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Abstract

A notion of a guaranteed stabilized plant as a

plant for that there exists a stabilizing controller

delivered some phase and gain margins of system

stability is introduced. A problem of �nding a

condition under that the plant is guaranteed sta-

bilized is formulated.

It is shown that two classes of plants (minimum-

phase and asymptotically stable) are guaranteed

stabilized.

1. Introduction

Several branches of a linear system robustness

analysis may be extracted.

The �rst branch [10], [7] proceeds from direct

indices which are system coe�cients boundaries

such that the system keeps stability.

The second branch is based on indirect indices

such as stability margins (phase and gain mar-

gins) that is a description \distance" a Nyquist

curve from critical point (�1; j0) [6]. A merit of

these indeces is that they may be examined by an

experiment and that is why they is widely used in

practice [11].

In accordance with the second direction a system

is robust if it has su�cient margins of stability.

It is arisen a question: whether for any plant it

may be found a controller that provides system

robustness?

Below, the plants having this property are refered

to as guaranteed stabilized one's. To �nd the guar-

anteed stabilized plants a radius of stability mar-

gin [2] is used. The radius is a generalization of

the notions of the phase and gain margins and

it is explicitly determined by the system transfer

function. This allows to obtain an analytical de-

scription of the guaranteed stabilized plants.

2. Statement of the problem

Consider a stable system with constant coe�cients

described by the following di�erential equations
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where y(t) is a measured output of the completely

controlled plant (1), u(t) is an output of controller

(2), y(i), u(j) (i=1; n; j=1;m) are the derivatives

of these functions.

An open-loop transfer function of the system is:
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De�nition 2.1 A number

r = min0�!<1j1 + w(j!)j (5)

is named a stability margin radius of system (1),

(2).



The stability margin radius is a radius of a circle

whose centre is critical point (�1; j0). It is a gen-

eralization of the phase and gain margins notion.

Thus, if this radius r = 0:75 then the phase mar-

gin equals 42� and the gain margin is 1:75. The

value r = 1 �ts the values: 60� and 2.

On the other hand the stability margin radius is a

conversion of the H1 norm of a sensitivity func-

tion of the system (1), (2). This property allows

to �nd a maximum [5] of the radius.

De�nition 2.2 The system (1), (2) is named the

robust (in the sense of the stability margin radius)

if

r
2
� �

2 (�
:

= 0:75� 1) (6)

De�nition 2.3 Plant (1) is named a guaranteed

stabilized one if there exists a controller (2) such

that system (1), (2) is robust.

Problem 2.1 Find conditions under which plant

(1) is guaranteed stabilized.

3. Robust controllers set

De�nition 3.1 Controller (2) is named robust if

it provides robustness of system (1), (2).

Assertion 3.1 All set of the robust controllers is

described by the following polynomials

g(s) = g
0(s)b(s) + k(s)a(s);

r(s) = r
0(s)b(s) + d(s)a(s)

(7)

in which:

i polynomials g0(s) and r0(s) are a solution of

the following Bezout-Identity

d(s)g0(s) � k(s)r0(s) =  (s): (8)

ii a(s) is a polynomial, b(s) and  (s) are Hur-

witz polynomials (e.g. all roots of these poly-

nomials have negative real parts).

iii polynomials a(s), b(s) and  (s) have to sat-

isfy the following inequality

 (�s) (s)b(�s)b(s) � �
2
d(�s)d(s)�

�[g0(�s)b(�s) + k(�s)a(�s)]�

�[g0(s)b(s) + k(s)a(s)];

s = j!; 0 � ! <1

(9)

iiii degrees of polynomials a(s), b(s) and  (s)

have to meet condition mc � nc of the con-

troller realizability

deg[g0(s)b(s) + k(s)a(s)] �

� deg[r0(s)b(s) + d(s)a(s)]
(10)

Proof. It is well known [4] that the identity (8)

and condition (ii) is a description of all set of sta-

bilizing controllers.

The relations (iii) and (iiii) are extracted a subset

of robust controllers.

Inequality (9) is a simple consequence of the ex-

pression

[1 + w(�j!)][1 +w(j!)] � �

2 (11)

that follows from de�nition 2.1 and 2.2.

In fact, the open-loop transfer function of system

(1), (2) with controller (2) whose coe�cients are

delivered by expressions (7) is

w(s) = �

k(s)[r0(s)b(s) + d(s)a(s)]

d(s)[g0(s)b(s) + k(s)a(s)]
: (12)

After substituting this expression into inequality

(11) it is obtained that

[d(�s)g0(�s)b(�s) � k(�s)r0(�s)b(�s)]�

�[d(s)g0(s)b(s) � k(s)r0(s)b(s)] �

� �
2
d(�s)d(s)[g0(�s)b(�s) + k(�s)a(�s)]�

�[g0(s)b(s) + k(s)a(s)]

(13)

Inequality (9) follows from this expression if one

takes into account identity (8).

4. Classes of guaranteed stabilized

plants

Consider two classes of the plants: minimum-

phase plants (e.g. the plants whose polynomial

k(s) is Hurwitz polynomial and d(s) is an arbi-

trary polynomial) and asymtotically stable plants

(d(s) is Hurwitz polynomial and k(s) is an arbi-

trary polynomial).

Going to a solution of problem 2.1 it need to re-

mark that for its solution it is su�ciently to �nd

only one controller from the set described by as-

sertion 3.1.

Assertion 4.1 All minimum-phase plants are

guaranteed stabilized.

Proof Consider two cases of a structure of poly-

nomial k(s): m = n� 1 and m � n� 1.

Case m = n� 1

Let

a(s) = 0; b(s) = 1 (14)

and a polynomial  (s) is determined as

 (s) = k(s)�(s); (15)



where �(s) is Hurwitz polynomial that is a solution

of the following identity

�(�s)�(s) = [d(�s)d(s) + q

0]; (16)

where q0 is a positive number.

Polynomials (7) of controller (2) are

g(s) = g

0(s) = k(s); r(s) = r

0(s) = �(s) � d(s):

(17)

Taking into account the expression (15) the in-

equality (9) may be rewritten as

 (�s) (s)

d(�s)d(s)g(�s)g(s)
=

=
k(�s)k(s)[d(�s)d(s) + q

0]

g(�s)g(s)d(�s)d(s)
� �

2

s = j! 0 � ! <1:

(18)

A substitution of the �rst from the equalities (17)

gives
����1 +

q
0

d(�j!)d(j!)

���� � 1 � �

2
; 0 � ! <1:

(19)

The assertion proof for this case has been obtained

early [1] on the base of the LQ-optimization.

Case m � n� 1.

Let

 (s) = k(s)"(s)�(s); (20)

where a polynomial "(s) of a degree p = n�m�1

has the following structure

"(s) =

pY

i=1

(Tis + 1) = "ps
p + � � �+ "1s+ 1 (21)

in which positive numbers Ti (i = 1; p) satisfy the

inequalities

1 > T1 > T2 > � � � > Tp: (22)

A solution of the Bezout-Identity

d(s)g(s) � k(s)r(s) = k(s)"(s)�(s) (23)

is sought in the following form

g(s) = k(s)m(s); (deg[m(s)] = p); (24)

where a polynomial m(s) is a solution of the

Bezout-Identity

d(s)m(s) � r(s) = "(s)�(s): (25)

Taking into account the structure of polynomials

g(s) and  (s) the inequality (9) is rewritten as

"(�s)"(s)[d(�s)d(s) + q
0]

m(�s)m(s)d(�s)d(s)
� �

2

s = j!; 0 � ! <1

(26)

Now, in order to prove assertion 4.1 it is su�-

ciently to show that

"(�s)"(s)

m(�s)m(s)
� �

2
s = j!; 0 � ! <1: (27)

In connection with it a dependence of coe�cients

of the polynomialm(s) = mps
p + � � �+m1s+m0

on coe�cients of polynomial "(s) must be studied.

Lemma 4.1 There exists su�ciently small val-

ues Ti (i = 1; p) such that the coe�cients of the

polynomials m(s) and "(s) link by the following

relations

mi = "i(1 + ei) (i = 1; p) (28)

in which ei (i = 1; p) are some numbers satis�ed

the inequalities

jeij � e

�

i
(i = 1; p) (29)

where e�
i
(i = 1; p) are any speci�ed positive num-

bers.

A proof of the assertion is given in Appendix.

It is obviously that the numbers e�
i

(i = 1; p)

may be took such that the inequality (27) holds.

Assertion 4.2 All asymptotically stable plants

are guaranteed stabilized.

Proof Let,for simplicity, all roots of polynomial

k(s) have the positive real parts ( k(�s) is Hurwitz

polynomial ).

Let the equalities (14) hold and a polynomial (s)

is

 (s) = d(s)k(�s)v(s)q; (30)

where q is a su�ciently large positive number, v(s)

is a Hurwitz polynomial of a degree p1 � n�m.

One of solutions of Bezout-Identity (8) is

g(s) = g
0(s) = k(�s)v(s)q + k(s);

r(s) = r
0(s) = d(s)

(31)

Taking into account the expressions (30) and (31)

the robustness condition (9)is rewritten as

d(�s)d(s)k(s)k(�s)v(�s)v(s)q2

d(�s)d(s)[k(s)k(�s)v(�s)v(s)q2 + �(s)]
� �

2

�(s) = k(s)k(s)v(�s)q+

+k(�s)k(�s)v(s)q + k(s)k(�s):

(32)

If the number q is su�ciently large then this in-

equality holds.



5. Unstable and nonminimum-phase

plants

Consider the plant (1) whose polynomials have the

roots with positive real parts.

In order to prove that such plants may be nonguar-

anteed stabilized it is su�ciently to �nd only one

example of plant (1) for that there does not exist a

controller from the set described by assertion 3.1.

Such plant [7], [9] has the following transfer func-

tion

w0 =
s� 1

s
2
� s � 2

: (33)

This plant is unstable and nonminimum-phase.

A controller that delivers a maximum of the mar-

gin radius for this plant has been found in paper

[5]. This value r = 0:32 < 0:75 and therefore the

plant (33) is not the guaranteed stabilized plant.

A technique proposed in this paper allows to �nd

a controller that provides a maximal radius and

to �nd out whether a plant is garanteed stabilized

or not.

6. Examples

Example 1 Consider a minimum-phase, unstable

plant described by the following transfer function

w0(s) =
k(s)

d(s)
=

5(0:4s+ 1)

(s+ 0:2)(s2 � 6s + 25)
: (34)

Taking the polynomial "(s) = 0:003s+ 1 and the

number q0 = 104 the polynomial  (s) is written

in accordance with (20) as

 (s) = 5(0:4s+ 1)(0:003s+ 1)�(s); (35)

where

�(�s)�(s) = (�s + 0:2)(s+ 0:2)�

�(s2 � 6s + 25)(s2 + 6s+ 25) + 104:
(36)

After a calculation of the polynomial �(s) the fol-

lowing polynomial  (s) was found:

 (s) = 0:006s5 + 2:07s4 + 23:9s3 + 147s2

+450:6s+ 500:62:

(37)

Solving Bezout-Identity (8) delivers

g(s) = 0:006s2 + 2:105s+ 5:225

r(s) = �15:39s2 � 25:18s� 94:9:
(38)

The stability margin radius of the system con-

sisted of the plant (1) with transfer function (34)

and the controller (2) with the polynomials (38)

is r = 0:99.

Example 2 Consider an asymtotically stable,

nonminimum-phase plant described by the follow-

ing transfer function [8]:

w0 =
k(s)

d(s)
=

5(�0:4s+ 1)

(s + 0:2)(s2 + 6s + 25)
: (39)

Taking the polynomial v(s) = (0:3s+ 1)(0:5s+ 1)

and the number q = 10 the polynomial  (s) is

written as

 (s) = 50(s+ 0:2)(s2 + 6s+ 25)(0:4s+ 1)�

�(0:3s+ 1)(0:5s+ 1):

(40)

Formulae (31) give

r(s) = (s + 0:2)(s2 + 6s+ 25)

g(s) = 50(0:4s+ 1)(0:3s+ 1)(0:5s+ 1)

�2s+ 5:

(41)

The stability margin radius of the system (39),

(41) is r = 0:99.
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7. Appendix

7.1 Proof of lemma 4.1.

For simplicity, the lemmawill be proved for a case

when n = 4 and p = 2. In this case Bezout-

Identity (25) is

(s4 + d3s
3 + d2s

2 + d1s + d0)(m2s
2 +m1s +m0)�

�(r3s
3 + r2s

2 + r1s + r0) = ("2s
2 + "1s + 1)�

�(s4 + �3s
3 + �2s

2 + �1s+ �0);

(42)

and polinomial "(s) = (T1s+ 1)(T2s+ 1).

The identity (42) delivers the following equations

for coe�cients of the polynomialm(s)

m2 = "2

m1 = "1 � d3m2 + �3"2 = "1[1 + e1]

m0 = 1 + e0

(43)

where

e1 =
(�3 � d3)T1T2

T1 + T2
; (44)

e0 = (�2�d2)T1T2+�3(T1+T2)�d3(T1+T2)(1+e1):

(45)

It follows from the expression (44) that for any

small speci�ed number e�1 may be always found a

number T2 < T1 such that je1j < e
�

1. Analogously,

it follows from (45) that may be always pointed

out T1 < 1 such that je0j < e
�

0. The lemma proof

when n > 4 and p > 2 is analogous.
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