. A set of polynomial matrices is called robustlyD-
stable, if every polynomial matrix in this set isD-stable.

Definition 3 Supposef1(s), . . . , fm(s) arem given polyno-
mials, the set{

m∑
i=1

λifi(s) : λi ≥ 0,
m∑

i=1

λi = 1

}
is called the polynomial polytope generated by
f1(s), . . . , fm(s), denoted as conv{f1(s), . . . , fm(s)}.

Definition 4 The polynomialf(s) = a0 + a1s + . . . + ansn,
with ai ∈ [aL

i , aU
i ] is called an interval polynomial.

Definition 5 Sn is the set of all bijections from{1, . . . , n} to
{1, . . . , n}.

Definition 6 The vertex set and edge set ofAij(s) are

Kij(s) = {b1ij(s), . . . , bmij(s)}

Eij(s) = { λbrij(s) + (1− λ)btij(s),
λ ∈ [0, 1], r, t ∈ {1, . . . ,m}}

respectively.

Definition 7

FE(s) =
⋃

σ∈Sn

{
(aij(s))n×n : aij(s)

{
∈ Eij(s) if i = σ(j)
∈ Kij(s) if i 6= σ(j)

}
(52)

Lemma 1 (Edge Theorem [2]) SupposeΓ ⊂ C is a simply-
connected region,Ω is a polynomial polytope without degree
dropping. Then,Ω is Γ-stable if and only if all the edges ofΩ
areΓ-stable.

Lemma 2 SupposeA(s) is a givenn× (n− 1) polynomial
matrix. Then

 a11(s)
...

an1(s)
A(s)

 : ai1(s) ∈ Ai1(s),
i = 1, . . . , n


is robustlyD-stable⇔ for all i = 1, . . . , n,
 a11(s)

...
an1(s)

A(s)

 : al1(s) ∈ Klj(s) l 6= i
al1(s) ∈ Elj(s) l = i


is robustlyD-stable.

Proof: Necessity is obvious, since the later is a subset of the
former.

Sufficiency: For anyai1(s) ∈ Ai1(s), the corresponding ma-
trix is

T (s) =

 a11(s)
...

an1(s)
A(s)


By Laplace Formula, we can expand the determinant ofT (s)
along its first column. Then, by convexity and by Lemma 1, we
know thatT (s) is robustlyD-stable.

Lemma 3 SupposeB(s) is a given(n− 1)× n polynomial
matrix. ∗ stands for fixed entries in a matrix. Then{(

∗ a1i(s) ∗ a1j(s) ∗
B(s)

)
: a1i(s) ∈ A1i(s)

a1j(s) ∈ A1j(s)

}
is robustlyD-stable⇔{(

∗ a1i(s) ∗ a1j(s) ∗
B(s)

)
:

a1i(s)× a1j(s) ∈
(K1i(s)× E1j(s)) ∪ (E1i(s)×K1j(s))

}
is robustlyD-stable.

Proof: the proof is analogous to the proof of Lemma 2, except
that the Laplace expansion is carried out along the row instead
of the column.



5 Multivariable Edge Theorem

Theorem 1 F(s) is robustlyD-stable if and only ifFE(s) is
robustlyD-stable.

Proof: Necessity is obvious. To prove sufficiency, we first note
that interchanging any two rows (or columns) does not affect
the stability of a polynomial matrix (it only changes the sign of
the determinant). By Lemma 2

F(s) is robustlyD stable
⇔ for all i = 1, . . . , n,

 a11(s)
...

an1(s)
A(s)

 : al1(s) ∈ Klj(s) l 6= i
al1(s) ∈ Elj(s) l = i


is robustlyD stable.

⇔ for all

{
i1 = 1, . . . , n
i2 = 1, . . . , n

 a11(s) a12(s)
...

...
an1(s) an2(s)

A1(s)

 :

{
al1(s) ∈ Klj(s) l 6= i1
al1(s) ∈ Elj(s) l = i1{
al2(s) ∈ Klj(s) l 6= i2
al2(s) ∈ Elj(s) l = i2


is robustlyD stable.

whereA1(s) is the correspondingn× (n− 2) polynomial ma-
trix. This last equivalence is based on Lemma 2 and the fact
that interchanging two columns does not change the stability
of a polynomial matrix. Repeating the process above, letYn

denote the set of all mappings from{1, . . . , n} to {1, . . . , n},
then

F(s) is robustlyD stable

⇔ for all η ∈ Yn,

{
(aij(s)) : aij(s) ∈ Kij(s) i 6= η(j)

aij(s) ∈ Eij(s) i = η(j)

}
is robustlyD stable.

If there exists anη ∈ Yn such thatη(i1) = η(i2) = k, then the
corresponding matrixF (s) = (aij(s)) satisfies

ai1k(s) ∈ Ei1k(s)
ai2k(s) ∈ Ei2k(s)

Applying Lemma 2 to columnk of F (s), we have

F(s) is robustlyD stable

⇔ for all σ ∈ Sn,

{
(aij(s)) : aij(s) ∈ Kij(s) i 6= σ(j)

aij(s) ∈ Eij(s) i = σ(j)

}
is robustlyD stable.
⇔ FE(s) is robustlyD stable.

6 Multivariable Interval Model

Interval model, as a simple and effective approximation of un-
certain systems, has been the subject of study in robustness

analysis for a long time. In a similar vein, we consider the
Hurwitz stability of the following uncertain system.

G(s) = {(cij(s)) : cij(s) ∈ Cij(s)}
Cij(s) are interval polynomials (53)

Definition 8 For the interval polynomial Cij(s) =
{
∑n

l=0 ql(ij)sl, ql(ij) ∈ [q
l
(ij), ql(ij)]}, its Kharitonov

vertex set and Kharitonov edge set are defined respectively as

KI
ij(s) = {c1

k(s), c2
k(s), c3

k(s), c4
k(s)}

EI
ij(s) = {λcr

k(s) + (1− λ)ct
k(s), λ ∈ [0, 1],

(r, t) ∈ {(1, 2), (2, 4), (4, 3), (3, 1)}}

where

c1
k(s) = q

0
(ij) + q

1
(ij)s + q2(ij)s2 + q3(ij)s3 + . . .

c2
k(s) = q

0
(ij) + q1(ij)s + q2(ij)s2 + q

3
(ij)s3 + . . .

c3
k(s) = q0(ij) + q

1
(ij)s + q

2
(ij)s2 + q3(ij)s3 + . . .

c4
k(s) = q0(ij) + q1(ij)s + q

2
(ij)vs2 + q

3
(ij)s3 + . . .

Definition 9

GE(s) =
⋃

σ∈Sn

{
(cij(s))n×n : cij(s)

{
∈ EI

ij(s) if i = σ(j)
∈ KI

ij(s) if i 6= σ(j)

}
(54)

Lemma 4 (Box Theorem[4—6, 9—11, 14—15]) Suppose
∆(s) = {δ(s, p) = F1(s)P1(s) + . . . + Fm(s)Pm(s)}, Pi(s)
is an interval polynomial,Fi(s) is a given fixed polynomial,
i = 1, . . . ,m. And suppose∆(s) is degree-invariant. Then,
∆(s) is Hurwitz stable if and only if∆E(s) is Hurwitz stable,
where∆E(s) = ∪m

l=1{
∑l−1

i=1 Fi(s)K0
Pi

(s) + Fl(s)E0
Pl

(s) +∑m
i=l+1 Fi(s)K0

Pi
(s)} (let

∑t
i=r fi = 0, if r > t).

By resort to the Box Theorem, and following a similar line
of arguments as in the proof of Theorem 1, we can get some
analogous stability verification results for the interval model.

Lemma 5 SupposeA(s) is a givenn× (n− 1) polynomial
matrix. Then

 c11(s)
...

cn1(s)
A(s)

 : ci1(s) ∈ Gi1(s),
i = 1, . . . , n


is robustly Hurwitz stable.
⇔ for all i = 1, . . . , n,

 c11(s)
...

cn1(s)
A(s)

 :
cl1(s) ∈ KI

lj(s) l 6= i

cl1(s) ∈ EI
lj(s) l = i


is robustly Hurwitz stable.

Lemma 6 SupposeB(s) is a given(n− 1)× n polynomial



matrix. ∗ stands for fixed entries in a matrix. Then{(
∗ c1i(s) ∗ c1j(s) ∗

B(s)

)
: c1i(s) ∈ C1i(s)

c1j(s) ∈ C1j(s)

}
is robustly Hurwitz stable

⇔
{(

∗ c1i(s) ∗ c1j(s) ∗
B(s)

)
:

c1i(s)× c1j(s) ∈(
KI

1i(s)× EI
1j(s)

)
∪

(
EI

1i(s)×KI
1j(s)

) }
is robustly Hurwitz stable.

Theorem 2 G(s) is robustly Hurwitz stable if and only if
GE(s) is robustly Hurwitz stable.

Remark: Theorem 2 is consistent with the result in [14]. In
[14], the authors obtained their result using some theorem in
signal processing. Our proof is based on the properties of
matrix determinant, hence is more straightforward and self-
contained.

7 Numerical example

Consider the uncertain polynomial matrix

A(s) = {(aij(s))3×3}
a11(s) = λ11b111(s) + (1− λ11)b211(s)
a12(s) = λ12b112(s) + (1− λ12)b212(s)
a13(s) = λ13b113(s) + (1− λ13)b213(s)
a21(s) = λ21b121(s) + (1− λ21)b221(s)
a22(s) = λ22b122(s) + (1− λ22)b222(s)
a23(s) = λ23b123(s) + (1− λ23)b223(s)
a31(s) = λ31b131(s) + (1− λ31)b231(s)
a32(s) = λ32b132(s) + (1− λ32)b232(s)
a33(s) = λ33b133(s) + (1− λ33)b233(s)

Then,
Eij(s) = {aij(s)}
Kij(s) = {b1ij(s), b2ij(s)}
S3 = {σ1, . . . , σ6}
σ1 : 1 → 1; 2 → 2; 3 → 3
σ2 : 1 → 2; 2 → 3; 3 → 1
σ3 : 1 → 3; 2 → 1; 3 → 2
σ4 : 1 → 1; 2 → 3; 3 → 2
σ5 : 1 → 2; 2 → 1; 3 → 3
σ6 : 1 → 3; 2 → 2; 3 → 1

Let

AE(s) =
⋃

σ∈S3

{
(aij(s))3×3 : aij(s)

{
∈ Eij(s) if i = σ(j)
∈ Kij(s) if i 6= σ(j)

}
By Theorem 1,A(s) is robustlyD stable if and only ifAE(s)
is robustlyD stable.

8 Conclusions

We have shown that, for an interval system, the maximalH∞

norm of its sensitivity function is achieved at twelve (out of
sixteen) Kharitonov vertices. This result is useful in robust
performance analysis andH∞ control design for dynamic sys-
tems under parametric perturbations. Furthermore, we have

discussed the robustD-stability problems for MIMO uncertain
systems. The Edge Theorem and Kharitonov Theorem have
been generalized to multivariable case.
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