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Abstract

In this work a computer based environment for symbolic cal-
culation applied to nonlinearL2 control is described. A very
practical design and analysis methodology for nonlinearH∞
control is presented. Starting from a model of the plant in affine
form, and a state feedback controller (or state estimated feed-
back controller), a design procedure is established using non-
linearL2 control theory. Functionshz(x), kuz(x) and parame-
terγ are used as design parameters. Due to the fact that exhaus-
tive symbolic computation is necessary in nonlinearL2 control,
the Maple program has been used. The application is also based
on Matlab and Simulink in order to implement functions from
Control Toolboxes and simulation facilities. An additional ad-
vantage of the control theory used and the design procedure
implemented in this work is that it can be applied to scalar and
multivariable nonlinear systems. The design methodology and
the software environment are tested by means of the simula-
tions studies carried out with SISO, MISO, SIMO and MIMO
systems.

1 Introduction

Design methods based on complex control technologies re-
quire, in general, high computation charge, which hinders
control engineering training and use of those techniques in
practice. For nonlinear control methods, such usL2 or H∞
control, symbolic computation tools are advisable (van der
Schaft, 1996), (J.W. Helton, 1999). If linear theory is cho-
sen, controller design is made using a linearized mathematical
model of the plant for a given operation conditions, and con-
ventional numerical calculation methods are sufficient. In case
of nonlinearH∞ control theory a linear approximation is not
needed, and a nonlinear mathematical model of the system can
be directly employed if this model satisfies some restrictions;
for which suitable mathematical transformations are previously
applied. For practical application, it is convenient that once the
plant model is obtained in suitable form, a systematic proce-
dure must be implemented for designer so that he can focus
his attention in the engineering problem and not in mathemat-
ics. This has been our main motivation in this work. Some
of the nonlinear control techniques that we have analyzed to
get a general perspective have been: Passivity-based approach
(R. Ortega, 1998), feedback linearization (Khalil, 1996), back-

stepping control (M. Krstic, 1995); and nonlinearH∞ control
(van der Schaft, 1996), (J.W. Helton, 1999). In this paper we
describe a method to apply nonlinearH∞ control theory and
to obtain a robust nonlinear regulator for SISO and MIMO
plants. Our design methodology and software (implemented
using Maple and Matlab) are combined in a practical environ-
ment for the designer, which has a computer aided control sys-
tem design (CACSD) package for nonlinear control systems
analysis and controllers synthesis based onL2 theory.

The paper is structured as follows: in paragraph two the nonlin-
earH∞ control problem is described and the design methodol-
ogy is presented, in paragraph three the main functions of the
software environment are described, fourth paragraph presents
application examples and simulations results for SISO, SIMO,
MISO and MIMO systems; and finally conclusions are sum-
marized.

2 Nonlinear H∞ Control

In this section basic theory of non-linearL2 state feedback con-
troller is introduced (van der Schaft, 1992); (van der Schaft,
1996); (J.W. Helton, 1999).

We consider the mathematical model (Σ) of the ship to con-
trol and design specifications can be expressed in the following
form, which is affine inw andu:

ẋ = f(x) + gw(x)w + gu(x)u
z = hz(x) + kuz(x)u
y = hy(x) + kwy(x)w + kuy(x)u

The first equation describes a plant with statex, with control
input u, and subject to exogenous inputsw. The second equa-
tion defines performance vectorz, which may include tracking
error component. The third equation defines measured output
y. These equations define ainput-affine system.

TheL2-norm of a signalf(t) is defined as

||f ||22 =
∫ ∞

0

||f(t)||2dt

where||.|| on the right hand side denotes the Euclidean norm
of a vector. The systemΣ hasL2-gain≤ γ, for γ ≥ 0 if

||z||2 ≤ γ||w||2

for all w ∈ L2, wherew ||w||2 < ∞.



The goals of nonlinearH∞ control are: 1) To achieve closed-
loop asymptotic stability, 2) to yield theL2 gain from exoge-
nous inputsw to penalty variablez for the closed loop system
less than some prescribedγ ≥ 0.

Nonlinear State FeedbackH∞ Control

TheH∞ suboptimal control problem is simplified significantly
if all states in the input affine system

∑
are available. If as-

sumption A1) holds the system is modelled by

ẋ = f(x) + gw(x)w + gu(x)u (1)

z = hz(x) + kuz(x) (2)

Restricting the feedback to be a static state feedback

u = αx(x), αx(x0) = 0
the problem is referred to as thestate-feedback suboptimalH∞
control problem. The solution of this problem is closely related
to the existence of a solution to a first order partial differential
equation, which is called aHamiltom-Jacobi equation(HJE)

Vx(x)f(x) +
1

2
Vx(x)m(x)V T

x (x) +
1

2
hT

z (x)hz(x) = 0

where m(x) =

[
1

γ2 gw(x)gT
w(x)− gu(x)gT

u (x)

]
, Vx ≡ ∂V/∂x.

If exists a solutionV ≥ 0, V (x0) = 0 to the HJE, then the
closed-loop system for the feedback

u = l(x) = −gT
u (x)V T

x (x)

has L2-gain from w to z less than or equal toγ. It can
be demonstrated that this happens too ifV is a solution to
the Hamilton-Jacobi inequality (HJE where ”=” is changed to
”≤”).

In general it is impossible to find exact solutions to nonlin-
ear partial differential equations, making some approximation
scheme necessary. Different methods have been proposed in
the literature to obtain approximate solutions of the HJE (Hel-
ton and James, 1999; van der Schaft, 1992), such as power
series, successive approximations metod, use of Poisson se-
ries, using viscosity solutions to partial derivative equations,
and nonlinear matrix inequalities. In this paper the prob-
lem is treated using power series expansions (van der Schaft,
1992, 1996; (Moller-Pedersen and Petersen, 1995). The de-
sign methodology has been implemented in a Matlab/Maple
toolbox forH∞ nonlinear control. Maple is used to solve the
Hamilton-Jacobi equation, to obtain the linearized plant and
to obtain the suboptimal control law. Matlab is used to solve
Riccati algebraic equation, to improve numerical conditioning
of the control system matrices and to carry out simulations in
a realistic environment. Interface between Matlab and Maple
is made by means of data files. The general design procedure
consists of the following steps:

Step 1. Affine system structure (??, ??, ??) is obtained from
the system mathematical model.

Step 2. The generalized plant is linearized for an equilibrium
point,x0, and the following linear representation is obtained

ẋ = Fx + Gww + Guu

Σlin : z = Hzx + Kwzw + Kuzu

y = Hyx + Kwyw + Kuyu

Step 3.A polynomic approximation of the HJE is obtained for
the linearized system
1
2
VxFx + 1

2
xT F T V T

x + 1
2
Vx

[
1

γ2 GwGT
w −GuGT

u

]
V T

x +

+ 1
2
xT HT

z Hzx ≤ 0 if V (x) = 1
2xT X∞x, the HJE

is transformed into xT Nx ≤ 0, where N =(
X∞F + F T X∞ + X∞

[
1

γ2 GwGT
w −GuGT

u

]
X∞ + HT

z Hz

)
this corresponds to Riccati algebraic equation (ARE), which is
solved with Matlab using the Hamiltonian matrix[

F 1
γ2 GwGT

w −GuGT
u

−HT
z Hz −F T

]
Step 4.X∞ is substituted in

V (x) =
1
2
xT X∞x

and this is the second order polynomic approximation of the
HJE.

Step 5.With thisV (x), the following control law is obtained

αu(x) = −gT
u (x)V T

x (x)

Step 6. For obtaining nonlinear control laws, higher order ap-
proximations are calculated (van der Schaft, 1992).

Step 7.The nonlinear state feedback is obtained

αu(x) = −gT
u (x)V T

x (x)

3 Software environment

The software environment developed for nonlinearH∞ con-
trol is based on Maple and Matlab. The basics elements and
functions to carry out are:

1) Generation and manipulation of affine systems (affine form).
This is composed by the following functions:

• Conversion to affine form.

• Structure for nonlinear affine plants.

• Linearization module.

• Structure for linear affine plants.

• Conversion to state space form.

• Conversion to transfer function.

• Affine representation of the nonlinear closed loop system.

2) Modelling functions. The following functions are consid-
ered:

• Affine models for actuators.

• Affine models for sensors.



• Affine models for noises and disturbances.

• Affine representation of design specifications (penalty or
weighting functions).

3) Functions concerned withL2 control problem

• Tests for DGKF (Doyle-Glover-Khargonekar-Francis) re-
strictions.

• Riccati equation (ARE) tests and solution.

• Set out the Hamilton-Jacobi Equation (HJE).

• Obtain an approximate solution of HJE (for ordern).

• Calculate the feedback state nonlinear control law.

• Calculate the nonlinear observer.

• Obtain affine form of the nonlinear controller.

4) Controller robustness and performance analysis. In this
module the following functions are implemented:

• Previous analysis of the linear system. Stability and per-
formance. Time domain and frequency domain analysis.

• Closed loop system response simulation (nonlinear sys-
tem).

• Temporary response parameters (rise time, overshoot, set-
tle time, stationary error).

• Robustness and performance indicators with respect to:
parameters variations, setpoint signals, disturbances and
delays in the system.

5) Communication between Maple and Matlab interface.

Maple and Matlab functions

A toolbox for nonlinearH∞ controller analysis and design has
been developed. Next the main functions of this toolbox are
indicated.

• The following variables, functions and parameters are de-
fined: x, f , gu, gw, hz, kuz, kwz, hy, kwy, kuy, x0,
const. For that,x, f, gu, gw, hz, kuz, kwz,
hy, kwy, kuy, x0 andconst are employed.

• Plant model in affine form is made by means of
MakeSystem(x,f,gu,gw,hz,kuz,kwz,...
hy,kwy,kuy,x0,const)

• Affine representation of the system is shown with
DisplaySystem() , and
DisplaySystem(ApplyConstants()) is used for
particular values of the parameters.

• Actuators and sensors dynamics, disturbances and
weighting functions (design parameters) are considered
by means of the following instructions:
InputControlModel(), OutputMeasure-
mentModel(), InputNoiseModel(), Out-
putPenaltyModel() .

• Generalized plant or augmented plant with actuators, sen-
sors and weighting functions (design parameters), is ob-
tained with
GeneralizedPlant() .

• Test for Doyle-Glover-Khargonekar-Francis (DGKF) con-
ditions is made withCheckDGKF() .

• Hamilton-Jacobi equation (HJE) is outlined by means of
the function
HJStateFunction()

• By means ofStdLineariza() linearization of the
generalized plant model is obtained. For particular val-
ues of the parameters
SimplifyLinSystem() is used.

• The Hamilton-Jacobi equation for linearized system is
solved combining Maple and Matlab functions. These are:
HJStateLinear(), ricschr.m, mapquest.m
andmapquest2.m .

• Second order approximation forV (x) is obtained with
SolV2() andeval() displays result. With this result
linear state feedback controller is obtained.

• High order approximations (more than three) of the
Hamilton-Jacobi Equation are calculated by means of
HJStaten() andHJState2() .

• Nonlinear state feedback controller is obtained with
OptimalSF() . While the worst possible distur-
bance is obtained with (from Differential Game Theory)
WorstDisturb() .

• L2 suboptimal controller is synthesized with the instruc-
tion MakeController() .

• Closed loop system (for a state feedback controller) is cal-
culated using the functionApplySFController() .

• Nonlinear Estimated State Feedback Controller (NESFC)
is obtained with the following functions:FindIG() and
FindIG2() . In this case, the closed loop system in
affine form is calculated withClosedLoop() .

4 Application examples

In this paragraph results obtained for the following examples
are summarized: 1) Robot link with flexible joint (simple-
input simple-output, SISO), 2) Vehicle: Simple model of a
car (multiple-input simple-output, MISO), 3) Inverted pen-
dulum (simple-input multiple-output, SIMO), 4) Manipulator



with three links (multiple-input multiple-output, MIMO). In all
cases, the design parameters used are:hz, kuz and γ. The
values employed for these parameters have been obtained by
means of iterative procedure. Values given here have not been
optimized, only have been chosen to get satisfactory results.
If a more sophisticated procedure is employed, better perfor-
mance can be obtained. The main objective of this paper is
to show the validity of the design methodology and software
application. Logically, for a particular design problem results
can be improved, but our objective in this paper is not optimize
performance neither improve results obtained with other tech-
niques. The objective is to illustrate how the combination of the
design methodology and software application give satisfactory
results with reduced effort for the user.

1) Robot link with flexible joint

The dynamic equations of a single link robot arm with a revo-
lute elastic joint rotating in a vertical plane are given by

Jmq̈1 + Fmq̇1 − k(q1 − q2) = u

Jlq̈2 + Flq̇2 + k(q1 − q2)−MgL sin(q2) = 0
y = q2

in which q2 andq1 are the link displacement and the rotor dis-
placement, respectively. The link inertiaJl, the motor rotor
inertiaJm, the elastic constantk, the link massM , the gravity
constantg the center of massL and the viscous friction coeffi-
cientsFl, Fm are positive constant parameters. The controlu
is the torque delivered by the motor, and the controlled variable
is q2. The state vector has four components,

Figure 1: Robot link with flexible joint

Figure 2: Normalized time responses for changes in setpoint
(robot link with flexible joint)

x =


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x3

x4

 =


q̇1

q1

q̇2

q2


For this election, the functions of the affine representation of
the systems are:

f =


Fmq̇1 + k(q2−q1)

Jm

q̇1

−MgL sin(q2)
JL

− k(q2−q1)
JL

− Flq̇2

q̇2



gu =


k/Jm

0
0
00

 ,

gw = gu, hy =
[

q2

q1

]
, kuy =

[
0
0

]
kwz = kwy = kuy

The design is carried out with the following numerical values
of the physical parameters (international system of units):k =
100, Jl = 0.12, M = 1, Jm = 0.1, L = 0.3, g = 9.8,
Fm = 0.01, Fl = 0.01.

For this system, the following design parameters are used:

hz =
[

10q2

0

]
, kuz =

[
0
1

]
, γ = 2

With these parameters and fourth order approximation for HJE,
the following controller (third order) is obtained:

u(x) = [ −14.858x1 − 828.037x2 − 0.366x2
2x4

−0.002x2
2x1 − 39.274x3 − 0.066x2x3x4

−0.001x2x
2
3 − 1.125x2x

2
4 − 0.003x2

3x4

−0.006x4x2x1 − 0.014x2
2x3

−0.000x3x2x1 − 0.000x4x3x1

−0.134x3x
2
4 − 0.000x3

1 − 298.349x4

−0.000x3
3 − 0.000x3x

2
1 − 3.111x3

4

−0.008x2
4x1 − 0.055x3

2 − 0.000x2x
2
1

−0.000x4x
2
1 − 0.000x2

3x1] 10−2

In figure 2 the normalized time responses for changes in set-
point (0.5 and 4 radians respectively) are shown, for con-
trolled variable (radians) and manipulated variable (Newton-
m). Overshoot is avoid in both cases.

2) Vehicle: simple model of a car

It is considered the following simple model of a car,

ẋ = cos(θ)u1

ẏ = sin(θ)u1

θ̇ =
1
l

tan(φ)u1

φ̇ = u2



Here (x, y) denote the Cartesian coordinates of the front
axis,the angleθ measures the direction in which the car is
headed, andφ is the angle made by the front axis with the car.
There are two control inputs,u1 denoting the driving velocity,
andu2 denoting the steering (rotational) velocity. In this case,
u1 is kept constant. Controlled variables arex, y. The follow-

Figure 3: Vehicle: Simple model of a car

ing design parameters have been employed:

hz =


0.1y
0.1x

0
0

 , kuz ==


0
0
0
1

 , γ = 5

In figure 4 the reference and trajectory followed by the car are
shown. In this case, a fourth order approximation is employed
for HJE.

Figure 4: Trajectory following of the car

3) Inverted pendulum (SIMO)

The dynamic equations of an inverted pendulum on a moving
cart are given by

(M + m)ẍ + mL cos(θ)θ̈ −mL sin(θ)θ̇2 = u1

mL cos(θ)ẍ + mL2(̈θ)−mgL sin(θ) = u2

in whichθ is the angle displacement of the pendulum from the
vertical configuration,x is the position of the cart,L is the

Figure 5: Normalized time responses for changes in setpoint
(robot link with flexible joint)

length of the pendulum,M is the mass of the cart,m is the
point mass attached at the end of the pendulum,g is the grav-
ity constant. The inputu is the force applied to the cart while
the inputu2 is the torque applied at the base of the pendulum.
Assuming the states(x, θ) are measured,(u1, u2) is to be de-
signed in order to trackxr(t), θr(t), in particularθr(t) = 0 and
u2 = 0.

For this system, the following design parameters are used:

hz =

 10θ
0.1x

0

 , kuz ==

 0
0
1

 , γ = 4

Linear position of the cart (meters) and angular position of the
inverted pendulum (radians) are shown in figure 5, for a set-
point change of 5 meters. The controller is obtained with a
third order approximation for HJE.

4) Manipulator with three links (MIMO)

The dynamical model for this manipulator is given by,

Mq̈L + Cq̇L + Dq̇2
L + Eq̇q̇L + Fg = KLu

where the parameter matricesD,E, F andM are not constant,
but are dependent upon trigonometric functions of variables
qi (i = 1, 2, 3). Physical meaning and notation use for
the vectors and matrices are as follow:M (inertia matrix),C
(friction matrix), q̈L (acceleration vector),̇qL (velocity vector),
Dq̇2

L (centrifugal forces),Eq̇q̇L (Coriolis forces),Fg (gravity
forces),KL (gain matrix),u control input vector.

For this system the following design parameters have been
used:

hz =


q1

q2

q3 + q̇3

0
0
0

 , kuz ==
[

03×3

I3×3

]
, γ = 2



Figure 6: Diagram of manipulator

In figure 7 the temporary response to setpoints change are
shown, for 1.5, 0.5 and 1 radians respectively. For all artic-
ulations zero or low overshoot is obtained, and null stationary
error.

Figure 7: Time response for MIMO system

5 CONCLUSIONS

A software application has been developed for implementing a
method based on nonlinearL2 control theory (state feedback
and estimated state feedback). Our control methodology em-
ploys as design parameters two functions (hz, kuz) and a scalar
(γ), which are used for tuning controller to satisfactory time
response. Design method requires input affine model of the
plant, and it is applicable to scalar and multivariable systems.
In order to test the validity of the proposed methodology, sim-
ulation studies have been carried out for SISO, MISO, SIMO
and MIMO systems; for which simulation results are suitable
in a first step of design. Better results can be obtained if more
complex design functions are used, but our main contribution
has been to facilitate to control engineers and to students a com-
puter aided control system design (CACSD) package for non-

linear control systems analysis and controllers synthesis based
onL2 theory.
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