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Abstract

Convex direction with respect to a given Hurwitz polynomial
f1(s) is a local version of convex direction given by Rantzer.
In this paper, a new sufficient condition is given to judge and
construct a convex direction with respect tof1(s).

1 Introduction

In robustness analysis and synthesis, finite test is desired, such
as the Kharitonov theorem for interval polynomials[7]. Because
the stability domain in the coefficient space of polynomials is
not convex, generally speaking, finite test does not hold. A. C.
Bartlett, C. V. Hollot and L. Huang proved the edge theorem
for polynomial polytope with respect to any simply connected
domain[2]. Convex direction, as an instrument to jump from
an edge result to an extreme point result, play an important
role[3, 6]. Given a polynomialf2(s), f2(s) is called a con-
vex direction if any Hurwitz polynomialf1(s) (i.e., all roots of
f1(s) lie in the open left half plane) such thatf1(s) + µf2(s)
is Hurwitz stable for everyµ ∈ [0, 1] is equivalent to that
f1(s) + f2(s) is so. A polynomial is Hurwitz stable if it is
a Hurwitz polynomial. If we restrict the arbitrariness off1(s),
then the definition above gives a local version, which is called
the convex direction with respect tof1(s) in the following. The
concept is less restrictive and thus less conservative for a vari-
ety of robust stability applications, such as judging the stability
of a given segment. Thus, it is of interest to pay attention to
such problem.

There are several versions on the definition of convex direc-
tion with respect tof1(s), wheref1(s) is a Hurwitz poly-
nomial. Here we employ the definition given in Ref.[1].
Suppose thatf1(s) is Hurwitz stable. A polynomialf2(s) is
called a convex direction with respect tof1(s), if for any µ ∈
[0, 1], deg(f1(s) + µf2(s)) = deg(f1(s)) andf1(s) + µf2(s)
is Hurwitz stable is equivalent tof1(s)+f2(s) is so, where the
denotation deg(·) stands for the degree of polynomial.

The research on convex direction with respect tof1(s) follows

two lines. Starting with the definition, one line is similar to
the study of convex direction, and a frequency-related condi-
tion is given, which is necessary and sufficient[1]. As pointed
in the case of convex direction, this condition is checked by
sweepingω from 0 to∞. Thus, the computation efforts should
be demanding. The other one is based on the analysis of root
loci, where two different definitions on convex direction with
respect tof1(s) are given[4, 5]. The interest of results in Ref.
[4] is to give some useful descriptions on the characterization
of convex direction with respect tof1(s). Furthermore, in Ref.
[5] an algorithm is given to construct a set of convex direction
with respect tof1(s).

In this paper, the problem of convex direction with respect to
f1(s) is studied in terms of root loci, too. Two classes of convex
directions with respect tof1(s) are described, which enlarges
the set defined in Ref.[5]. An interesting example will be given
in the end. It is useful to show that there exists other class of
convex directions with respect tof1(s) except those pointed in
the Theorem.

2 Preliminaries

Assumption: f1(s) is a Hurwitz polynomial andf2(s) is
an arbitrary polynomial such thatf1(s)+µf2(s) has the same
degree asf1(s) for anyµ ∈ [0, 1], andf1(s)+f2(s) is Hurwitz
stable.

Definition 1. The polynomialf2(s) is called a convex direc-
tion with respect tof1(s), if that f1(s) andf1(s) + f2(s) are
Hurwitz stable is equivalent to thatf1(s) + µf2(s) is Hurwitz
stable for allµ ∈ [0, 1].

This definition is a local version of convex direction given by
Rantzer[3].

Denote the even-odd parts associated withf1(s), f2(s) and
fµ(s) = f1(s)+µf2(s) by (h1(λ), g1(λ)), (h2(λ), g2(λ)) and
(hµ(λ), gµ(λ)), i.e.,

f1(s) = h1(s2) + sg1(s2),
f2(s) = h2(s2) + sg2(s2),
fµ(s) = hµ(s2) + sgµ(s2).



This gives that

hµ(λ) = h1(λ) + µh2(λ), gµ(λ) = g1(λ) + µg2(λ)

We recall that a polynomial is Hurwitz stable if and only if
(h(λ), g(λ)) forms a positive pair, namely,

Lemma 1. [6] Let (h(λ), g(λ)) be the even-odd parts associ-
ated with the given real polynomialf(s) = h(s2) + sg(s2).
Thenf(s) is Hurwitz stable if and only if the roots ofh(λ) and
g(λ), says{xi} and{yi}, satisfyxi+2 < yi+1 < xi+1 < yi <
xi < 0.

By Assumption and Lemma 1, it is easy to see that all roots
of h1(λ), h1(λ) + h2(λ), g1(λ) andg1(λ) + g2(λ) are distinct,
real and negative.

At the beginning, we develop some characterizations of the
even-odd parts off1(s) + µf2(s) for µ ∈ [0, 1].

Proposition 1a. Suppose thatx(1)
0 is a root ofh1(λ) andx

(2)
0

a root of h1(λ) + h2(λ) such thath1(λ) and h1(λ) + h2(λ)
have no roots betweenx(1)

0 and x
(2)
0 . Let ∆ = {β : β ∈

[0, 1], h2(βx
(1)
0 +(1−β)x(2)

0 ) = 0} and denotem the number
of elements in∆, thenm is odd orm = 0.

Proof: For all β ∈ (0, 1), x(β) = βx
(1)
0 + (1 −

β)x(2)
0 , h1(x(β)) 6= 0, h1(x(β)) + h2(x(β)) 6= 0, if m 6= 0

there exists at least a root ofh2(λ). Supposem is even,
without loss of generality, we assume thatx

(1)
0 < x

(2)
0 and

β1 ≤ β2 ≤ . . . ≤ βm, βi ∈ ∆. There must exist anε > 0 such
that

h2(λ∗)h2(λ∗∗) > 0,∀λ∗ ∈ (x(1)
0 , x

(1)
0 +ε), λ∗∗ ∈ (x(2)

0 −ε, x
(2)
0 )

Considering the equationh1(λ) + µh2(λ) = 0, sinceh1(λ)
andh1(λ) + h2(λ) have no other roots in(x(1)

0 , x
(2)
0 ) we have

lim
λ→x(β1)−

(−h1(λ)
h2(λ)

) · lim
λ→x(βm)+

(−h1(λ)
h2(λ)

) > 0.

It follows that there exists a root ofh1(λ) on
(
x(βm), x(2)

0

)

or of h1(λ) + h2(λ) on
(
x

(1)
0 , x(β1)

)
. We have reached a

contradiction. This completes the proof.

Proposition 2a. If x
(1)
i is a root of equationh1(λ) =

0, then there exists a numberx(2)
i < 0 such that

h1(x
(2)
i ) + h2(x

(2)
i ) = 0. Furthermore, for everyλ ∈(

min{x(1)
i , x

(2)
i },max{x(1)

i , x
(2)
i }

)
, all of h1(λ), h2(λ) and

h1(λ) + h2(λ) are nonzero, andxi(µ) is continuous onµ ∈
[0, 1] such that

lim
µ→0

xi(µ) = x
(1)
i , lim

µ→1
xi(µ) = x

(2)
i ,

wherexi(µ) satisfies the equationh1(λ) + µh2(λ) = 0.

Proof: Under our assumption, without loss of generality, let
x

(1)
n < . . . < x

(1)
2 < x

(1)
1 < 0, x

(2)
n < . . . < x

(2)
2 < x

(2)
1 < 0

be roots ofh1(λ) and h1(λ) + h2(λ), respectively. Denote
xi(µ) the ith root of h1(λ) + µh2(λ). By continuity, xi(µ)
runs fromx

(1)
i to x

(2)
j whenµ changes from 0 to 1. Ifi 6= j,

then there existsi1, i2 ∈ {1, . . . , n}, µ1, µ2 ∈ [0, 1] such that

xi1(µ1) = xi2(µ2)
4
= x ∗ .

Sinceh1(x∗) + µ1h2(x∗) = 0 andh1(x∗) + µ2h2(x∗) = 0,
we haveµ1 = µ2. This shows thatx∗ is a root ofh1(λ) +
h2(λ) with algebraic multiplicity 2. In this case, by continuity,
x

(2)
i lies betweenx(1)

i1
andx∗. This will reach a contradiction,

because of existence ofµ3 6= µ4 ∈ (0, 1) such thatxi1(µ3) =
xi1(µ4). Thus,i = j, that is to say,xi(µ) runs fromx

(1)
i tox

(2)
i

whenµ changes from0 to 1. The left statement is obvious.

The dual of Propositions 1a and 2a are given as follow:

Proposition 1b. Suppose thaty(1)
0 is a root ofg1(λ) andy

(2)
0

a root of g1(λ) + g2(λ) such thath1(λ) and g1(λ) + g2(λ)
have no roots betweeny(1)

0 and y
(2)
0 . Let ∆ = {β : β ∈

[0, 1], g2(βy
(1)
0 + (1− β)y(2)

0 ) = 0} and denotem the number
of elements in∆, thenm is odd orm = 0.

Proposition 2b. If y
(1)
i is a root of equationg1(λ) =

0, then there exists a numbery(2)
i < 0 such that

g1(y
(2)
i ) + g2(y

(2)
i ) = 0. Furthermore, for everyλ ∈(

min{y(1)
i , y

(2)
i },max{y(1)

i , y
(2)
i }

)
, all of g1(λ), g2(λ) and

g1(λ) + g2(λ) are nonzero, andyi(µ) is continuous onµ ∈
[0, 1], and

lim
µ→0

yi(µ) = y
(1)
i , lim

µ→1
yi(µ) = y

(2)
i ,

whereyi(µ) satisfies the equationg1(λ) + µg2(λ) = 0.

Remark 1. By proposition 2a, together with its proof, and
proposition 2b, it is shown that for anyµ ∈ [0, 1], {xi(µ)}
and{yi(µ)} are distinct, real and negative.

Remark 2. For any µ ∈ [0, 1], denotex(µ) the solution of

equationh1(λ) + µh2(λ) = 0. Then d
dλ

(
h1(λ)
h2(λ)

)
|λ=x(µ) 6= 0.

The similar statement is true forg1(λ) + µg2(λ) = 0.

By contrary, if d
dλ

(
h1(λ)
h2(λ)

)
|λ=x(µ) = 0, then it follows that

x(µ) is a root ofh1(λ) + µh2(λ) with algebraic multiplicity 2.
This contradicts to Remark 1.

Lemma 2. Denotex(µ) the solution of equationh1(λ) +
µh2(λ) = 0 and y(µ) the solution of equationg1(λ) +
µg2(λ) = 0. Then

d

dµ
(x(µ)) = − 1

d
dλ

(
h1(λ)
h2(λ)

) |λ=x(µ)

d

dµ
(y(µ)) = − 1

d
dλ

(
g1(λ)
g2(λ)

) |λ=y(µ)



Proof: Starting with the equationh1(x(µ)) + µh2(x(µ)) = 0.
The chain rule now reads

dh1(x(µ))
d(x(µ))

· d(x(µ))
dµ

+h2(x(µ))+µ
dh2(x(µ))
d(x(µ))

· d(x(µ))
dµ

= 0

which gives that

d(x(µ))
dµ

= − h2(λ)
d

dλh1(λ) + µ d
dλh2(λ)

|λ=x(µ)

Sinceµ = −h1(x(µ))
h2(x(µ)) , the result follows. The dual statement

can be confirmed similarly.

3 Main Result

The main result on our point can be stated as follows.

Theorem 1. f2(s) = h2(s2) + sg2(s2) is a convex direction
with respect tof1(s) = h1(s2)+sg1(s2) if one of the following
two conditions holds:
a) h1(s2)+h2(s2)+sg1(s2) andh1(s2)+s(g1(s2)+g2(s2))
are Hurwitz stable;
b) For anyi, j ∈ {1, . . . , n}, 0 ≤ j − i ≤ 1 such that

x
(1)
i > y

(1)
j > x

(2)
i > y

(2)
j

x
(2)
i < y

(2)
j < x

(1)
i < y

(1)
j ,

(1)

we have

Hi < Gj + (x(1)
i − y

(1)
j ), if i = j;

Hi > Gj + (x(1)
i − y

(1)
j ), if i = j + 1,

where x
(1)
i , x

(2)
i , y

(1)
i and y

(2)
i are the i-th roots of

h1(λ), h1(λ) + h2(λ), g1(λ) andg1(λ) + g2(λ), respectively,
and

xi = max{x(1)
i , x

(2)
i }, xi = min{x(1)

i , x
(2)
i }

yi = max{y(1)
i , y

(2)
i }, yi = min{y(1)

i , y
(2)
i }

Hi = maxλ∈[xi,xi]

{
1

d
dλ

�
h1(λ)
h2(λ)

�}

Hi = minλ∈[xi,xi]

{
1

d
dλ

�
h1(λ)
h2(λ)

�}

Gi = maxλ∈[yi,yi]

{
1

d
dλ

�
g1(λ)
g2(λ)

�}

Gi = minλ∈[yi,yi]

{
1

d
dλ

�
g1(λ)
g2(λ)

�}

Proof: a) By hypothesis, all ofh1(s2) + h2(s2) +
sg1(s2), h1(s2) + s(g1(s2) + g2(s2)), f1(s) andf1(s) + f2(s)
are Hurwitz stable. It follows from interlacing property that

x
(2)
i+2 < y

(1)
i+1 < x

(2)
i+1 < y

(1)
i < x

(2)
i < 0,

x
(1)
i+2 < y

(2)
i+1 < x

(1)
i+1 < y

(2)
i < x

(1)
i < 0,

x
(1)
i+2 < y

(1)
i+1 < x

(1)
i+1 < y

(1)
i < x

(1)
i < 0,

x
(2)
i+2 < y

(2)
i+1 < x

(2)
i+1 < y

(2)
i < x

(2)
i < 0.

Setxl = min{x(1)
l , x

(2)
l }, xl = max{x(1)

l , x
(2)
l }, and similarly

defineyl, yl for l = i, i + 1, i + 2. This shows that

xi+2 < yi+1 < yi+1 < xi+1 < xi+1 < yi < yi < xi < 0
(2)

To show thatf2(s) is a convex direction with respect tof1(s),
it suffices to show thatf1(s) + µf2(s) is Hurwitz stable for
any µ ∈ [0, 1]. For anyµ ∈ [0, 1], the associated even-odd
parts off1(s) + µf2(s) areh1(s2) + µh2(s2) andg1(s2) +
+µg2(s2), denote their rootsxi(µ), yi(µ), respectively. Then
xi(µ) ∈ [xi, xi], yi(µ) ∈ [yi, yi]. By (2), it follows that

xi+2(µ) < yi+1(µ) < xi+1(µ) < yi(µ) < xi(µ) < 0.

This shows thatf1(s) + µf2(s) is Hurwitz stable.

b) Without loss of generality, assume thatj = i ∈ {1, . . . , n}
satisfyingx

(1)
i > y

(1)
j > x

(2)
i > y

(2)
j . By the mean value

theorem, there exist two numbersµ1, µ2 ∈ [0, 1] such that

xi(µ) = x
(1)
i + µ

(
d

dµ (xi(µ)|µ=µ1)
)

yi(µ) = y
(1)
i + µ

(
d

dµ (yi(µ)|µ=µ2)
)

Applying Lemma 2, our hypothesis gives that

xi(µ)− yi(µ) = (x(1)
i − y

(1)
i )+

µ

(
−1

d
dλ

�
h1(λ)
h2(λ)

� |λ=xi(µ1) + 1
d

dλ

�
g1(λ)
g2(λ)

� |λ=yi(µ2)

)

> (x(1)
i − y

(1)
i ) + µ

(−Hi + Gi

)

> (1− µ)(x(1)
i − y

(1)
i )

> 0

Similar proofs can be given for the other cases. Thus for any
µ ∈ [0, 1]

xi+2(µ) < yi+1(µ) < xi+1(µ) < yi(µ) < xi(µ) < 0.

This shows thatf1(s) + µf2(s) is Hurwitz stable. The proof is
completed.

Remark 3. The first condition in Theorem 1 is exactly equiv-
alent to the result given in Ref.[5]. This point can be seen by
our proof.

Example 1. Let

f1(s) = s3 + 6s2 + 11s + 6,
f2(s) = s3 − 3s2 − s,
f3(s) = s3 − 3s2 + 81s + 30,
f4(s) = s3 − 3s2 + 17s + 30.

It is easy to verify thatf1(s), f1(s) + fi(s)(i = 2, 3, 4) are
Hurwitz stable. Direct verification shows thatf2(s) satisfies
the first condition of the Theorem 1,f3(s) violates the first con-
dition but satisfies the second one of the Theorem 1, whilef4(s)
satisfies neither one of Theorem 1. Applying the Theorem 1, it
follows thatf2(s) andf3(s) are convex direction with respect
to f1(s), and whetherf4(s) is a convex direction with respect
to f1(s) can not be confirmed in this case by the Theorem 1.

In fact, from Fig. 1, 2, 3, it can be seen that all offi(s), i =
2, 3, 4 are convex direction with respect tof1(s).
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