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Abstract 2 System Gain Computation

In this paper, we study/> performance of interval systems.Denote then-th, n-th (m < n) order real interval polynomial
We show that, for an interval system, the maximit® norm familiesK,(s), K(s) as

of its sensitivity function is achieved at twelve (out of sixteen)
Kharitonov vertices. Furthermore, we study robustness of myl- , | . b.si
tivariable systems with parametric uncertainties, and establlsﬁ(s) = 19(s)lg(s) = Z s

a multivariable version of Edge Theorem. An illustrative ex- = 1)

ample is presented. n ‘
Kp(s)={f(s)|f(s) = _ais',a; € [a5, @], i = 0,1,....,n}.

1 Introduction = )

Motivated by the seminal theorem of Kharitonov on robust stior anyf(s) € K(s) , it can be expressed as

bility of interval polynomials [1], a number of papers on ro-

bustness analysis of uncertain systems have been published in fs) = agp(s?) + s8¢ (s), 3)
the past few years [2—15]. Kharitonov’s theorem states thv%ere

the Hurwitz stability of the real (or complex) interval polyno-

mial family can be guaranteed by the Hurwitz stability of four af(s?) = ap + azs® + ass® + ags® + ..., 4)
(or eight) prescribed critical vertex polynomials in this fam-
ily. This result is significant since it reduces checking stability Br(s?) = ay + azs® + ass* +ars® + ... (5)

of infinitely many polynomials to checking stability of finitely
many polynomials, and the number of critical vertex polynd=or the interval polynomial family<, (s), define
mials need to be checked is independent of the order of the

polynomial family. An important extension of Kharitonov's 045})(52) =ag + @35” + ass* +ags° + ... ) (6)
theorem is the edge theorem discovered by Bartlett, Hollot and ,
Huang [2]. The edge theorem states that the stability of a poly- 055?) (s%) = @y + ags® + azs* + ags® + .oy (7)
tope of polynomials can be guaranteed by the stability of its (1), 2 . P
one-dimensional exposed edge polynomials. The significance By (s7) = a1 +a3s” +ass” +ars” + ... ) (8)

of the edge theorem is that it allows some (affine) dependency 2, 9y 9 4
among polynomial coefficients, and applies to more general ﬂy(“ )(5 ) =a1 + ass” +ass —F@s6 + e , (9)
stability regions, e.g., unit circle, left sector, shifted half planand denote the four Kharitonov vertex polynomialsFof (s)
hyperbola region, etc. Wang and Huang extended Kharitonogs

theorem to robust performance of interval systems [8]. They , _

proved that the strict positive realness of an interval transfer  fij(s) = o\ (s?) + 58 (s%),  i,j=1,2 (10)
function family can be guaranteed by the same property of only

elght prescribed critical vertex transfer functions in this family.:or the interval p0|yn0mia| fam||}[(g (8), the Corresponding

When the dependency among polynomial coefficients is none) ) N : )
linear, however, Ackermann shows that checking a subset %S& 5 (s) and g;;(s) € K,y(s) can be defined analo

polynomial family generally can not guarantee the stability
the entire family [9, 10]. Denote by H the set of all Hurwitz stable polynomials (i.e. all

. . ._of theirr lie within th n left half of th mplex plane).
In this paper, we show that, for an interval system, the maxm%tlt eir roots lie within the open left half of the complex plane)

H, norm of its sensitivity function is achieved at twelve (oukor the proper stable rational functi@% , the H,, norm is
of sixteen) Kharitonov vertices. This result is useful in robugfefined as )

performance analysis arfd., control design for dynamic sys-

tems under parametric perturbations. Furthermore, we study ’P(S)

q(s)

=sup{\§8fjﬂ joe (-0, o)} (1)

‘ oo



Consider the strictly proper open-loop transfer functidn=
9(s)
f(s)
ative unity feedback. Denote its sensitivity function.fis=

1 __f(s)
ToF = TG0 Apparently|S]lo > 1.
For notational simplicity, define

Ji1j1i2j2 (S) = Gi1j1 (5) + (1 + 66j0)fi2j2 (5)5
d€ (071)7 ilvjlaiQ»jZ = 1727 NS [77(-/"—}'

(12)

Lemma A Supposeg(s) + f(s) € H. Then, for anyy > 1,
we have

11]1oo < 7 <= g(s) + (1 + %ejg)f(s) CH, VO |-mal.

LemmaB Foranys € (0,1),0 € [—m, 7], we have
W(s)c H (13)

Ji111, J1212, J2222, J2121, J11125 J1222,
J2221, J2111, J1211, J2212, J2122, J1121 € H

whereW (s) =: {g(s) + (1+6e7%) f(s)|g(s) € K4(s), f(s) €
Ky(s)}-

(14)

This completes the proof.

, and suppose the closed-loop system is stable under N88hsider the interval complex numbets + jdo, 1 + jds,

wherec; € [c¢;,c],d; € [d; ,d],i = 1,2. Define the sign
functions

1 c=cy

sgnle;] = (20)
2 ci = c;r
1 d; = d

sgnld;] = (21)
2 di =df

and define the index sefs, I, as

I = {(1222), (1221), (2221), (2211), (2111), (2112),
(1112), (1122), (1211), (2212), (2122), (1121)}

I = {(1112), (1222), (2111), (2221), (1121), (1211),
(2122), (2212)}

For any two polynomialg (") (s), (?)(s), denote their convex
combination as

LM A7) = (AW (s) + (1 = MAP (s)|X € [0,1]} (22)

Lemma D [6] For any fixeds > 0, the first order complex

The following theorem shows that, for an interval system, thmolynomial set
maximal H., norm of its sensitivity function is achieved at

twelve (out of sixteen) Kharitonov vertices.

Theorem A Supposey;;(s) + fij(s) € H, i,j =1,2. Then

(0

L R
max{]| 71220 | (i riaja) =
(1111), (1212), (2222), (2121), (1112), (1222),
(2221), (2111), (1211), (2212), (2122), (1121)}

lloclg(s) € Ky(s), f(s) € Kf(s)} =
(15)

(16)

3 Robust Positivity
Lemma C For any fixedv, 5 € R, if f(jw) # 0, then

g(j) — BF ()
)

>0 (17)

if and only if

fw)s +g(jw) - Bf(jw) € H (18)

Proof: For any fixedv, 5 € R, g(jw) — 8f(jw) andf(jw) are
fixed complex numbers. Thy&jw)s + [¢(jw) — Bf(jw)] is a
first order complex polynomial, and

fGw)s +g(jw) = Bf(jw) € H

e golate)-srGe) _ g

7Gw) (19)

g(jw)=Bf(jw)
— R o) >0

Wi(s) :== {(c1 +jdi)(s — B) + (co + jdo)|

cele e dield di=12cH @3
if and only if
{(Cl +jd1)(3_ﬂ)+(60 +jd0)| (24)
(sgnlco] sgnldo] sgnler] sgnldi]) € L} € H

LemmaE[1, 8] The first order interval complex polynomial

set
W_z(sliz {(cr tjdi)5.+ (co + jdo)| (25)
¢ €le;,¢f),di€ld;,d],i=1,2} CH
if and only if
{(e1+jd1)s + (co + jdo)| (26)

(sgnlco] sgn|do] sgn[ci] sgn[di]) € I} C H

Theorem B For any fixedv € R, if 0 ¢ K¢ (jw) and

min{RZ U9 G e L = By >0 (27)

i2.7'2(.7w)
Then
i ij) s s s s)}t =
mm{iﬁf(jw)Ig( ) € Kq(s), f(s) € Ky(s)} =fo  (28)

Proof: Sincey;;(s) € K4(s), fij(s) € K¢(s),i,j = 1,2, we
have
min{RIY) o) € K, (s). £(s) € K7(s)} < fo

g
7o) (29)



Suppose

- 9w)
mm{%f(jw)

Sincey > 0, there existgd, > 0 such that3; < [z < fo.

|9(s) € Ky(s), f(s) € Ky(s)} := b1 < o

Hence, foranyi; ji1 i2 j2) € I1, we have
%?jg ; > By > By >0 (30)
Namely
g 91201 (J@) — ﬁzfizjz W) _ (31)
fi2j2 (]w)
By Lemma C, for(iy j1 2 j2) € I;, we have
fi2j2 (jUJ)S + i1 j1 (]CU) - ﬂinzjz (]UJ) € H. (32)
Consider the first order complex polynomial set
Wa(s) = {f(j)s +9(jw) = Bl ()] g5
g(s) € Ky(s), f(s) € K¢(s)}
Apparently, whenw > 0, we have
ol (—0?) < Rf(jw) < P (—0?) (34)
Wi (—w?) < Sf(jw) < wBP (—w?) (35)
o) (~w?) < Rg(jw) < af) (~w?) (36)
Wi (—w?) < Sg(jw) < Wb (—w?) (37)

By Lemma D,W5(s) € H. Whenw < 0, the two inequali-
ties on the imaginary parts ¢f(jw), g(jw) above will be re-
versed. By Lemma DWs(s) € H. Hence, for any fixed
w € R, f(s) € K¢(s),9(s) € K4(s), we have

fjw)s + g(jw) — B2 f(jw) € H (38)
By Lemma C, we have
g(jw) — B2 f(jw)
R FGw) >0, Vf(s)e Ks(s),g(s) € Ky(s)
Namely
%?(éz; > Ba, Vf(s) € K¢(s),9(s) € K4(s) (39)
Namely
) _
mln{?ﬁm\g(s) € Ky(s),f(s) e Kp(s)} =1 > o

which contradicts3; < (2 < Sy. This completes the proof.

Corollary A If f;;(s) € H,4i,5 =1,2and

91111( ) . . . . L
mln{JIelf}'% %7f12j2 ) [(iv 1 d2 ja)€L}:i=9>0

Then

ming inf R0 () € K (), 7(s) € K5 ()} =0 (40)

f(w)

Proof: Sincef;;(s) € H,i,j = 1,2, by Kharitonov Theorem
[1], Kf(s) C H. Hence

0¢ Kf(jw),

Ky(s), fij(s) € Ky(s),i,5 = 1,2,

Vw € R (41)
Moreover, sincey;;(s) €
we have

min{ inf %M

weR  f(jw)
Supposey; < 7o, sinceyy > 0, there existsy, > 0 such that
Y1 < 72 < 9. Sinceyy > 2 > 0, for any fixedw € R, we
have

l9(s) € Ky(s), f(s) € Kp(s)} =7 <0

%g“jli(]) >y > O V(Zl j1 19 ]2) S Il (42)
f12]2( )
By Theorem B, we have
9(jw)
R > >0, Vf(s) e Kr(s),g(s) € Ky(s) (43
Hence, we havinf,c g %?(;Zg > 72. Namely

min inf I o) € K, (09, £(6) € Ky (61} = = 2

which contradictsy; < v < 79. This completes the proof.

By similar analysis, we have

Corollary B If Yw € [w1,ws],0 & Ky (jw) and
min{ mf %7‘%”1(]“)) (i1 J1 42 Jo) €Li} =7 >0
w€[wr,wz] fz2]2( )
Then
e 9(jw)
min{ inf R="L]|g(s) € K,(s),f(s) € K¢(s)} =
(nf | REETIg(s) € Kols), £(5) € Ky ()} =0

Theorem C For any fixedv € R, if 0 ¢ K;(jw), then

)
min{R="——=|g(s) € K,(s), f(s) € K¢(s)} >0 44
{ f(w)lg() g(5), f(s) € Ky(s)} (44)
if and only if
g Gw) o
min{¥ |1 j1 iz J2) € L2} >0 (45)
f12J2( )
Proof: Necessity: Obvious.
Sufficiency: Since
minfRZen U)o et >0 (46)

1272 (Jw)



By Lemma C, for any fixedh € R Definition 6 The vertex set and edge set4f;(s) are

fisia(jW)s+giyj (jw) € H, V(in jr iz j2) € I (47) Kij(s) = {bli;(s),...,bmi;(s)}
Consider the first order interval complex polynomial set Eij(s) ={ Abrij(s) + (1= A)bti;(s),
Ae[0,1], rte{l,...,m}}

Wa(s) :={f(Jw)s + g(jw)lg(s) € K4(s), f(s) € Ky(s)}
(48) respectively.
By the proof of Theorem B and by Lemma B/4(s) C H.

Hence, for any fixed) € R, f(s) € Kf(s),g(s) € K,(s), we Definition 7

have e
fgw)s + g(iw) € H agy Fo)= U {ashnasto { S0 1200

By Lemma C, we have o€Sn 52

9(jw) Lemma 1 (Edge Theorem [2]) Suppodé C C is a simply-
8%f(jw) >0, ¥f(s) € Kyls) 9(s) € Ky (s) (50) connected regiort) is a polynomial polytope without degree
d ing. Th is I'-stable if and only if all the ed of
This completes the proof. a:g?‘?;rt]gble. ensyis I'-stable if and only if all the edges

Lemma 2 SupposeA(s) is a givenn x (n — 1) polynomial
matrix. Then

For Hurwitz stability of interval matrices, Bialas 'proved’ that

4 More Technical Tools

in order to guarantee robust stability, it suffices to check all an(s) air(s) € A (s)

vertex matrices [12]. Later, it was shown by Barmish that c Als) PR

Bialas’ result was incorrect [13]. Kokame and Mori eastb- an1(s) T

lished a Kharitonov-like result on robust Hurwitz stability of is robustlyD-stable & foralli =1,...,n,

interval polynomial matrices [14], and Kamal and Dahleh es- a11(s)

tablished some robust stability criteria for MIMO systems with L As) | - an(s) € Kij(s) 1#14

fixed controllers and uncertain plants [15]. -( ) Coan(s) € Eiy(s) =i
an1\S

In what follows, we will study robustness of a class of MIMO is robustly D-stable.
systems with their transfer function matrices described by

a11(s) ... ain(s) Proof: Necessity is obvious, since the later is a subset of the
.7:(5) = e e e a,;j(s) e Aij(s) former.
an1(s) oo ann(s) Sufficiency: i
y: For anys;; (s) € A;i(s), the corresponding ma-
Aij (S)ICOHV{blij(S), . ,bmij (S)} trix is
N . ive int (51) a11(s)
wherem is a given positive integer.
misagvenp 9 T =| :  Aw)
Definition 1 A polynomial matrix is a matrix with all its en- i (5)

tries being polynomials.
By Laplace Formula, we can expand the determinarf @f)

Definition 2 SupposeD is a simply-connected region in the e .
complex plane. If all the roots of the determinant of a polyn long its first column. Then, by corvexity and by Lemma 1, we

mial matrix lie within D, then this polynomial matrix is called now that7'(s) is robustlyD-stable.
D-stable. A set of polynomial matrices is called robusfly Lemma 3 SupposeB(s) is a given(n — 1) x n polynomial
stable, if every polynomial matrix in this seti3-stable. matrix. x stands for fixed entries in a matrix. Then

D(_afinition 3 Supposefi(s), ..., fm(s) arem given polyno- x an(s) * ay(s) * ayi(s) € Aui(s)
mials, the set B(s) " ay(s) € Ayi(s)
m m is robustlyD-stable <
{Z)\ifi(s) A >0, Z)‘i = 1} {( * a(s) x ay(s) x > _
i=1 i=1 B(s) '
is called the polynomial polytope generated by a1i(s) x a1;(s) € }
J1(8)... Fu(s), denoted as CONGf(s). .. fu(5)). (Eile) x Fj(2) U (Frils) x Kayls))

is robustly D-stable.
Definition 4 The polynomialf(s) = ap +a1s+ ...+ a,s™,
with a; € [aF, V] is called an interval polynomial.

10"

Proof: the proof is analogous to the proof of Lemma 2, except
Definition 5 S, is the set of all bijections fronfil,...,n} to that the Laplace expansion is carried out along the row instead
{1,...,n}. of the column.



5 Multivariable Edge Theorem analysis for a long time. In a similar vein, we consider the

) ) ] ~ Hurwitz stability of the following uncertain system.
Theorem 1 F(s) is robustlyD-stable if and only itFg(s) is

robustly D-stable.

G(s) ={(ci;i(s)) : cii(s) € Cii(s
Proof: Necessity is obvious. To prove sufficiency, we first note Ci(j( s) aié ir]1t(er)\3al pégyz]omigé )} (53)
that interchanging any two rows (or columns) does not affect
the stability of a polynomial matrix (it only changes the sign of
the determinant). By Lemma 2 Definiton 8 For the interval polynomialC;;(s) =
| {Croai)s'. a(ij) € [q,5).3,(i7)]}, its Kharitonov
F(s) is robustlyD stable vertex set and Kharitonov edge set are defined respectively as
& foralli=1,...,n,
an(s) : I 1 2 3 4
A(S) all(s) € Klj(5> l # ? K}?(S) = {ck(5)7ck(8)a Ck(s)7 Ck(s)}
3( ) an(s) € Ejj(s) 1=i Ef;(s) = {Aci(s) + (1 = N)cg(s), A€ [0,1],
an1\$s r,t) € {(1,2),(2,4),(4,3), (3,1
is robustlyD stable. (rf) € {(1,2),(2.4). (4.3), (3. )}
forall 4 1= Leon
< in=1,...,n where
a11(s) aia(s) . » a4
Ay (s) cp(s) = QO(U) +Q1(ZJ)3 +Go(i5)s” +q3(ig)s” + . ..
(5) aals) ci(s) = q,(i5) + @1 (i5)s + o (1) 5> + ¢, (i5)s° + . ..
nil®) - fn2ts k() = 0o (i) +a,(i)s + 0, (i)s” +3(ig)s” + ..
c.(s) =4qp(27) +q,(i5)s +q,(t7 vs? +¢q 1] s34+
an(s) € Ku(s) 14 1 () =Q0(17) +q1(i5)s + 4, (1)) 5(7)
ain(s) € Ey(s) =1y
az(s) € Kij(s) 1 # iz Definition 9
alg(s) € Elj(s) l =19
is robustlyD stable. _ - o € El(s)if i = o(j)
. . . Gr(s) = U {(C”(S))an L cij(s) { € Kl (s)if i # o(j)
whereA; (s) is the corresponding x (n — 2) polynomial ma- oESn 7
trix. This last equivalence is based on Lemma 2 and the fact (54)

that interchanging two columns does not change the stabilitymma 4 (Box Theorem[4—6, 9—11, 14—15]) Suppose
of a polynomial matrix. Repeating the process aboveyJet A(s) = {6(s,p) = F1(s)Pi(s) + ... + Fp(8)Pp(s)}, Pi(s)
denote the set of all mappings froft, ..., n} to {1,...,n}, s an interval polynomialF;(s) is a given fixed polynomial,
then i = 1,...,m. And suppose\(s) is degree-invariant. Then,
F(s) i robustlyD stable A(s) is Hurwitz stable if and only ifA g(s) is Hurwitz stable,

m -1
ai;(s) € Kij(s) i #n(j) whsreAE(s) :O Ul:l{ZizltE(S)K?—‘%i (<_9) + Fi(s)Ep, (s) +
aij(s) c Eij(s) 7 = 77(]) Zi=l+1 FZ(S)KR (S)} (let Zi:r fz =0, if > t)

By resort to the Box Theorem, and following a similar line

of arguments as in the proof of Theorem 1, we can get some

If there exists am € Y, such that)(i1) = 7(iz) = k, thenthe 4n410g0us stability verification results for the interval model.
corresponding matri¥'(s) = (a;;(s)) satisfies

& foralln €Y, < (ai;(s)) :
is robustlyD stable.

Lemma5 SupposeA(s) is a givenn x (n — 1) polynomial
aik(8) € By k() matrix. Then
@i,k (8) € Eiyi(s)

C11(S)
Applying Lemma 2 to colum of F(s), we have LA | - ci(s) € Gi(s),
: ) i=1,....n
F(s) is robustlyD stable . tfmgIS)H ! b
o ays) € Kyls) i#o() is robustly Hurwitz stable.
& forallo € Sy, § (aij(s)) : ais(s) € Ey(s) i = o)) & for a|(| Z): 1,...,n,
is robustlyD stable. s I )
; . en(s) e Kj.(s) 1#i4
< Fg(s) is robustlyD stable. DA(s) en(s) € BL(s) 1=i
e
6 Multivariable Interval Model is robustly Hurwitz stable.

Interval model, as a simple and effective approximation of un-
certain systems, has been the subject of study in robustnessima 6 SupposeB(s) is a given(n — 1) x n polynomial



matrix. x stands for fixed entries in a matrix. Then discussed the robug?-stability problems for MIMO uncertain
‘ ‘ c systems. The Edge Theorem and Kharitonov Theorem have
© cnls) * c(s) ) . cuils) € Cuils) } been generalized to multivariable case.

B(S) C1j (S) S Clj(s)
is robustly Hurwitz stable
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