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Abstract

Repetitive processes are a distinct class of 2D systems of
both systems theoretic and applications interest. They cannot
be controlled by direct extension of existing techniques from
either standard or 2D systems theory. Here we give new results
on the design of physically based feedback control laws. These
results relate to design for performance and are illustrated on
data for a model which arises in the modelling of a physical
process.

1 Introduction

Linear repetitive processes are a distinct class of 2D systems of
both system theoretic and applications interest. The essential
unique characteristic of such a process is a series of sweeps,
termed passes, through a set of dynamics defined over a fixed
finite duration known as the pass length. On each pass an out-
put, termed the pass profile, is produced which acts as a forcing
function on, and hence contributes to, the dynamics of the new
pass profile. This, in turn, leads to the unique control problem
for these processes in that the output sequence of pass profiles
generated can contain oscillations that increase in amplitude in
the pass-to-pass direction.

To introduce a formal definition, let α < +∞ denote the pass
length (assumed constant). Then in a repetitive process the pass
profile yk(p), 0 ≤ p ≤ α, generated on pass k acts as a for-
cing function on, and hence contributes to, the dynamics of the
new pass profile yk+1(p), 0 ≤ p < α, k ≥ 0. The fact that
the pass length is finite (and hence information propagation in
this direction only occurs over a finite duration) is the key dif-
ference with other classes of 2D linear systems, such as those
with discrete dynamics described by well known and extensi-
vely studied state space models such as that due to Roesser [5].

Physical examples of repetitive processes include long-wall
coal cutting and metal rolling operations (see, for example,
[2]). Also in recent years applications have arisen where ad-
opting a repetitive process setting for analysis has distinct ad-
vantages over alternatives. Examples of these so-called algo-
rithmic applications of repetitive processes include classes of
iterative learning control (ILC) schemes [1] and iterative algo-

rithms for solving nonlinear dynamic optimal control problems
based on the maximum principle [4]. Attempts to control these
processes using standard (or 1D) systems theory/algorithms
fail (except in a few very restrictive special cases) precisely
because such an approach ignores their inherent 2D systems
structure. In particular, such an approach ignores the fact that
information propagation occurs from pass-to-pass and along a
given pass, and that the pass initial conditions are reset before
the start of each new pass.

A rigorous stability theory for linear repetitive processes has
been developed. This theory [6] is based on an abstract model
in a Banach space setting which includes all such processes
as special cases. Also the results of applying this theory to a
wide range of special cases have been reported, including the
one considered here. This has resulted in stability tests that
can be implemented by direct application of well known 1D
linear systems tests. In the case of ILC for the linear dynamics
case, the stability theory for so-called differential and discrete
linear repetitive processes is the essential basis for a rigorous
stability/convergence analysis of such algorithms.

One unique feature of repetitive processes is that it is possible
define physically meaningful control laws. For example, in the
ILC application, one such family of control laws is composed
of (state or output based) feedback control action on the cur-
rent pass combined with information ‘feedforward’ from the
previous pass (or trial in the ILC context) which, of course,
has already been generated and is therefore available for use.
Also it is already known that an LMI setting can be used to
design such control laws for stability along the pass of diffe-
rential and discrete linear repetitive processes under the action
of such control laws. (In the case of discrete processes see, for
example, [3]).

In this paper, we continue the development of this family of
control laws for discrete processes by considering design for
stability and performance closed loop. The next section gives
the required background material, including the model of the
material rolling process example used to illustrate the control-
ler design algorithms developed.



2 Background

Following [6] the state-space model of a discrete linear repeti-
tive process has the following form over 0 ≤ p ≤ α, k ≥ 0

xk+1(p + 1) = Axk+1(p) + Buk+1(p) + B0yk(p)

yk+1(p) = Cxk+1(p) + Duk+1(p) + D0yp(p) (1)

Here on pass k, xk(p) is the n × 1 state vector, yk(p) is the
m× 1 pass profile vector, and uk(p) is the l × 1 vector of con-
trol inputs. To complete the process description, it is necessary
to specify the ‘initial conditions’ — termed the boundary con-
ditions here, i.e. the state initial vector on each pass and the
initial pass profile. The simplest possible form for these is

xk+1(0) =dk+1, k ≥ 0

y0(p) =f0(p)
(2)

where the n × 1 vector dk+1 has known constant entries and
the entries in the m× 1 vector f0(p) are known functions of p.
Next we introduce the example which we use in this paper to
illustrate our new controller design results.

Material rolling is an extremely common industrial process
where, in essence, deformation of the workpiece takes place
between two rolls with parallel axes revolving in opposite di-
rections. Figure 1 is a schematic diagram of the process where
one approach is to pass the stock (i.e. the material to be rolled
to a pre-specified thickness (also termed the gauge or shape))
through a series of rolls for successive reductions which can be
‘costly’ in terms of the equipment required. A more economic
route is to use a single two high stand, where this process is
often termed ‘clogging’.
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Figure 1: Material Rolling Process

In practice, a number of models of this process can be develo-
ped based on the assumptions made concerning the dynamics
describing the particular mode (or modes) of operation under
consideration. Here, however, it will suffice to develop a line-

arised model of the dynamics of the (idealised) case shown in
Figure 1.

The particular task considered is the development of a simpli-
fied (but practically feasible) model relating the gauge on the
current and previous passes through the rolls. These are deno-
ted here by yk+1(t) and yk(t) respectively and the other pro-
cess variables and physical constants are defined as follows:
FM is the force developed by the motor;
Fs is the force developed by the spring;
M is the lumped mass of the roll-gap adjusting mechanism;
λ1 is the stiffness of the adjustment mechanism spring;
λ2 is the hardness of the metal strip;
λ = λ1λ2

λ1+λ2

is the composite stiffness of the metal strip and the
roll mechanism.

To model the basic process dynamics, refer again to Figure 1
and following [7] first note that the force developed by the mo-
tor is

FM = Fs + Mÿ(t) (3)

and the force developed by the spring is given by

Fs = λ1[y(t) + yk+1(t)] (4)

This last force is also applied to the metal strip by the rolls and
hence

Fs = λ2[yk(t) − yk+1(t)] (5)

Hence the following linear differential equation models the re-
lationship between yk+1(t) and yk(t) under the above assump-
tions

ÿk+1(t)+
λ

M
yk+1(t) =

λ

λ1

ÿk(t)+
λ

M
yk(t)−

λ

Mλ2

FM (6)

Suppose now that differentiation in (6) is approximated by bac-
kward difference with sampling period T. Then the resulting
difference-domain approximation is

yk+1(t) =a1yk+1(t − T ) + a2yk+1(t − 2T ) + a3yk(t)

+ a4yk(t − T ) + a5yk(t − 2T ) + bFM

(7)

where

a1 =
2M

λT 2 + M
, a2 =

−M

λ2T + M
, a3 =

λ

λT 2+M

(
T 2+

M

λ1

)

a4 =
−2λM

λ1(λT 2+M)
, a5 =

λM

λ1(λT 2+M)
, b=

−λT 2

λ2(λT 2+M)

Now set t = pT and yk+1(p) = yk+1(pT ). Then (7) can be
written as

xk+1(p + 1) = Axk+1(p) + Buk+1(p) + B0yk(p)

yk+1(p) = Cxk+1(p) + Duk+1(p) + D0yk(p)

where

xk+1(p) =
[

yk+1(p − 1) yk+1(p − 2) . . .

. . . yk(p − 1) yk(p − 2)
]T

, uk+1(p) = FM



A =




a1 a2 a4 a5

1 0 0 0
0 0 0 0
0 0 1 0


 , B =




b

0
0
0


 , B0 =




a3

0
1
0


 ,

C =
[

a1 a2 a4 a5

]
, D = b, D0 = a3

This last state space model is clearly a special case of (1) and
in this paper we use the numerical data λ1 = 600, λ2 = 2000,
M = 100 and T = 0.1. This yields λ = 461.54 and

A =




1.9118 −0.0047 −1.4706 0.7353
1 0 0 0
0 0 0 0
0 0 1 0


 ,

B =




−2.2059 × 10−5

0
0
0


 B0 =




0.7794
0
1
0


 ,

C =
[

1.9118 −0.0047 −1.4706 0.7353
]

D =
[

2.2059 × 10−5
]
, D0 =

[
0.7794

]

(8)

The stability theory [6] for constant pass length linear repeti-
tive processes is based on an abstract model in a Banach space
setting which includes all such processes as special cases and
consists of two distinct concepts termed asymptotic stability
and stability along the pass respectively. In effect, asymp-
totic stability demands that, for admissible inputs, the output
sequence of pass profiles converge strongly as k → ∞ to a
so-called limit profile which for the processes considered here
is described by a 1D discrete linear systems state space mo-
del. This stability definition is of the bounded-input bounded-
output type (over the finite and fixed pass length where a bo-
unded signal is defined in terms of the norm on the underlying
function space) and the necessary and sufficient condition for
it to hold is r(D0) < 1, where r(·) denotes the spectral ra-
dius. Moreover, the state matrix in this limit profile state space
model is (setting D = 0 in (1) incurs no loss of generality)
Alp := A+B0(Im −D0)

−1C, and it is possible that an exam-
ple can be asymptotically stable but have a limit profile which
is ‘unstable along the pass’, i.e. r(Alp) ≥ 1.

This undesirable property is due to the finite pass length and
stability along the pass prevents it from happening by, in effect,
demanding that the bounded-input bounded-output property
holds uniformly, i.e. independent of the pass length. Asympto-
tic stability is a necessary condition for stability along the pass
and several sets of conditions for this latter property are known.
Here, however, we use a sufficient condition expressed in LMI
terms as summarised next.

Define the following matrices from the state space model (1)

Â1 =

[
A B0

0 0

]
, Â2 =

[
0 0
C D0

]
(9)

Then we have the following sufficient condition for stability
along the pass of processes described by (1) (see, for example,
[3]).

Theorem 1 A discrete linear repetitive processes described by
(1) is stable along the pass if ∃ matrices P = P T > 0 and
Q = QT > 0 satisfying the following LMI

[
ÂT

1 PÂ1 + Q − P ÂT
1 PÂ2

ÂT
2 PÂ1 ÂT

2 PÂ2 − Q

]
< 0 (10)

Even though this condition is sufficient but necessary, previous
work has concluded that this is offset by the fact that it imme-
diately leads, see the next section, to a systematic and easily
implemented method for designing a powerful class of control
laws for stability along the pass under control action. More-
over, the new results in this paper show that this design setting
can also be extended in a straightforward way to deal with con-
trol law design for stability coupled with well defined perfor-
mance requirements.

3 LMI based Controller Design for Stability

The design of control laws for 2D discrete linear systems de-
scribed by, for example the Roesser [5] state space model has
received very considerable attention in the literature over the
years. A valid criticism of such work, however, is that the struc-
ture of the control laws used is not well founded physically due
to the fact that, for example, the concept of a state of these
systems is not uniquely defined. For example, it is possible to
define a state feedback law based on the local or global state
vectors. Also in the absence of generalizations of well defined
and understood 1D concepts, e. g. the pole assignment pro-
blem and error actuated output feedback control action, it has
not been really possible to formulate a control design problem
beyond that of obtaining conditions for stabilization under the
control action.

The first difficulty above does not arise with linear repetitive
processes. For example, it is physically meaningful to define
the current pass error as the difference, at each point along
the pass, between a specified reference trajectory for that pass
(which in most cases will be the same on each pass) and the
actual pass profile produced. Then one can define a so-called
current pass error actuated controller which uses the genera-
ted error vector to construct the current pass control input vec-
tor. In which context, preliminary work (see, for example, [2])
has shown that, except in a few very restrictive special cases,
the controller used must be actuated by a combination of cur-
rent pass information and ‘feedforward’ information from the
previous pass to guarantee even stability along the pass closed
loop. (Note that in the ILC application area the previous trial
output vector is an obvious signal to use as feedforward action.)

As the first attempt at removing the second difficulty outlined
above, previous work (see, for example, [3]) has considered a



control law of the following form over 0 ≤ p ≤ α, k ≥ 0

uk+1(p) = K1xk+1(p) + K2yk(p) := K

[
xk+1(p)
yk(p)

]
(11)

where K1 and K2 are appropriately dimensioned matrices to
be designed. In effect, this control law uses feedback of the
current pass state vector (which is assumed to be available for
use here) and ‘feedforward’ of the previous pass profile vector.
(Note that in repetitive processes the term feedforward is used
to describe the case where (state or pass profile) information
from the previous pass (or passes) is used as (part of) the input
to a control law applied on the current pass, i.e. to information
which is propagated in the pass-to-pass (k) direction.)

This control law has clear physical meaning for practical appli-
cations of discrete linear repetitive processes and the following
result uses the LMI setting to give a controller design algorithm
which can be easily implemented.

Theorem 2 [3] Suppose that a discrete linear repetitive pro-
cess of the form described by (1) is subjected to a control law
of the form (11). Then the closed loop system is stable along
the pass if there exists matrices Y = Y T > 0, Z = ZT > 0,
and N such that the following LMI holds




Z − Y 0 Y ÂT
1 + NT B̂T

1

0 −Z Y ÂT
2 + NT B̂T

2

Â1Y + B̂1N Â2Y + B̂2N −Y


 < 0,

(12)
where

B̂1 =

[
B

0

]
, B̂2 =

[
0
D

]
(13)

If (12) holds, then a stabilizing K in the control law (11) is
given by

K = NY −1 (14)

4 Model Matching Based Design

The controller design procedure outlined in the previous sec-
tion guarantees closed loop stability along the pass but not re-
sulting closed loop performance. In this and the next section
we give new results which address the currently open question
of how to design a control law for discrete linear repetitive pro-
cesses for both closed loop stability along the pass and perfor-
mance.

Model following control is a long standing technique in stan-
dard (or 1D) systems theory and there has also been some work
on this problem for 2D discrete linear systems described by the
Roesser and Fornasini Marchesini state space models, see, for
example, [7]. Below, we give some new results which provide a
possible starting point for the development of a ‘mature’ model
following control theory for discrete linear repetitive processes.

First note that the state space quadruple {A,B0, C,D0} descri-
bes the contribution of the previous pass profile to the current

one. Also under the action of the control law (11) this quadru-
ple is ‘mapped’ as follows

[
A B0

C D0

]
→

[
A + BK1 B0 + BK2

C + DK1 D0 + DK2

]

Suppose also that we want to assign the closed loop matrices
here to {A, B0, C, D0}, where these matrices are selected to
give a state space model whose behavior the controlled process
is required to follow (in terms of the contribution of the pre-
vious pass profile to the current one). Then the following result
is relevant.

Theorem 3 Suppose that a discrete linear repetitive process
of the form described by (1) is subjected to a control law of
the form (11). Then the resulting closed loop process is stable
along the pass and reaches the required form {A, B0, C, D0}
if ∃ matrices P = P T > 0 and Q = QT > 0 such that




Z − Y 0 Y ÃT
1 + NT B̂T

1

0 −Z Y ÃT
2 + NT B̂T

2

Ã1Y + B̂1N Ã2Y + B̂2N −Y


 < 0

(15)
where

Ã1 =

[
A −A B0 − B0

0 0

]
, Ã2 =

[
0 0

C − C D0 −D0

]

and the other matrices are the same as before. If this last con-
dition holds, the required control law matrices K1 and K2 are
computed using (14).

Proof First note again that if the LMI (12) holds then the con-
trol law matrix K = [K1 K2] is given by (14). Also it is a
standard fact that it is possible to obtain from the LMI solver a
matrix K such that

[
A −A B0 − B0

C − C D0 −D0

]
+

[
B

D

]
[K1 K2] = 0 (16)

holds. In which case, the closed loop system matrices are such
that
[

Ã B̃0

C̃ D̃0

]
:=

[
A + BK1 B0 + BK2

C + DK1 D0 + DK2

]
=

[
A B0

C D0

]

(17)
which completes the proof.

It is essential to note here that it is impossible to obtain an ar-
bitrarily specified set {A, B0, C, D0} starting from a given set
{A, B0, C, D0}. However, conditions under which (16) has
a solution can be characterized easily using, for example, Cra-
mer’s rule for linear vector equations and the matrix Kronecker
matrix product. This is clearly an area for further research and
in the remainder of this paper another approach to control law
design for stability along the pass and desired performance is
developed.



5 Design for Performance

In common with 1D linear systems, a natural approach to the
control of repetitive processes is to specify a reference signal
as desired performance on each pass and then attempt to use
a control law to achieve this goal. Here we consider first the
case when the term K3rk+1(p), 0 ≤ p ≤ α − 1 is added
to the control law where rk+1(p) is an m × 1 column vector
representing desired behavior on pass k + 1, k ≥ 0, and K3 is
an r × m controller matrix to be selected. This results in the
closed loop process state space model

xk+1(p + 1) = Axk+1(p) + BK3rk+1(p) + B0yk(p)

yk+1(p) = Cxk+1(p) + DK3rk+1(p) + D0yk(p)
(18)

Obvious questions which now arise are: (i) what is a suitable
choice for rk+1(p)?; and (ii) how can we design the control law
to give stability along the pass plus ‘acceptable’ (in an appro-
priate sense) performance?

To illustrate what can be achieved here, we focus on the single-
input single-output case and use the material rolling problem
data given earlier in this paper. In this application, an appro-
priate choice for the current pass reference signal is rk+1(p) =
−1, 0 ≤ p ≤ α − 1, k ≥ 0, i.e the objective is to reduce
the material thickness by one unit which is modeled by a do-
wnward unit step applied at p = 0 on each pass. (Since the
process is linear, any target reduction by a constant amount can
be studied by simple scaling of the output pass profiles to a unit
step demand.)

One possible way of designing the control law is to note that
K3 does not influence stability along the pass. Hence we can
execute the LMI design of Section 3 to obtain control law ma-
trices K1 and K2 which ensure closed loop stability along the
pass and then attempt to select a suitable K3 to meet the per-
formance requirements by ‘tuning’ the response of the resulting
closed loop process model. In the case of the given numerical
data, it is easily checked that this model is unstable along the
pass and the stabilization procedure of Theorem 3 provides the
control law matrices K1 and K2 as

K1 =
[

83203.2 4226.3129 −67555.2 29928.8
]
,

K2 =
[
−2882.67

]

(19)

and in the resulting stable along the pass closed loop process
(see (17))

[
A B0

C D0

]
=




0.0764 −0.0979 0.0196 0.0751 0.8430

1.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 1.0

0.0 0.0 1.0 0.0 0.0

0.0764 −0.0979 0.0196 0.0751 0.8430




(20)

Figure 2 shows the sequence of pass profiles and the tracking
error on each pass for the case when K3 = −3765.8 where
this value was arrived at by repeated numerical experimenta-
tion with the objective of obtaining the smallest error between
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rk+1(p) and yk(p) anywhere in the domain of operation. This
is an acceptable design, especially as it does not contain any
oscillations in the transients along any pass (not a desirable fe-
ature in material rolling). The empirical nature of the above
approach, however, means that it is clearly not feasible in the
general case. Next we develop a systematic method for the
task under consideration and again illustrate it on the material
rolling problem data.

This new approach is based on a (simple structure) re-
formulation of the problem, starting from the fact that the con-
trol task here is to drive the process pass profiles to some pre-
scribed reference signal yref (p) (which in the material rolling
case) is a constant positive thickness after the rolling opera-
tion is complete, i.e. yref (p) ≡ yref , 0 ≤ p ≤ α − 1. It is
an immediate consequence (see Section 2 in this paper) of the
stability theory that if asymptotic stability holds then the pass
profile sequence converges to a steady, or so-called limit, pro-
file described for discrete linear repetitive processes by a 1D
linear systems state space model. Here what we are aiming to
do is to specify this limit profile as yref .

To solve this last problem introduce a new, modified output
vector variable termed the incremental pass profile vector as

χk(p) := yk(p) − yref (21)

Then it is clear that the design requirement here requires that

χk(p) → 0, 0 ≤ p ≤ α − 1, k → ∞ (22)

Now replace the process state space model (1) by the following



one obtained from it by substitution using (21)

xk+1(p + 1) = Axk+1(p) + Buk+1(p) + B0χk(p)

χk+1(p) = Cxk+1(p) + Duk+1(p) + D0χk(p)
(23)

and apply to it the following control law (which is clearly of
the form (14), i.e. current pass state feedback augmented in
this case by feedforward of the difference between yk(p) and
yref )

uk+1(p) = K1xk+1(p) + K2χk(p)

= K1xk+1(p) + K2(yk(p) − yref ) (24)

Also choose this control law to transform the process of (23)
into the form of those for which Theorem 3 holds, i.e. {A, B0,
C, D0}. Then it follows immediately that this resulting closed
loop model must be stable along the pass and also (22) holds.
Moreover,

xk(p) → 0, 0 ≤ p ≤ α − 1, k → ∞ (25)

which is a natural, and most frequently obtained, result when
using the LMI based approach to controller design. Also, no
oscillations can occur in the resulting pass profiles (which is
clearly a required feature in the specific material rolling exam-
ple considered here).

Given this designed feedback law and converting back to the
original pass profile vector yk(p) we obtain the resulting closed
loop state space model

xk+1(p + 1) =Axk+1(p) + B0(yk(p) − yref )

yk+1(p) =Cxk+1(p) + D0yk(p) + (I −D0)yref

(26)

which is stable along the pass and whose limit pass profile, due
to (22) and (25), is clearly equal to yref , i.e. the control design
task has been exactly achieved.

To illustrate this approach, return to the open loop model data
here and execute this design for yref (p) = −1, 0 ≤ p ≤
α − 1, k ≥ 0. This produces the simulation results of Figure 3
for the resulting closed loop process in the case of zero boun-
dary conditions and these confirm that the design objective has
indeed been achieved.

6 Conclusions

Previous work has shown that an LMI setting an be used to
design control laws to ensure closed loop stability along the
pass of discrete linear repetitive processes. These control laws
are based on an additive combination of current pass state feed-
back and feedforward action based on the previous pass profile.
This paper has developed, and illustrated using of a physical
example, new results which show that this LMI setting can be
extended/augmented to enable the design of a class of physi-
cally based control laws for these processes which also meet
specified performance objectives. Detailed investigation (and
extension) of these results is currently under way and results
from this work will be reported in due course.
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