
DECENTRALIZED CONTROLLER DESIGN TO ENFORCE
BOUNDEDNESS, LIVENESS, AND REVERSIBILITY IN PETRI

NETS
Aydın Aybar and Altuğ İftar

Department of Electrical and Electronics Engineering
Anadolu University

26470 Eskişehir, Turkey
aaybar@anadolu.edu.tr aiftar@anadolu.edu.tr

Fax: +90 222 323 9501

Keywords: Discrete-event systems, Petri nets, decentralized
control, supervisory controller design, overlapping decomposi-
tions.

Abstract

Decentralized supervisory controller design based on over-
lapping decompositions to enforce boundedness, liveness,
and reversibility is considerered for ordinary Petri nets with
weighted arcs. In the proposed approach, the given Petri
net is first decomposed into a number of overlapping Petri
subnets and then expanded such that each Petri subnet appear
as disjoint. A controller for each disjoint Petri subnet is next
designed to enforce boundedness, liveness, and reversibility
in that Petri subnet. Since each subnet is smaller than the
original Petri net, this step is, in general, much easier than
obtaining a centralized controller for the original Petri net.
These controllers are then combined to obtain a controller
for the expanded Petri net. Finally, the controller for the
expanded Petri net is contracted to obtain a controller for the
original Petri net. It is shown that this final controller enforces
boundedness, liveness, and reversibility in the original Petri
net.

1 Introduction

Petri nets have become a useful tool to model discrete-event
systems (DESs) [14]. Various approaches have been developed
in the control literature for controlling DESs modelled by Petri
nets (e.g., see [7, 12, 5, 15, 6, 3]). Decentralized control ap-
proaches for DESs have been developed in [13, 9, 1, 4], be-
sides others. Among these, [1, 4] use Petri net modeling and
overlapping decompositions.

Overlapping decompositions were first introduced for
continuous-state systems (systems described by differential or
difference equations with continuous state variables) in [10].
It has been demostrated that, overlapping decompositions may
be used successfully for decentralized controller design for
systems whose subsystems are strongly connected through
certain dynamics (the overlapping part) but weakly connected
otherwise (e.g., see [11, 8]). The overlapping decompositions
approach was first considered for DESs (as a special case for
hybrid systems) in [9]. This approach was then developped for

Petri nets in [2].

In this work, we consider decentralized controller design in
ordinary Petri nets with weighted arcs, using overlapping
decompositions, to enforce boundedness, liveness, and re-
versibility. Boundedness, liveness, and reversibility may be
important in many DESs which are modeled by Petri nets
[14]. Centralized controller design to enforce boundedness,
liveness, and reversibility was considered in [3]. Here, we use
overlapping decompositions and the approach of [3] to design
decentralized controllers to enforce these three properties
simultaneously. Furthermore, since deadlock does not occur in
a live Petri net [15], the controller also avoids deadlock.

2 Preliminaries

2.1 Petri nets and supervisory control

A Petri net is a tuple
���������	��
���
��������

, where
�

is the set
of places,

�
is the set of transitions,

������������
is the

input matrix that specifies the weights of the arcs directed from
places to transitions,

���� �!�"�#�
is the output matrix

that specifies the weights of the arcs directed from transitions
to places and

���
is the initial marking. Here,

�
is the set

of natural numbers. $ �%�&��� is a marking vector, $ � '��
indicates the number of tokens assigned by marking $ to place'

. A transition (�) � is enabled if and only if $ � '���*+
,� '-� (�
for all

') � . An enabled transition (may fire at $, yielding
the new marking vector:

$/. � '��10 $ � '��324
5� '-� (�768
,� '-� (���:9;') � (1)

A firing sequence < is a sequence of enabled transitions. A
marking $. is said to be reachable from $ if there exist a
firing sequence starting from $ (i.e., the first transition of the
sequence fires at $) and yielding $. (i.e., the final transition
of the sequence yields $.). The set denoted by = ���5� $ � is
the set of all marking vectors reachable from $. For a Petri
net
�

, we let > � $ � < � to denote the transition function, which
gives the yielded marking when the sequence < fires starting
from $ (> is in fact a partial function, since it is not defined
if < contains transitions which are not enabled). We also let?@� $ � to denote the set of transitions which are enabled at $.

Some important properties for a Petri net are boundedness,

reversibility, liveness, and deadlock freeness. For a vector� �7�"� �
,
�

is said to be
�

-bounded if $ � '���� � � '�� ,9;') � ,
9 $)/= ���5��� � � . � is said to be bounded if it is�

-bounded for some
� � � � �

.
�

is said to be reversible if� �)!= ���5� $ � , 9 $)!= ���5��� ��� . � is said to be live if, for
every $)�= ���5��� � � and for every (�) � , there exists a firing
sequence < such that (can fire at > � $ � < � . Deadlock is said to
occur in a Petri net if there exists $)�= ���5����� � such that no
transition (�) � can fire at $.

Supervisory control can be used to guarantee any one of the
properties mentioned above. A supervisory controller can dis-
able any transition (�) � depending on the present state $
of the Petri net. Such a controller can be described by the
controller function, � � = ���5����� � � � ����� �	��

. Here,
� � $ � (� 0�� indicates that (5) ?@� $ � is disabled by the con-
troller at state $ and � � $ � (� 0
�

indicates that () ?@� $ �
is enabled by the controller. If, for some $) = ���5����� � ,
(�) ��� ?@� $ � , then � � $ � (� need not be defined, since (is
not enabled by the Petri net (thus, � is in fact a partial func-
tion). In [3] algorithms were presented to design a controller
to enforce boundedness, reversibility, and liveness at the same
time in an ordinary Petri net with weighted arcs. These algo-
rithms are presented, using psudo-codes, in the appendix of the
present paper for completeness. In these algorithms, for a set�

, � � � denotes the number of elements of
�

, and � ����� denotes
the ����� element of

�
(� 0�� ��� �	�	�	� � � � �). The set

?@� $ � , for
$)�= ���5��� � � , is obtained using Algorithm II. The mark-
ing > � $ � (� , for $) = ���5��� � � and () ?@� $ � , is obtained
using (1). The main algorithm (Algorithm I) requires the net-
work definition

�
and the bound vector � . Main Algorithm

calls Algorithms III–VI in order to construct the � -bounded
reachability set, =! , the � -bounded reversible set, =!" , to de-
termine whether the � -bounded reversible net is consistent (a
controller which enforces both liveness and reversibility exists
if and only if the given Petri net is consistent [3]), and finally to
construct the controller function whenever there exists a con-
troller which satisfy all the desired properties (for details, see
[3]). It was shown in [3] that the proposed algorithms always
find a controller to enforce these properties whenever it is pos-
sible. Furthermore, the controller obtained is the least restric-
tive controller among all controllers which enforce these prop-
erties simultaneously.

2.2 Inclusion principle, overlapping decompositions, and
expansions

Inclusion principle provides the theoretical framework for con-
troller design using overlapping decompositions. Inclusion
principle for Petri nets was introduced in [2]. Consider two
Petri nets

���������	��
���
���� ���
and #��� #�5� #� � #
8� #
5� #� � � . Let

> �%$ �	$ � denote the transition function of
�

and #> �%$ �	$ � denote the
transition function of #� . Then, inclusion relationship between
#� and

�
is defined as follows.

Definition 1 [2]: #� includes
�

, if there exist matrices & and '
which satisfy the following conditions.

(i) &(' 0*) , where
)

indicates the identity matrix,

Figure 1: Original Petri net

(ii) #� � 0 ' � � ,
(iii) for each #$#)�= � #�5� #� � � , #$.)�= � #�5� #$ � only if &+#$.)
= ���5� &,#$ � ,

(iv) for each $)�= ���5��� � � , there exists #$) = � #�5� #� � �
such that $ 0 &+#$.

In [2], it was shown that the properties of boundedness, live-
ness, and reversibility, among others, are carried over from the
including net to the included net:

Theorem 1 [2]: Let #� include
�

. Then,

(i)
�

is bounded if #� is bounded.

(ii)
�

is reversible if #� is reversible.

(iii) supposing that for each () � , there exists a #()-#� such
that �
 6!
.�0/10 &��1#
 6 #
.��2/ , where � $ �0/ indicates the col-
umn of the matrix

$
that corresponds to (, � is live if #� is

live.

Overlapping decompositions and expansions of Petri nets were
first considered in [2], where a topological approach was in-
troduced. In this approach, overlapping subnets of a Petri net
are first identified by examining the topological structure of the
Petri net. These subnets (from here on called Petri subnets
(PSNs)) are identified such that the only interconnection be-
tween the subnets are through the overlapping part, i.e., no arc
should be directed from one transition/place in one subnet to
a place/transition in another subnet unless at least one of these
transitions/places is in the overlapping part of the two subnets.
For example, for the Petri net shown in Figure 1, an overlap-
ping decomposition may be obtained as shown in Figure 2.

In the approach of [2], once an overlapping decompositon of
the original Petri net is obtained, in order to obtain disjoint
subnets, the overlappingly decomposed Petri net is expanded
by repeating the places, the arcs, and the transitions in the over-
lapping part (e.g.,

'43
in Figure 2 is repeated as

'43�5
and
'63�7

in
Figure 3). Transitions (such as (98 and (%: in Figure 3) which in-
terconnect the repeated places through arcs with unity weights
are also introduced. As a result, an expanded Petri net (EPN),
#��� #�5� #� � #
8� #
5� #� � � , which consists of

�
disjoint PSNs, is ob-

tained from an original Petri net (OPN),
���������	��
���
��������

,
which was decomposed into

�
overlapping PSNs. The initial

marking, #� � , of the EPN is obtained by assigning all the to-
kens in a place in the overlapping part of the OPN to one of the

Figure 2: Overlappingly decomposed Petri net

Figure 3: Expanded Petri net

corresponding repeated places (see [2] for details). For exam-
ple, for the OPN given in Figure 2, the EPN shown in Figure 3
is obtained.

It was shown in [2] that the EPN includes the OPN. Further-
more, it was shown that the additional condition in part (iii)
of Theorem 1 (for each () � , there exists a #() #� such
that �
 6
.�0/!0 &���#
�6 #
.��2/) is also satisfied. Therefore,
by Theorem 1, boundedness, liveness, and reversibility of
the EPN respectively implies the boundedness, liveness, and
reversibility of the OPN.

3 Main results

In this section we consider decentralized supervisory controller
design based on overlapping decompositions of Petri nets to
enforce boundedness, liveness, and reversibility. For nontrivi-
ality, we assume that the OPN,

���������	��
���
��������
, satisfies the

following.

Assumption 1: For any
') � , there exists at least one (�) � ,

such that

5� '-� (��* � .

In our approach, we first consider each decoupled PSN sepa-
rately. To design a controller for the

� ��� PSN, we first deter-
mine an initial marking,

�����
, for that PSN such that

�����
is the

part of a valid initial marking for the EPN that corresponds to
the

� ��� PSN and that there exists a controller which enforces
boundedness, liveness, and reversibility for that PSN starting
at that initial condition (we assume that such a choice exists for
each PSN). We then design a controller for the

� ��� PSN, using
the approach of [3], and denote the corresponding controller
function by � � .

Once a controller is obtained for each PSN, we let the controller
function for the EPN be described as

#� � #$ � #(�@0
���� ���
�
	 � $�	 � #(� � if #(�) ?@� $�	 � and

$�)&= ��� 	
� ��� 	 � �� �
if #(�)��� �
otherwise

(2)

9 #$) = � #�5� #� � � �@9 #(5)
#� , where
� 	
� denotes the � ��� PSN

under the control ��	 , � is the set of transitions that were intro-
duced between the repeated places (e.g., for the example shown
in Figure 3, � 0 � (%8 � (%:
) and $�	 is the part of the marking
vector #$ which corresponds to the � ��� PSN.

Theorem 2: The controller (2) enforces boundedness, liveness,
and reversibility in the EPN.

Proof: a) Boundedness: Controller ��	 guarantees that $ � '�� �
��	 � '�� , 9;') � 	 , 9 $:)4= ��� 	
� ��� 	 � � , 9 ��) � � �	�	�	�9�
 , where� 	 is the set of places of the � ��� PSN, ��	 is the bound vector
chosen for the � ��� PSN, and

�
is the number of PSNs. For a

place #') #� , let � � #'�� denote the index of the PSN for which

#' belongs. Also let � � #'�� denote the place
'

in the OPN which
corresponds to #') #� and, for a place

') � , let ��� � '�� denote
the set of places in the EPN which correspond to the place

'
.

Note that controller (2) allows firing #(�)��� � 0 #�*� � at #$,
only if $�) = ��� 	
� ��� 	 � � and #() ?@� $�	 � . This guarantees
that the number of tokens in a place #') � 	 , such that � � #'��
is not in the overlapping part, can not exceed ��	 � #'�� . If � � #'��
is in the overlapping part, then the number of tokens in #' can
not exceed ����� �!�"$#�%�& '(& 2!*)+) �-, & �!.) � �'�� . Therefore, the EPN is #� -
bounded, where #� � #'��10 �����(�!/"$#�%�& '(& 2!*)+) �-, & �!*) � �'%� .
b) Reversibility: Consider #$ 0 � $102 �-$103 � � � � �-$104 � 0)
= � #�65 � #� � � , where superscript

�
denotes the transpose and #�65

denotes the EPN under the controller (2). Then, either there
exists a

�) � � �	�	�	�9�

such that $ �) = ���6� � ������� � (in

which case we take #$. 0 #$) or there exists a firing se-
quence #< � , consisting of transitions that belong to � , such that
$.�) = ���6� � ������� � , for some

�) � � �	�	�	� �
 , where $.� is
the part of #$. 0 #> � #$ � #< � � which corresponds to the

� ��� PSN.
Then, since

�7� � is reversible, there exists a firing sequence #< ,
consisting of transitions that belong to the set of transitions of
the

� ��� PSN,
�8�

, such that
#$. . 0 #> � #$ � #< �10 � $.2 0 � $.3 0 � � � � � $.�.9 2 0 � ����� 0 �

$.�;: 2 0 � � � � � $104 � 0
Note that #$. .) = � #�65 � #� � � . Thus, repeating the above pro-
cedure

�
times (for a different

�) � � �	�	�	� ���
 each time) we
arrive to a state from which #��� can be reached by a firing se-
quence consisting of transitions that belong to � . Thus, #�65 is
reversible.

c) Liveness: Since #�65 is reversible, we only need to show that,
for any #()�#� , there exists a firing sequence #< for #�65 such that
#(may fire at #> � #� � � #< � . We note that either #(�)<�� or #(�)=� .

We first consider the case #(,)>�� . In this case #(,) �8� for
some

�) � � �	�	�	� ���
 . Note that, either the part of #��� that
corresponds to the

� ��� PSN is equal to
�����

or there exists a

firing sequence #< � , consisting of transitions that belong to � ,
such that the part of #> � #��� � #< � � that corresponds to the

� ��� PSN
is equal to

�����
. Now, since

�7� � is live, there exists a firing
sequence #< 2 , consisting of transitions that belong to

�(�
, such

that #(may fire at #> � #> � #� � � #< � � � #< 2 �10 #> � #� � � #< � #< 2 � .
Next, we consider the case #(�) � . In this case there exists
exactly one #') #� such that #
8� #'-� #(�@0 � and #
,� #' . � #(�@0*� , for
all #' . �0 #' . Note that #') � � for some

�) � � �	�	�	� ���
 . Let us
first assume that there exists a (2) �8� for which #
�� #'-� (2 �5*�

. Since (2) �� , by the above argument, there exists a firing
sequence #< for #�65 , such that (2 may fire at #> � #� � � #< � . Firing (2 ,
however, places at least one token in #' , which enables #(. Thus,
#(may fire at #> � #� � � #<;(2 � . If there does not exist a (2) �8� for
which #
�� #'-� (2 � * � , then, by Assumption 1, there exists #' 2)���

, for some �) � � �	�	�	� ���
4� � �
 , such that � � #' 2 �@0 � � #'�� and
there exists a (2) ��� for which #
�� #' 2 � (2 � * � . Since (2) �� ,
by the above argument, there exists a firing sequence #< for #�65 ,
such that (2 may fire at #> � #� � � #< � . Firing (2 , however, places
at least one token in #' 2 , which enables the transition (3) �
which connects #' 2 to #' . Thus, #(may fire at #> � #� � � #<;(2 (3 � . This
proves the liveness of #�65 . � �
Once we obtain a controller for the EPN, we can obtain a con-
troller for the OPN by contracting the controller for the EPN.
To define this contraction, for $)8= ���5����� � , we first define��� � 0 �� � #$)�= � #��� #� � � � $ � '��10 �2!�"$#�%�& !*) #$ � #'��
	 �� , where

� � � '�� denotes the set of places in the EPN which correspond
to the place

') � in the OPN. We also let � 0 � (� denote the
set of transitions in the EPN which correspond to the transi-
tion (�) � in the OPN. We now define the contraction of the
controller function #� of the EPN as

� � $ � (�@0�
������ �
�� ������� ��� #� � #$ � #(��� 9 $)�= ���5��� � � � 9 (�) �
(3)

and propose to use this controller for the OPN.

Theorem 3: Let #� be a controller for the EPN. Let � be a con-
troller for the OPN such that condition (3) is satisfied. Then the
controlled EPN, #�65 , under the control #� , includes the controlled
OPN,

�65
, under the control � .

Proof: First we define a function �� � � � #� as follows:� If
') � is not in the overlapping part, then �� � '��@0 � � � '��

(note that, in this case ��� � '�� is a singleton).

� If
') � is in the overlapping part and

��� � '�� 0 �
, then

we arbitrarily choose one #')���� � '�� and let �� � '��@0 #' .� If
') � is in the overlapping part and

��� � '�� �0 �
, then

we choose #') � � � '�� which satisfies #� � � #'���0"� � � '��
and let �� � '��10 #' .

Now, we define matrices & and ' as follows

& � '-� #' �@0! � �
if
' 0 � � #'%��5�

otherwise

' � #'-��'��10! � �
if #' 0 �� � '���5�
otherwise

It is easy to check that conditions (i) and (ii) of Definition 1 are
satisfied by the above choice of & and ' . To show that condi-
tion (iii) is satisfied, let #< be a firing sequence for #�65 starting
from some #$)�= � #�65 � #� � � and construct a sequence < for

�75
as follows

1) Let #(denote the first transition in #< .
2) If #(�) �� , include the transition in the OPN which corre-

sponds to #(in < . If #(�)=� , skip to the next step.

3) If #(is the last transition in #< stop. Otherwise, let #(be the
next transition in #< and go back to step 2.

Then

i) < is a valid firing sequence for
�75

(i.e., each transition in
< is enabled) starting from $) = ���75 ��� � � , where $ is

such that $ � '��10 �2!�"$#�%�& !*) #$ � #'�� , 9;') � , and

ii) if #$. 0 #> � #$ � #< � , then $. 0 > � $ � < � is such that

$/. � '��10 �2!�"$#�% & !*) #$/. � #'�� , 9;') � .

Condition (iii) of Definition 1 now follows form this result.

To show that condition (iv) of Definition 1 is also satisfied, let
< be a firing sequence for

�75
starting from

� �
and construct a

sequence #< for #�65 as follows

1) Let (denote the first transition in < . If there exists a
#() � 0 � (� which is enabled at #��� , include #(as the first
element of #< and skip to the next step. Otherwise, by
the choice of the initial marking #��� , there must exist
#(2 � #(3 �	�	�	� � #(� �) � , such that at least one #() � 0 � (� is en-
abled after firing #(2 #(3 �	�	� #(� . Include #(2 #(3 �	�	� #(� #(as the first� 2 � elements of #< .

2) Let (. be the transition that follows (in < . If there exists
a #(.)�� 0 � (. � which is enabled, include #(. in #< as the next
element and skip to the next step. Otherwise, there must
exist #(2 � #(3 �	�	�	� � #(� �)�� , such that at least one #(.)�� 0 � (. �
is enabled after firing #(2 #(3 �	�	� #(� . Include #(2 #(3 �	�	� #(� #(. as the
next � 2 � elements of #< .

3) If (. is the last transition in < stop. Otherwise, let (#" (.
and go back to step 2.

Then

i) #< is a valid firing sequence for #�65 starting from #� � , and

ii) if $ 0 > � � � � < � , then #$ 0 #> � #� � � #< � is such that�2!�"$#�% & !*) #$ � #'��@0 $ � '�� , 9;') � .

Condition (iv) of Definition 1 then follows. This proves the
desired result. � �
As shown in [2], by the expansion procedure employed, for
each (�) � , the corresponding #(�)�#� satisfies that �
 6!
.�0/10

&��1#
/6 #
.��2/ , where & is as chosen in the proof of Theorem 3.
Therefore, the following result follows from Theorems 1–3.

Corollary 1: The controller, which is obtained by contracting
(as described by (3)) the controller (2), enforces boundedness,
liveness, and reversibility in the OPN.

4 Example

Consider the Petri net shown in Figure 1, where all the arcs
have unity weights. The overlapping decomposition and
expansion of this net are respectively shown in Figures 2 and 3.
Note that, although the OPN (shown in Figure 1) is bounded, it
is neither live, nor reversible. By taking

� 2 � 0 � � � �(� � � � 0
and
� 3 �!0 � � �*� � � �1� 0 , each PSN, shown in Figure 3,

is also bounded, but neither is live or reversible. Each
PSN is, in fact 1-bounded, where

� � 0 � � � � � � � � 0 .
Therefore, we run the algorithms, presented in the Ap-
pendix, for each PSN by choosing � 0 �

and obtain

� 2 � $�� � #(�@0! � � #(0 (3� � (�) ?@� $ � � � � (3

for $ � 0 � � � � � �!�1� 0 , � 2 � $ � #(�@0�� ��9 #(@) ?@� $ � �%9 $#)
= "�� � � $ �
 where = "�� 0 = ��� 2 ��� 2 � � � � � �!� � � � � � 0
 ,

� 3 � $ � � #(�@0! � � #(0 (��� � (�) ?@� $ � � � � (��

for $ � 0 � � � � � � �1� 0 , and � 3 � $ � #(� 0 � � 9 #(+)?@� $ � �	9 $) = "	� � � $ �
 where = "	� 0 = ��� 3 ��� 3 � � �� � � �!� � �!�1� 0
 .
A controller for the EPN is now obtained using (2). A
controller for the OPN is in turn obtained by (3). This final
controller enforces #� -boundedness, liveness, and reversibility
in the OPN, where #� 0 � � �!� �!� �!� � �!� � � 0 .

5 Conclusion

We considered decentralized controller design for Petri nets
using overlapping decompositions to enforce boundedness,
liveness, and reversibility. Since deadlock does not occur in a
live Petri net [15], the controller designed using the proposed
approach also avoids deadlock. In the proposed approach, a
controller is first designed for each PSN. These controllers
are then combined to obtain a controller for the EPN, and the
controller for the EPN is contracted to obtain a controller for
the OPN. Since, as discussed in [2], each PSN is smaller than
the OPN, the number of states (reachable marking vectors)
of each PSN is, in general, much smaller than the number
of states of the OPN. For example, each decoupled PSN in
Figure 3 has 7 states, whereas the OPN, shown in Figure 1,
has 24 states. On noting that, the complexity of controller
design for a Petri net is proportional to the number of its
states, using the proposed approach, controller design may
be simplified considerably. For the example given in this
paper, for instance, the ratio of the complexity of the proposed
design approach, to the complexity of a centralized design is

�� ��
 0*� � ��� �
(in this example the two PSNs are identical, thus

the controller designed for one can also be used for the other
after a re-indexing of places and transitions). This ratio may
be much smaller for a more complex Petri net. There is, of
course, some overhead in the proposed approach for obtaining
a usefull decomposition and for combining and contracting
decentralized controllers. The ease of the actual design stage,
however, may heavily overweight this overhead. Another
advantage of the proposed approach is that, it results in an
overlappingly decentralized controller (where for controlling
a transition which belongs to the

� ��� PSN, one needs to
know only the number of tokens in places which belong to
the

� ��� PSN). One disadvantage of the proposed approach,
on the other hand, is that, it may produce a conservative
controller, unnecessarily disabling some transitions. However,
such a price must be paid in any decentralized design approach.

Appendix

Algorithm I: Main algorithm:

Main [� , �]�������
= Bounded-Set[� , �]

If
���������

Then
“can not design a controller”
Exit Main

End����� �
=Reversible-Set[� ,

���
]�

check
�!�

Consistent-Test[� ,
���

]
If check == "$#&%('*)+%,#.-0/$-+'213#4'65 Then

“can not design a controller”
Exit Main

Else
For / �87 to 9 ��� 9: �<;�=2> ���@? A$B

For C �87 to 9 : 9
) =2> ���.? A2D3> : ? EFBG� Fire-Control

> ���
,
> ���.? A

,
> : ? E3?

End
End

End

Algorithm II: Algorithm to determine the set of enabled transi-
tions:

subfunction
;�=IHJB: �<�

For / �87 to 9 KL9
For C �87 to 9 MN9

If
HO=2> M ? EFBP��QR=2> M ? E�D3> K ? AIB Then
Go To Break

End
End:8ST:�UWV > K ? A6X
Break: Continue

End
Return

:

Algorithm III: Algorithm to construct the � -bounded reachability
set:

Bounded-Set [� , �]
If ����� � Then

set
����� � V ��� X

Else
set
����� � �

Return
���

End
set
���	� � V ��� X

Do Loop Bounded��
� �<�
For / �87 to 9 ��� 9: �<;�=2> ���&? A$B

For C �87 to 9 : 9

�H �
�&=2> ���&? A2D3> : ? EFB
If
�H � ���
� S ��
� UWV �H X

End
End

End
If
��
��� ��� Then
Exit Loop Bounded

End��� �<��
�
��� S ��� U �
�

Loop Bounded
Return

���
Algorithm IV: Algorithm to construct the � -bounded reversible
set:

Reversible-Set[� , ���]
set
��
�� �<����� V ��� X

set � �	� � V ��� X
Do Loop Reversible� �<��

��� ��� ���
For / �87 to 9 � 9: �<;�=2> � ? AIB

For � �87 to 9 : 9�H �
�&=2> � ? A6D3> : ?��FB
If
�H � � � Then
� � S � � UWV > � ? A6X

��
 S ��
!� V > � ? A6X
��� ��� �87
Go To Break

End
End

Break: Continue
End
If
��� ��� �����

Then
Exit Loop Reversible

End
Loop Reversible
Return � �

Algorithm V: Algorithm to determine consistency:

Consistent-Test [� , ���]
data=“not consistent”: � K
For / �87 to 9 ��� 9" �<;�=2> ���@? A$B

For C �87 to 9 " 9
If
�&=2> ���@? A2D3> " ? E B#�W���

Then: S : � V > " ? E�X

If
: ���<�

Then
data=“consistent”
Go To Break

End
End

End
End
Break: Return data

Algorithm VI: Algorithm to determine the controller function:

Fire-Control [��� , H , ']
If
�&=IH<D ' B#�W��� Then
r=1

Else
r=0

End
Return r

Acknowledgement

This work was supported by Anadolu University through
Research Project 020222.

References

[1] A. Aybar and A. İftar. Decentralized control design for
interconnected discrete–event systems. In Preprints of the
9th IFAC Symposium on Large Scale Systems, pp. 415–
418, Bucharest, Romania, July 2001.

[2] A. Aybar and A. İftar. Overlapping decompositions and
expansions of Petri nets. IEEE Transactions on Automatic
Control, 47, pp. 511–515, (2002).

[3] A. Aybar and A. İftar. Controller design to enforce
boundedness, liveness, and reversibility in Petri nets. In
Preprints of the 7th IFAC Workshop on Intelligent Man-
ufacturing Systems, pp. 199–204, Budapest, Hungary,
April 2003.

[4] A. Aybar and A. İftar. Decentralized supervisory con-
troller design to avoid deadlock in Petri nets. Interna-
tional Journal of Control, (2003). (To appear).

[5] A. Giua and F. DiCesare. Blocking and controllability of
Petri nets in supervisory control. IEEE Transactions on
Automatic Control, 39, pp. 818–823, (1994).

[6] C. Haoxun. Net structure and control logic synthesis of
controlled Petri nets. IEEE Transactions on Automatic
Control, 43, pp. 1446–1450, (1998).

[7] L. E. Holloway and B. H. Krogh. Synthesis of feedback
control logic for a class of controlled Petri nets. IEEE
Transactions on Automatic Control, 35, pp. 514–523,
(1990).

[8] A. İftar and Ü. Özgüner. Decentralized LQG/LTR con-
troller design for interconnected systems. In Proceed-
ings of the American Control Conference, pp. 1682–1687,
Minneapolis, MN, June 1987.

[9] A. İftar and Ü. Özgüner. Overlapping decompositions,
expansions, contractions, and stability of hybrid systems.
IEEE Transactions on Automatic Control, 43, pp. 1040–
1055, (1998).

[10] M. Ikeda and D. D. Šiljak. Overlapping decompositions,
expansions, and contractions of dynamic systems. Large
Scale Systems, 1, pp. 29–38, (1980).

[11] M. Ikeda and D. D. Šiljak. Overlapping decentralized
control with input, state, and output inclusion. Con-
trol Theory and Advanced Technology, 2, pp. 155–172,
(1986).

[12] R. Kumar and L. E. Holloway. Supervisory control of
Petri net languages. In Proceedings of the IEEE Confer-
ence on Decision and Control, pp. 1190–1195, Tuscon,
AZ, December 1992.

[13] F. Lin and W. M. Wonham. Decentralized control and
coordination of discrete-event systems with partial obser-
vation. IEEE Transactions on Automatic Control, 35, pp.
1330–1337, (1990).

[14] J. Proth and X. Xie. Petri Nets: A Tool for Design and
Management of Manufacturing Systems. John Wiley &
Sons, West Sussex, 1996.

[15] R. S. Sreenivas. On the existence of supervisory policies
that enforce liveness in discrete-event dynamic systems
modelled by controlled Petri nets. IEEE Transactions on
Automatic Control, 42, pp. 928–945, (1997).

	Session Index
	Author Index

