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Abstract

In this paper, the rate limiter describing function is used to
analyze by harmonic balance the existence of limit cycles in
first order plants. Next, by comparison with analytical results
previously obtained by the authors, the accuracy of the above
approximate predictions is assessed. The main conclusion is
that from a qualitative point of view the harmonic balance is
good enough, providing in a exact way the critical value of the
bifurcation parameter, and leading to neither spurious predic-
tions of limit cycles nor failures in their detection. Regarding
the quantitative aspects, the accuracy of the method depends on
certain dimensionless parameter which is intrinsic to the pro-
blem.

1 Introduction

Rate-limiters are usual nonlinearities in control engineering
due to the maximal speed of response of the actuators. Its
presence in a dynamical system makes difficult its control,
specially if the system is unstable, with special relevance in
the study of the PIO problem (pilot-in-the-loop oscillations or
pilot-induced oscillations), see for example [2].

As non-static nonlinearities, rate-limiters can be responsible for
the appearance of limit cycles even for the case of first order
plants. In this simplest case it is possible to show rigorously
the existence of limit cycles as done in [7], but the application
of the describing function method is not trivial. In this work,
we make such frequency domain analysis for first order plants
with rate-limited feedback and give some measures about the
accuracy of its predictions, by comparing to the analytical re-
sults obtained in [7].

We study the system shown in Figure 1, where y (t) is both
the output of the linear system and the input of the nonlinear
rate limiter, z (t) is the output of the nonlinear block, r (t) is a
reference signal and e (t) is the tracking error that becomes the
input signal for the linear system. In the sequel it is assumed
r (t) = 0 for all t, and therefore e (t) = −z (t). Also note
that both the gain factor k and the constant p will be assumed
positive, to consider the important case where the system is
open-loop unstable.

Figure 1: Block diagram of a first order linear system with a
rate-limiter in the feedback loop.

The block in the feedback-loop of Figure 1 represents a rate-
limiter whose output z (t) tries to follow the input y (t) but with
restrictions in the maximal slope m that the output may have,
so that, the slope of the output is to be bounded and satisfying
|ż| ≤ m. Thus, when the absolute value of the slope of the
input overcomes the bound m, the output will separate from
the input. Hence, the rate-limiter presents two operating modes
clearly differentiated, according to whether the output is able to
follow the input or not. In the first case we will say that the rate-
limiter is in follower mode and we will refer to the second case
as the nonfollower mode.

The structure of this work is as follows. In Section 2 we make
the frequency domain analysis of the system. Next in Section
3 we present some analytical results to be used for the compa-
risons of Section 4. Some conclusions are offered at the end of
the paper.

2 Frequency domain analysis

The frequency domain approach can be used to determine the
conditions of existence of limit cycles in the system of Figure
1. To do this, we model the nonlinearity using its describing
function ([8]) that can be obtained by computing the first har-
monic of the output when the input is a sinusoidal waveform,
see [4]. So, we need to know in a precise way the response
of the rate-limiter to a periodic input. If the input y is greater
that the output z, the output will grow at the maximum speed,
(ż = m), and if y < z then ż = −m. For a symmetrical si-
nusoidal input y(t) with amplitude a and frequency ω, its time



derivative
ẏ (t) = aω cos (ωt) (1)

does not violate the rate limiter bounds if aω ≤ m, and the-
refore, then the output of the rate limiter follows its input.
When aω > m the bounds are violated and the output of the
nonlinearity z (t) is no longer able to follow exactly the input
y (t) during some periods, in which the output evolves at the
maximum speed (ż = ±m). Depending on the values of a,
ω and m, three qualitatively different behavior modes of the
output may exist, to be denoted as modes (a), (b) and (c), see
[4].

We call mode (a) the case when the slope of the input y (t)
never violates the constrains ±m, and so the input y (t) and the
output z (t) coincide. This behavior mode is characterized by
the condition aω/m ≤ 1.

0 1 2 3 4 5 6 7 8 9

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
 α

β

α+π

β+π

ω t

Figure 2: The output of the rate-limiter (discontinuous line) for
a sinusoidal input (continuous line) in mode (b).

In mode (b) the output has time intervals in which it follows the
sinusoidal input and intervals where it evolves as a straight line
of slope ±m. Assuming that the steady state has been reached,
we denote by α and β the angles verifying 0 < α < β < π, as-
sociated to the extremes of the interval in which the rate-limiter
is in follower mode, see Figure 2. The angle β corresponds to
the separation of the output when the input is decreasing with
ẏ = −m, and the angle α is such that α + π corresponds to
the next intersection of the output with the input, assuming that
the output has evolved at constant rate −m. Therefore, for the
input y (t) = a sin (ωt) the output is

z (t) = −a sin(β) + m

(

t − β − π

ω

)

, (2)

if β − π < ωt < α,

z (t) = y (t) , (3)

if α ≤ ωt ≤ β or α + π ≤ ωt ≤ β + π,

z (t) = a sinβ − m

(

t − β

ω

)

, (4)

if β < ωt < α + π, and so on periodically. From (1), since the
slope of the input is −m in ωt = β, we have

β = arccos
(

− m

aω

)

>
π

2
. (5)

To determine the angle α, note that in ωt = α + π occurs the
intersection of the line with slope −m with the sinusoidal input
y (t) . We obtain after some manipulations the equation

sen α + sen β =
m

aω
(α + π − β) . (6)
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Figure 3: The output of the rate-limiter (discontinuous line) for
a sinusoidal input (continuous line) in mode (c).

In mode (c) the input changes too fast and cannot be followed
in any time interval of the steady regime response. Therefore,
the output z (t) evolves at the maximum rate (±m) in both
senses. Every time the output reaches the input, the slope of the
output changes. Now, we denote the angle associated with the
switching time by γ ∈ (π/2, π), see Figure 3, and therefore,
the output verifies

z (t) = −a sin γ + m

(

t − γ − π

ω

)

,

if γ − π < ωt ≤ γ,

z (t) = a sin γ − m
(

t − γ

ω

)

,

if γ ≤ ωt < γ + π,and so on periodically. To compute γ we
use the continuity of the output in ωt = γ to obtain

γ = arcsin
π

2

m

aω
. (7)

By moving parameters (a, ω, m), the transition between modes
(b) and (c) occurs for a critical value γ = γ∗ when α = β =
γ∗. Applying (5), (6) and (7) and solving for the transition
value of the dimensionless amplitude-frequency product, we
obtain (aω/m)

∗

=
√

π2/4 + 1 ≈ 1.86, and for the critical
angle

γ∗ = arccos

( −2√
π2 + 4

)

≈ 2.14 rad .

From the above analysis, it can be shown that depending on the
value of the dimensionless parameter aω/m, only one mode is
possible for the steady regime, more precisely:

Mode (a) if 0 < aω/m ≤ 1,



Mode (b) if 1 < aω/m <
√

π2/4 + 1, and

Mode (c) if
√

π2/4 + 1 ≤ aω/m < ∞.

Notice that both in modes (b) and (c) there is a phase delay
between the input and the output. This delay has an important
effect in the global behavior mode of the nonlinearity.

2.1 Describing function of rate-limiters

Now taking the first harmonic of the output, the describing
function can be obtained by computing

N (a, ω) =
1

πa

π
∫

−π

z (t) ejωtd (ωt) ,

where it must be taken into account the different possible mo-
des of the rate-limiter. For the mode (b), and using (2), (3) and
(4), we obtain

Re [N (a, ω)] = 2m
senα + sen β

πaω
+ (8)

+
sen β cosβ − sen α cosα + β − α

π
,

Im [N (a, ω)] = 2m
cosα + cosβ

πaω
+

sen2 α − sen2 β

π
, (9)

where α and β are defined in (5) and (6).

From (8) and (9) the describing function of the remaining mo-
des can be easily deduced. In fact, taking α = 0 and β = π,
for mode (a) we obtain N (a, ω) = 1.

For mode (c) it suffices to put α = β = γ in (8) and (9) to
conclude that

N (a, ω) =
4m

πaω
(sen γ + j cos γ) ,

where γ is defined in (7). Notice that in all modes the descri-
bing function depends only on the parameter aω/m, so that in
the following we write N (a, ω) = N (aω/m) .

2.2 Application to first order plants

The describing function method conjectures the appearance of
a limit cycle of amplitude a and frequency ω for the solutions
of the so-called harmonic balance equation. If G (jω) is the
frequency response function of the plant, for the system of Fi-
gure 1 we can write

G (jω) =
−kp

ω2 + p2
+ j

−kω

ω2 + p2
=

−1

N(aω/m)
. (10)

As is well known, the solution of this equation can be obtained
graphically as the point in the Nyquist plot where the graph
of G (jω) intersects the locus of −1/N(aω/m), as shown in
Figure 4.

Due to the fact that −1/N is always in the third quadrant, there
will be a solution for (10) if and only if G (0) = −k/p < −1,
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Figure 4: Graphic determination of the existence of limit cycles
in the Nyquist Diagram.

with k > p > 0, that is, when the linear plant is open-loop
unstable and closed-loop stable. Introducing now the dimen-
sionless variables

A =
ap

m
, Ω =

ω

p
,

together with the parameter µ = k/p, we can write the harmo-
nic balance equation (10) as

µ

Ω2 + 1
+ j

µΩ

Ω2 + 1
=

1

N (AΩ)
, (11)

leading to one limit cycle when µ > 1, and to be solved for A
and Ω as a function of µ. Now, we show the solutions of this
system separately for each mode.

2.2.1 Mode (a)

As indicated before, the mode (a) occurs when the maximal
slope of the sinusoidal input a sin (ωt) is under the bound of
the nonlinearity, that is, aω ≤ m or equivalently AΩ ≤ 1. In
this mode the output of the rate-limiter is equal to the input and
the describing function is obviously N (AΩ) = 1.

System (11) becomes

µ

Ω2 + 1
= 1,

µΩ

Ω2 + 1
= 0,

and the only possible solution is Ω = 0 and µ = 1, what sug-
gests a degenerate situation for the limit cycle.

2.2.2 Mode (b)

In mode (b), we have 1 < AΩ < (AΩ)∗ =
√

π2/4 + 1. Using
the new variables A and Ω, we can rewrite (8) and (9), toget-
her with the conditions (5) and (6) but is not possible to ob-
tain explicit expressions for the amplitude and the frequency as
function of µ. Solving numerically for each value of AΩ in the
considered range the transcendental equations defining α and
β, one can compute the value of the describing function using



expressions (8) and (9). Then, from (11), we have

Ω =
Im [1/N (AΩ)]

Re [1/N (AΩ)]
, µ =

(

1 + Ω2
)

Re [1/N (AΩ)] .

Finally, the amplitude A can be computed from the value of
the product AΩ, that was the departure data. Following this
process, by varying AΩ we can obtain the amplitude and the
frequency as functions of µ.

2.2.3 Transition between modes (b) and (c)

For the critical value (AΩ)∗ =
√

π2/4 + 1, the corresponding
value of the describing function will be

N∗ =
4√

π2 + 4

(

2 − j
4

π

)

.

Applying now (11) we obtain

µ

Ω2 + 1
= Re

(

1

N∗

)

=
π2

8
,

µΩ

Ω2 + 1
= Im

(

1

N∗

)

=
π

4
.

and solving for A, Ω, and µ we obtain the following values for
the transition point

A∗ =
π

4

√

π2 + 4 ≈ 2.92,

Ω∗ =
2

π
≈ 0.637,

µ∗ =
π2 + 4

8
≈ 1.73.

2.2.4 Mode (c)

Using the new variables A and Ω, the describing function in
mode (c) is

N (AΩ) =
4

π

sen γ + j cos γ

AΩ
, (12)

for AΩ >
√

π2/4 + 1, where γ verifies π/2 < γ < π and

γ = arcsin
π

2

1

AΩ
. (13)

Now is possible to obtain explicit expressions for the ampli-
tude and the frequency as functions of µ. Using (12) and (13)
in (11), and solving for the amplitude and the frequency, we
obtain

A =
π

2

√

8µ

8µ − π2
, Ω =

√

8µ

π2
− 1,

for values of µ > µ∗ > π2/8, where µ∗ is the above computed
value for the bifurcation parameter corresponding to the transi-
tion between modes (b) and (c). Note also that when µ → +∞
we have

A → π

2
, Ω → ∞.

3 Time domain analytical results

The dynamics of the linear plant in Figure 1 will be given by
the differential equation

ẏ = py + ke = py + k (r − z) = py − kz, (14)

where as usual the point denotes the derivatives with respect to
the time, and we have had into account the negative feedback
and the zero value of the reference signal r (t).

In follower mode, the output follows the input while its slope
does not overcome the bound, that is, z (t) = y (t) if |ẏ (t)| <
m. This situation will keep unchanged until that in some instant
tM the slope reach as the bound, that is, |ẏ (tM )| = m. From
this moment, if |ẏ (t)| > m, the output separates from the input
and the nonlinearity enters the nonfollower mode, where the
output evolves with constant slope, in the way

z(t) = z (tM ) + ẏ (tM ) (t − tM ) ,

that is with the maximal possible slope. The operation in non-
follower mode will continue up to some instant tG, where
the values of the input and the output coincide, that is, when
z(tG) = y(tG). If in this instant the slope of the input verifies
|y (tG)| < m, the output returns to reproduce the input (transi-
tion to the follower mode). But if |y (tG)| ≥ m, we will stay
in nonfollower mode (with a possible transition of positive to
negative nonfollower mode or vice-versa).

The above behavior leads to the nonlinear differential equation,
which is valid for follower and nonfollower (positive or nega-
tive) modes and all the possible initial conditions

ż =







m sat

(

ẏ

m

)

if y = z,

m sign (y − z) if y 6= z.
(15)

Here ‘sat’ is the standard normalized saturation.

To describe the rate limiter nonlinearity some other authors (see
[1]) simply take

ż = m sign (y − z) ,

without any consideration about the meaning of this expres-
sion on the discontinuity line y = z. However, if one take into
account the Filippov approach for sliding mode solutions, see
[3], the above expression also leads to a description equivalent
to equation (15).

Combining Equations (14) and (15) we have that the closed-
loop dynamics will be given by the planar discontinuous dyna-
mical system

ẏ = py − kz,

ż =







m sat

(

py − kz

m

)

if y = z,

m sign (y − z) if y 6= z,
(16)

which is symmetrical with respect to the straight-line y = z.
The following result has been shown in [7]:



Theorem 1 Consider system (16) with k > 0 and p > 0. The
following statements hold.

(a) If 0 < k < p, then the origin is the only equilibrium point
of the system and is unstable. There are no limit cycles
and all the trajectories that do not point to the origin are
unbounded.

(b) If 0 < k = p, then all the points of the straight-line y = z
are (neutral) stable equilibrium points. Furthermore, all
the solutions starting in the region |y − z| < m/p are
bounded and tend to one of the above equilibrium points
as time goes to infinity; otherwise, solutions with initial
conditions on the two connected components of the region
|y − z| ≥ m/p are unbounded.

(c) If 0 < p < k, then the origin is the only equilibrium point
and is (not globally) asymptotically stable. There exists
one unstable limit cycle surrounding the origin and limi-
ting its attraction basin. The limit cycle is formed by two
symmetric arcs that connect in a nonsmooth way at the
points (±mθ/p,±mθ/p) , where θ is the unique positive
solution of the transcendental equation

θ coth θ =
k

k − p
.

Furthermore, the frequency of the limit cycle is

ω =
πp

2θ
,

and its amplitude, measured as the maximal absolute va-
lue of the output of the system, is

a = max (|y|) =
mk

p2
ln (cosh θ) .

As a consequence of Theorem 1, we remark that for open-loop
unstable systems, the existence of the rate-limiter precludes the
possibility of the operating point to be globally asymptotically
stable (G.A.S.). This fact is not very surprising since it also
appears for other nonlinearities, see [5] and [6]. We conjecture
that the same will be true for higher dimension in the plant.

Figure 5 shows the dimensionless values for the outputs of the
plant and the nonlinearity, respectively, ȳ = (p/m) y (conti-
nuous line) and z̄ = (p/m) z (discontinuous line), versus the
dimensionless time τ = pt.

To facilitate the comparison of these results in the time domain
(Theorem 1) with the results in the frequency domain, we com-
pute the dimensionless amplitude and frequency as

A = max (|ȳ|) =
ap

m
= µ ln (cosh θ) , Ω =

ω

p
=

π

2θ
,

with
θ coth θ =

µ

µ − 1
, (17)
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Figure 5: Time evolution of the limit cycle. It is shown the
output of the plant (continuous line) and the output of the rate-
limiter (discontinuous line).

for µ > 1. Solving for µ in equation (17), substituting in the
expression for the amplitude and taking the opportune limits
for µ → 1+ we have

θ → ∞, A → ∞, Ω → 0,

and for µ → +∞ we obtain

θ → 0, A → 3

2
, Ω → ∞.

4 Comparison of the results

To check the accuracy of the obtained results using the des-
cribing function method we compare in Figures 6 and 7 the
amplitude A and the frequency Ω, computed by the describing
function method (discontinuous line) with those obtained by di-
rect integration of the differential equations (continuous line).
A circle onto the discontinuous line mark the supposed tran-
sition point between modes (b) and (c), as anticipated by the
describing function method.

Figure 6 shows for the amplitude a reasonable level of accuracy
between both methods. Note that the birth of the limit cycle
occurs with infinite amplitude. A detailed analysis shows that
the amplitude computed by the two methods there are not of the
same order, due the limit cycle is no very sinusoidal when it is
born. That is a limitation of the describing function method.

In Figure 7 we see for the frequency a good level of accuracy
between both methods. Note that the birth of the limit cycles
occurs with null frequency (the limit cycle is not very sinusoi-
dal at the bifurcation point).

Remembering that the exact value for the amplitude for µ suf-
ficiently great is 3/2 and the one computed using harmonic
balance is π/2, the limit of the relative error for the amplitude
far away the bifurcation point is (π − 3) /3 ≈ 0.047 < 5%.

We find the following qualitative difference: for small values
of the bifurcation parameter the describing function method
conjectures the existence of limit cycles in mode (b) (combi-
ning both follower and nonfollower modes), and limit cycles
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Figure 6: Adimensional amplitude computed with the descri-
bing function method (discontinuous line) and by integrating
the system (continuous line).
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Figure 7: Dimensionless frequency computed with the descri-
bing function method (discontinuous line) and by integrating
the system (continuous line).

in mode (c) (using only nonfollower mode) for big values of
the bifurcation parameter. However, integrating the differen-
tial equations of the system we have found that the limit cycle
is always of the same nature (using only nonfollower mode)
for all the values of the bifurcation parameter greater than the
critical one. This inaccuracy is due to the fact that the des-
cribing function method provides a good approximation to the
first harmonic of the true output signal and so it have a serious
handicap when the true signal is very different from its first
harmonic. In our case the birth of the limit cycles (small values
of the bifurcation parameter) occurs with waveforms very far
from sinusoidal.

5 Conclusions

We have considered a dynamical system composed by a linear
first order plant and a rate-limiter in the feedback loop. From
the nonlinear differential equation of the rate-limiter in the time
domain we state previously obtained results about existence,
amplitude and frequency of the limit cycle (Theorem 1). The
proof of this result will appear elsewhere.

We have show how to apply the describing function method in
order to characterize the existence, amplitude and frequency of
the existing cycle.

Comparing both methods, our principal conclusion is that for
large µ (that is, µ ≥ µ∗) the describing function method pro-
vide explicit solutions with only a minor quantitative inaccu-
racy. For small µ (that is, 1 < µ < µ∗), the implicit solution
obtained using the describing function method is more difficult
to use than the solution obtained by integrating the differential
equations. Also, the quantitative and qualitative discrepancies
between the describing function method and the exact analyti-
cal results increase when the bifurcation parameter µ tends to
its critical value (µ = 1).
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