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property, Positive pair, Even-odd part. the study of convex direction, and a frequency-related condi-
tion is given, which is necessary and sufficiéht As pointed
Abstract in the case of convex direction, this condition is checked by

sweepingw from 0 tooo. Thus, the computation efforts should
Convex direction with respect to a given Hurwitz polynomidbe demanding. The other one is based on the analysis of root
f1(s) is a local version of convex direction given by Rantzeloci, where two different definitions on convex direction with
In this paper, a new sufficient condition is given to judge améspect tof, (s) are giverff" S, The interest of results in Ref.
construct a convex direction with respectfids). [4] is to give some useful descriptions on the characterization
of convex direction with respect tf) (s). Furthermore, in Ref.
[5] an algorithm is given to construct a set of convex direction
with respect tof (s).

In robustness analysis and synthesis, finite test is desired, SHFMS paper, the problem of convex direction with respect to
as the Kharitonov theorem for interval ponnomi?alsBecaqse f1(s) is studied in terms of root loci, too. Two classes of convex
the stability domain in the coefficient space of polynomials {§rections with respect tg, (s) are described, which enlarges
not convex, generally speaking, finite test does not hold. A. {6 set defined in Ref5]. An interesting example will be given
Bartlett, C. V. Hollot and L. Huang proved the edge theorefq the end. It is useful to show that there exists other class of

for polynomial polytope with respect to any simply connectegnyex directions with respect # (s) except those pointed in
domainZ. Convex direction, as an instrument to jump fronfhe Theorem.

an edge result to an extreme point result, play an important

[3, 6] ; i i - .. .
role o _G|\(en a polyn_omlalfz(s),.fz(s) is called a con 2 Preliminaries
vex direction if any Hurwitz polynomiaf; (s) (i.e., all roots of
f1(s) lie in the open left half plane) such thai(s) + 1uf2(s)  Assumption:  fi(s) is a Hurwitz polynomial andfy(s) is
is Hurwitz stable for every. < [0,1] is equivalent to that an arbitrary polynomial such thaf; (s) + uf2(s) has the same
fi(s) + f2(s) is so. A polynomial is Hurwitz stable if it is degree agf, (s) foranyp € [0, 1], and fi (s)+ fo(s) is Hurwitz
a Hurwitz polynomial. If we restrict the arbitrariness ff(s), stable.
then the definition above gives a local version, which is called

the convex direction with respect fg(s) in the following. The Definition 1. The polynomialf,(s) is called a convex direc-

concept is less restrictive and thus less conservative for a vagn with respect tofy (s), if that f1(s) and f(s) + fo(s) are
ety of robust stability applications, such as judging the stability,, itz stable is equivalent to thafi (s) + pf>(s) is Hurwitz
of a given segment. Thus, it is of interest to pay attention {@,pe for all € [0,1]

such problem.

1 Introduction

There are several versions on the definition of convex dir
tion with respect tof;(s), where fi(s) is a Hurwitz poly-
nomial. Here we employ the definition given in Refl].
Suppose thaf(s) is Hurwitz stable. A polynomial,(s) is Denote the even-odd parts associated wfiths), f2(s) and
called a convex direction with respect fo(s), if forany u € = f,(s) = f1(s) +ufa(s) by (h1 (), g1(N)), (ha(N), g2()) and
0,1, deq(f1(s) + jfa(s)) = ded fi(s)) and fi(s) + ufa(s)  (hu(N), 9. (M), i€,
is Hurwitz stable is equivalent t (s) + f2(s) is so, where the

denotation de@) stands for the degree of polynomial. £1(s)

®fhis definition is a local version of convex direction given by
Rantzet.

hi(s?) + sg1(s?),
The research on convex direction with respectites) follows fa(s) = ha(s?) + sg2(s?),
fu(s) = hyu(s?) + 5g,(s?).



This gives that be roots ofhi(A) and hi(A) + h2()), respectively. Denote
xi(p) thedth root of by (X) + phe(X). By continuity, z; ()
hu(A) = A) + pha(A), - 9u(A) = 91(A) + 1g2(A) runs froma{" to x§2) whenu changes from 0 to 1. If # j,

then there eXISt81 io € {1,...,n}, u1, po € [0, 1] such that
We recall that a polynomial is Hurwitz stable if and only if

(h()N), g(X\)) forms a positive pair, namely, 2o (1) = a3, (12) N

Lemma 1. (6 Let(h()), g(\)) be the even-odd parts associ-
ated with the given real polynomid(s) = h(s?) + sg(s?).
Thenf (s) is Hurwitz stable if and only if the roots é{ \) and \}/Lve hav?‘él I_ ’éQ _Thlsls_hlt_)vys tzha}h:*r:_s a root l?fhl()‘). .
g(\), says{z;} and{y:}, satisfyz,so < yis1 < Tis1 < v < %2())\) with alge ratli multiplicity 2. In this case, by continuity,
z; < 0. lies between; ” andxx. This will reach a contradiction,
because of existence pf # pa € (0,1) such that;, (usg) =
2)

By Assumption and Lemma 1, it is easy to see that all roots, (14). Thus,i = j, thatis to sayyz;(u) runs fromx(l) tox;
of h1(A), h1(A) + ha(N), g1(N) andgy (\) + g2(A) are distinct, wWhenyu changes fronf to 1. The left statement is obvious.
real and negative.

Sincehy (xx) + prhe(xx) = 0 @andhy (xx) + poho(ax) = 0,

The dual of Propositions 1a and 2a are given as follow:
At the beginning, we develop some characterizations of the

(2)
even-odd parts of; (s) + () for u < [0, 1]. Eroposmon 1b. Suppose tha;t;0 is a root ofg; () andy;

a root of g1 () + g2(\) such thathy(\) and g1 (\) + g2(\)
Proposition 1a. Suppose that" is a root of#; () andz{” have no roots between|” and . LetA = {3 : 8 €
a root of ki (A) + ha(A) such thathi(A) and by (A) + ha(A) [0, 1], g2 (By(" + (1 — B)yS?) = 0} and denoten the number
have no roots betweenél) and x((f). LetA = {8 : 8 € ofelements i\, thenm is odd orm = 0.

[0,1], hg(ﬁxél) +(1-p)x f) )) = 0} and denoten the number " ) . B
of elements im, thenm is odd ofm = 0. Proposition 2b. If y, is a roo} )of equationg; (A\) =

@ 0, then there exists a numbey, < 0 such that
Proof: For all 3 e (0,1),z(8) = fzg’ + (1 — g4?) + g( )y = 0. Furthermore, for everyA e

B’ (w(B)) # 0, (w(B)) + ha(w(8)) # 0, if m # 0 O @ y@1), all of gi(A),g2() and
there exists at least a root df()\). Supposem is even, (mm{yz oy max{y ., })’ 91(%), 223

without loss of generality, we assume that’ < z{? and
01 < B2 <...< B, B € A. There must exist an> 0 such

that
ha(A)ha(A**) > 0,9A% € (2§, 2V +e), A € (@ =€, 2?)

g1(A) + g2(X) are nonzero, andy;(x) is continuous ory €
[0, 1], and

. . 2
lim g, (1) = 9", lim () = o,
pn—0 p—1

wherey; (1) satisfies the equati A+ A) =0.
Considering the equatioh; (\) + pho(A) = 0, sincehq (\) vilK) quation (A) + uga(A)

andh; (A) + ha()) have no other roots it , 2?)) we have Remark 1. By proposition 2a, together with its proof, and
proposition 2D, it is shown that for any € [0,1], {;(x)}
lim (_hl()‘) . lim (_hl()‘)) > 0. and{y; ()} are distinct, real and negative.
A—z(8)~ ha(A)" A-azBn)t ha(N)

Remark 2. For any i € [0, 1], denotex(u) the solution of

It follows that there exists a root df; (\) on (x(ﬁm),x((f)) equationh; (\) + pha(A) = 0. Then-k (Z 8 >|A w(u) # 0.

or of hi(\) + ha()) On (3?0 ’ (ﬂl))- We have reached a The similar statement is true fg (\) + pg2(A) = 0.

contradiction. This completes the proof.
By contrary, if% (Z;(ig)l,\ z(u) = 0, then it follows that

x(p) is aroot ofhy (A) + phe(A) with algebraic multiplicity 2.
This contradicts to Remark 1.

Proposition 2a.  If 2!" is a root of equationh;()\) =
0, then there exists a numbet§2) < 0 such that
hl(xz(-z)) + ha(x 2)) = 0. Furthermore, for every\ €
(2)} max{x(l) 22 )}), all of hi(\), ha()) and Lemma 2. Denotex(u) the solution of equatiorh; (\) +

(min{xi ,x; T ! :
ha(A) = 0 and the solution of equationy; (A
h1(\) + ho()\) are nonzero, and:; (1) is continuous onu € ng(()\)) — 0. Then y(w) a M) +

[0, 1] such that

d 1
lim 2;(p) = xl(l), lim x;(p) = 171(2), —(x(p)) = _Tb‘ ()
pn—0 w—1 dp dd (h gA))
wherez; () satisfies the equatioly (\) + pha(X) = 0. J )
Proof: Under our assumption, without loss of generality, let @(y(u)) TN (Ql(A)> =y ()
o < <) <2V <0, < <2l <P <0 A \92(V)



Proof: Starting with the equatia (z(u)) + pha(z(p)) = 0.
The chain rule now reads

dhy (x(p)) d(x(p)) dhy(z(p)) d(x(p))

Setz; = min{x}l), xl@)},ﬂ = max{:cgl), 931(2)}' and similarly

definey;, y, for I = i, + 1,4 + 2. This shows that

Tiv2 < Yit1 <Tit1 < Tip1 <Tip1 <Y <G <2; <0

)
To show thatf,(s) is a convex direction with respect §9(s),
it suffices to show thaf; (s) + p.f2(s) is Hurwitz stable for
anyp € [0,1]. For anyu € [0,1], the associated even-odd
parts of f1(s) + uf2(s) arehy(s?) + pha(s?) andg;(s?) +
s?), denote their roots; (11), y; (1), respectively. Then
[yi, Ti]. By (2), it follows that

+1g2(
zi(p) € (2o, 7o), yi(p) €

+ho(x(p))+p =0
W) dp TG T
which gives that
dw(p) () et
dp Lhi(A) + ptkha(X) TN
Sinceuy = — 7 Ew(“)) the result follows. The dual statement

can be confirmed similarly.

3 Main Result
The main result on our point can be stated as follows.

Theorem 1. fo(s) = ha(s®) + sg2(s?) is a convex direction
with respect tof; (s) = hi(s?)+sg1(s?) if one of the following
two conditions holds:
a) hi(s?) +ha(s?) +sg1(s %)
are Hurwitz stable;
b) Foranyi,j € {1,...,

%) andhy (s*) +s(g1(s%) +ga(s

n},0 < j —i <1 such that

20 >y 5 2 5 4 "
2 <y < RO <y,
we have
H; < G+ (=) —y\V), ifi=j;
Hi> G+ @M —yiY), ifi=j+1,
where 2" 2® 4V and y* are the i-th roots of
hi(N), hl()\) + ha(X), g1(A) and g1 (A) + g2(X), respectively,
and
E:max{x(l) (2)} z; *mln{x( ), (2)}
7 = max{y;", y?}, y; = minfy”,y?}
F Maxie(z;, 7] | o ;Lllu)
dk(hz()\)>
Hi:mmAG[%zz]{d hlm) }
# (1)
@ = maxxe[yb il { l(gll(m) }
ax sz

Proof: a) By hypothesis, all ofh(s?) + ha(s?) +

s91(s%), h1(s) + 5(g1(s%) + g2(5?)), f1(s) and f1(s) + fa(s)
are Hurwitz stable. It follows from interlacing property that

e (€] (2) @ (2

Tilo <Yiy1 <Tif <Y < 0,
o b
1—20—2 < yz—zi-l < ‘rEz—Zﬁ-l < yZZ 9 < O
E-&-)2<yz(+)1<xz(+)1<yz() ()<0

Tita(p) < Yir1 () < zigpa(p) < yilp) < zi(p) <0.
This shows thaf; (s) + jf2(s) is Hurwitz stable.

b) Without loss of generality, assume that i € {1,...,n}

satisfyingxgl) > y(l) > x(2) > y(z). By the mean value

theorem, there eX|st two numbqt@ w2 € [0, 1] such that

1 (G @) =) )
o 4 (4 sl =)
Applying Lemma 2, our hypothesis gives that

i) — (@t —y )+

<M|A=m(u1) + - e |A=yi(u2))
ax \ g (X dk(zzz(A))

(@ — oy + u (- H; + G)

1— )z — i)

8

yi(p) =

)
gy +

vV VvV E

(
0
Similar proofs can be given for the other cases. Thus for any
p € [0,1]

Tita () < yirr () < zipr(p) < yilp) < zi(p) <O0.

This shows thay (s) + uf2(s) is Hurwitz stable. The proof is
completed.

Remark 3. The first condition in Theorem 1 is exactly equiv-
alent to the result given in Ref5]. This point can be seen by
our proof.

Example 1. Let

fi(s) = 83+ 652 + 115 + 6,
fa(s) = 53 —3s% — s,

f3(s) = 83 — 352 + 81s + 30,
fa(s) = s —3s% + 175 + 30

It is easy to verify thatf; (s), fi(s) + fi(s)(i = 2,3,4) are

Hurwitz stable. Direct verification shows thgi(s) satisfies
the first condition of the Theorem f5(s) violates the first con-
dition but satisfies the second one of the Theorem 1, vl

satisfies neither one of Theorem 1. Applying the Theorem 1, it
follows that f>(s) and f3(s) are convex direction with respect
to f1(s), and whetherfy(s) is a convex direction with respect
to f1(s) can not be confirmed in this case by the Theorem 1.

In fact, from Fig. 1, 2, 3, it can be seen that all if(s),i =
2, 3,4 are convex direction with respect fa(s).
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