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Abstract

In this paper, we consider a modification design of a class of 

Lyapunov-based robust controllers subject to bounded input. Our

modification shows benefits in enhancing the input utilization and in 

retaining the stability and the robustness of the original control. An

estimation of the stabilization region is proposed to explore region 

where the control is modified. It results in an estimate showing 

singularity. This estimate is utilized to determine the design 

parameter for the local, semiglobal and global stabilization.

1 Introduction

Controlling systems subject to bounded input is very common in 

practice. Disregards for the limitation quite often causes control 

saturation and damage in system components. Moreover, the 

performance deterioration and, for some cases, the closed-loop 

instability may be incurred. The problem of bounded input is related

to that of input saturation and bounded control. In literature, many 

strategies have been proposed to deal with this kind of problems

[1]-[13]. For input saturation, the approach of semiglobal 

stabilization is a notion which copes with a local stabilization within 

an arbitrary compact set in the state space [10]. However, this notion 

requires the system being null-controllable [12], or specifically being 

stabilizable and having all its eigenvalues in the closed left half-plane 

[10]. Therefore, if the system is not null-controllable, the 

stabilization subject to input constraint will be local. Under this 

circumstance, many researchers seek to estimate the stabilization

region and adjust the design parameter for enlarging the region (see 

[5], [11] and references therein). It is known that the more the

stability region is enlarged, the lower the design gain is needed. 

However, a lower design gain could incur a lower control magnitude 

and lead to less robustness and regulation performance, particularly 

in the neighborhood of the state origin. To avoid this drawback, the 

low-high gain design [10] and the ARE-based gain scheduling

[13],[1] are proposed to enhance the input utilization for a better

regulation and robustness. Basically, there are two approaches to 

dealing with the stabilization subject to bounded input. One is to 

consider the constraint at the beginning design stage, which yields 

several results of the semiglobal stabilization (see [5], [10], and 

references therein). The other is to neglect the constraint at the initial 

design stage and do some modification later on to satisfy the 

constraint. In this article, we adopt the latter approach and consider 

the modification of a class of Lyapunov-based robust controllers 

when the input needs to be bounded. We will demonstrate that the 

semiglobal stabilization can also be achieved using our approach. It 

is known that the Lyapunov-based robust control is related to the 

sliding mode control [14]. Therefore, it is adequate to consider the 

modification of this kind of control subject to bounded input. Given 

an original Lyapunov-based controller that neglects the input 

constraint, our modification comprises two stages: the first stage is to 

reshape the original control into a form of norm-bound that satisfies

the constraint and preserves the direction of the original control. The 

preservation is mainly to keep the same sign of the Lyapunov 

function derivative and thus tending to retain the stability already 



established. The second stage is to utilize some technique extended 

from [4] to enhance the input utilization. The stability and robustness 

developed in the first modification stage are enhanced as well. The 

design parameter is obtained from the sets of solution data that solve

both an algebraic Riccati equation (ARE) and an inequality derived 

from the estimation of stabilization region. This estimation explores 

the area where the control is modified and yields an estimate 

showing singularity. The design parameter is determined by this 

estimate for the local, semiglobal and global stabilization.

2 Problem formulations and system assumptions

2.1 Problem formulations

Consider the uncertain system 
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subject to the input constraint
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and the specified initial set nℜ⊂Ο . The constant matrices nnA ×ℜ∈ ,
mmB ×ℜ∈  are known. The uncertainty matrix nnA ×

+ ℜ→ℜ∆ :  and 

the nonlinear function nnBh ℜ→ℜ×ℜ+:  respectively describe the 

parametric deviation and the matching disturbance. Concerning the 

specified input constraint and the initial set, the goal of our control 

design is two-fold: one is the state regulation, that is to drive the 

system state from the specified initial set Ο  to the vicinity of the 

state origin 0=x , and the other is to utilize the input capacity as 

much as possible.

2.2 Notations and assumptions

For the input constraint (2), define a diagonal matrix 

{ }m
iiudiagU 1: == (3)

and two nonlinear vector functions, namely, the unit-ball saturation 

function
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Some assumptions for the system (1) are given as follows.

(A1) Structured uncertainty decomposition: There exist constant 

matrices D , E  and uncertainty matrices 
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independent of B  and
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where xtAB m )(
~  and ExtDF )(  respectively are referred to as 

the matching and mismatching uncertainties. 

(A2) Quadratic stabilization [9]: Given the D , E  in the 

assumption (A1) and A , B  of the system (1), there exists 

some 0>δ  such that the ARE 

0
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has a solution 0>′= XX .

(A3) In the neighborhood of the state origin 0=x , magnitude of the 

uncertainty ),()(
~

xthxtAm +  is less than that of the input 

capacity/constraint U . Specifically, there exist constants 

10 0 <≤ k  and 10 k≤  such that the ratio ( )),()(
~1

xthxtAU m +
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satisfies
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The assumption (A3) simply means that, under the matching 

disturbance ( ) ( , )
m

A t h t x+% , the state regulation to an arbitrarily 

small residual set containing 0=x  can be guaranteed.

3 The controller design
3.1 A robust control design that neglects input constraint

In general, if the input constraint is neglected, then there exist many 

strategies that can robustly stabilize the system (1). In this article, we 

consider the method of the Lyapunov-based control [6] by which the 

control can be designed as
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where 0>ε , 0>µ  and 0>′= PP  are the design parameters. 

Among them, the ε can be assigned freely, and the µ  and P are

taken from a set of solution data 



( 0,0 >≥ µα , 0>∆k , 0),,(),,( >′= ∆∆ kPkP µαµα ) that solves the 

following ARE
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The solvability of ARE (7) can be verified with the assumption (A2). 

For the system (1) under the control (6), a global regulation is 

achievable. Since manipulating the derivative of a Lyapunov function

candidate PxxxV ′=)(  yields the following global inequality
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which ensures the controlled system behaves globally exponential 

convergent with rate α~ to within
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where the residual set )(εΩ , sometimes referred to as the region of 

ultimate boundedness, can be set arbitrarily small by adjusting ε .

3.2 Fir st stage modification

When regarding the input constraint and the specified initial set, the 

control like (6) is theoretically inapplicable; because the control 

))(()( txpUtu u=  that starts with some initial states will possibly 

violate the constraint (2) at the initial time and/or during the transient. 

The following norm-type modification
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provides a way to reshape the original control (6) so that the violation 

of the input constraint is avoidable and in addition, direction of the 

original control can be preserved that in turn keeps the Lyapunov 

derivative as the same sign. When the modification (9) is applied, the 

rest of design work is to adjust the design parameter ),,,( Pk∆µα  of 

ARE (7) to ensure that the related stabilization region can contain the 

specified initial set Ο . A manipulation similar to [7] shows that the 

system (1) under the control (9) has an estimated stabilization region
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and has a region of ultimate boundedness same as (8). Therefore if 

additionally, the design parameter ),,,( Pk∆µα  can be selected to 

satisfy

( ) <′
Ο∈

PxxMax
x

),,( Pµαβ , (11)

or in other words the specified initial set Ο  can be verified being 

contained in the stabilization region ( , , )Pα µΘ , then the control (9) 

constructed with this admissible ),,,( Pk∆µα  can achieve the 

regulation and as well satisfy the constraint. It can be shown that if a 

lower ∆k and/or α  is chosen then a smaller eigenvalue 

max
( ( , , ))P kλ α µ

∆
as well as a larger stabilization region (10) can be 

obtained for solving (11). Two special cases below can be observed 

from the singularity of estimation (10): 

(1) Semiglobal stabilization: Suppose there is a sequence of sets of 

solution data )),,(,,,( ∆∆ kPk µαµα taking

( ) +→−′ 0~2
max µαλ PBUB . (12)

Then the right-hand side of (11) goes unbounded, thus for any 

assigned compact initial set Ο , there always exist sets of solution 

data )),,(,,,( ∆∆ kPk µαµα that solves (11). Thus, feature of the 

semiglobally practical stabilization can be concluded. It demonstrates 

in our numerical example that this property (12) is inherent in the null 

controllable system.

 (2) Global stabilization: Suppose there exists a set of solution data 

)),,(,,,( ∆∆ kPk µαµα  such that

( ) 0~2
max ≤−′ µαλ PBUB . (13)

Then similar to [7], it can be shown that the control (9) constructed 

with such a set of data can globally and practically stabilize the 

system (1). However this inequality (13) requires the matrix A to 

be Hurwitz. Finally, it is worth of noting that for the systems that are 

not null controllable, the trial for (11) will fail in general, provided the 

initial set Ο  is assigned arbitrarily [12].

3.3 Second stage modification

As previously mentioned, enlarging the stabilization region incurs a 

lower control magnitude and leads to a poorer regulation, particularly 

near the state origin. For dealing with such drawback, a second-stage 

modification that strengthens the first-stage modification (9) and, in 

the meanwhile, satisfies the constraint (2) is proposed as

+ℜ∈∀= ttxptu )),(()( ,
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where { }m

iihdiagH
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>= is a design gain matrix that can be set

arbitrary. There are two advantages in this advanced modification: 

namely, enhancing the input utilization and retaining the robustness 



and stability established in the first-stage modification. These two 

advantages will be explained in the later in this article. Theorem 

below, extended from [4], gives a foundation to view the properties 

inherent in the new control (14).

Theorem 1.  Suppose the functions mnf ℜ→ℜ: , mng ℜ→ℜ:  are 

continuous with 0)0( =f , 0)0( =g . Then for a given diagonal 

matrix { }m

iidiagL
1
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 such that 
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Proof. The proof is omitted for brevity. 

3.4 Proper ties inherent in the second stage modification

Based on Theorem 1, the modification (14) immediately can be 

rearranged as

( ) )()()()( xpxZUxpSUxp uuball += ( ) )()()( xpUxZxpSU uuball += , (15)

where { }nm
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 exists and is continuous.

From (15), the second-stage modification (14) can be viewed as the 

first-stage modification (9) plus the original control (6) weighted with 

)(xZ . From other aspect, since all the functions of (14) are 

continuous with 0)0( =up , 0)0()0( == boxball SS , thus near the state 

origin 0=x , the modification (14) can be approximated as

)()()( xpUHxpUxp uu += )(xpUH u≅ , if 0>>H .

That is to say, the modification (14) can also be viewed as the original 

control (6) weighted with a high gain H  if near 0=x . The 

properties of the modification (14) are presented as follows.

(P1) Enhancing the input utilization: To see this, observe that in (14), 

the gap between (.)ballS  and (.)boxS  is compensated with an

additional term )(xpH u . Through the operation (.)boxS , if the term 

)(xpH u is large enough then the modification control (14) will be 

forced to perform with a full utilization U . Figure 1 gives a 

two-dimensional illustration for the successive operations of (14). In 

Figure1, Γ , β  and γ  denote respectively the bound of input, the 

unit box, and the unit ball. Other vectors are denoted respectively as

)(: xpa u= , ))((: xpSb uball= , )(: xpHc u= , )())((: xHpxpSd uuball += , 

))())(((: xHpxpSSe uuballbox += , and )(: xpf = . By the successive 

operations fedba →→→→  we observe that the initial )(xpu

will finally reach to )(xp which is the second-stage modification

performing with a full utilization U . This feature can be achieved 

by simply choosing the matrix H  high enough.

(P2) Retaining the robustness and stability established by the 

first-stage modification:  To see this, take a set of solution data 

),,,( Pk∆µα  of the ARE (7) and choose a Lyapunov function 

candidate as PxxxV ′=)( . For the system (1) under the control (14), 

the derivative of )(xV  is given by
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Direct manipulation yields the following results:
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Thus, substituting from (17), (18), (15) and (7) into (16) gives
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Thus, by substituting (20) into (19), we finally arrive at
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Figure 1. An illustration for the successive operations of (14)
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Let us investigate the estimated Lyapunov derivative in (21). Since 

)(
~

xW  and )(xW  can be viewed as the estimates of derivative 

)(xV&  respectively under the modification controls (14) and (9), and 

also from (21) we have 0)( <xW ⇒ 0)(
~

<xW , therefore we can 

conclude that if Θ  is a Lyapunov stability region established by 

first-stage modification (9) then certainly, it is a Lyapunov stability 

region established by the second-stage modification (14). We also 

conclude that property (P2) is true.

Theorem below summaries our main results in this paper.

Theorem 2. Consider the system (1) under the bounded control (14) 

with a solution data ( 0,0 >≥ µα , 0>∆k , 0>′= PP ) of the ARE (7) to 

be chosen. And also consider the residual set )(εΩ  in (8) that can be 

set arbitrarily small by adjusting ε . Then, for the specified initial set 

Ο , the controlled system is:

(i) Globally and practically stable to within )(εΩ : if there exists a set 

of solution data that satisfies (13) and is chosen to construct the 

control (14).

(ii) Semi-globally and practically stable to within )(εΩ : if there 

exists a sequence of sets of solution data that satisfies (12) and a 

set satisfying (11) is chosen to construct the control (14).

(iii) (Locally and) practically stable to within )(εΩ : if there exists a

set of solution data that satisfies (11) and is chosen to construct the 

control (14).

3.5 Example: (The semi-global stabilization)

Consider a linearied satellite in orbit [2] subject to the specified 

bounded input 15)(1 ≤tu , 20)(2 ≤tu
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with 1=ω , where states ρ=1x , ρ&=2x , θ=3x , and θ&=4x  are 

the polar coordinates. The initial state and the disturbances are

assumed to be [ ]0015150 =′x , )4sin()(1 tth π=  and 

)4cos(5.01)(2 tth π+=  respectively. Verification shows that the system 

is null controllable with eigenvalues { }( ) 0, 0, ,A j jλ = − . Direct 

manipulation gives (15, 20)U diag= , 0=D , 0=E , 1003.00 =k ,

01 =k . Let us choose 50,0 == µα  and let ∆k be a variable to find 

the associated solution P that solves both the ARE (7) and (11). 

Figure 2 depicts the curves of the two sides of (11) and as well the 

singularity of (12) as 0→∆k . In accordance, we pick 4498.0=ε , 

)5,80(diagH = , and, in ARE (7), 0=α , 50=µ , 5101.0 −
∆ ×=k ,
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P

as the admissible parameters to construct the control (14). Figure 3

and Figure 4 demonstrate the history of the bounded control and the 

state. For a satellite escaping away from its normal orbit, the controls 

1u  and 2u respectively try to pull the satellite back and slow down 

the angular speed. Both use the full capacity during the transient time. 

Also notice that the control 1u still employs its full capacity even 

when it switches to push the satellite back to the orbit.

4 Conclusions
In this article, we present a modification of a class of Lyapunov-based 

controller subject to bounded input. This modification comprises two 

stages. The first stage is to reshape the original control for preserving

the original control direction and satisfying the constraint. The second 

stage is to use a structure to enhance the input utilization and 

retaining the stability and robustness of the control developed in the 

first stage. An estimation of stability region is also proposed that

suggests the conditions for local, semiglobal and global stabilization.
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