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The transformation linking the original system matrix to its cor-

responding GSS form is shown to bero coprime equivalence
Abstract This type of equivalence has been studied by LeMg{) ,

Johnson 1993) and Pugh et al.1096) and has been shown to

In this paper, it is shown that any arbitrary 2-D polynomial SyQ_r.ovide the connection between all least order polynomial re-

tem matrix can be reduced by zero coprime system equivaler"i‘gé""t'onS of a given 2-D transfer function matrix (Pugh et al.

to a generalized state space form. The exact form of both
generalized state space (GSS) system matrix and the transfor-

mation linking it to the original system matrix are established, . )
System Matrices in GSS Form

1 Introduction Consider the following 2-D singular state space system as given
by Kaczorek (1988):

State space models play an important role in the theory of
1-D finite-dimensional linear systgms. In recent years attempts Ba(i+1,j+1) =A1z(i +1,) + Asx(i,j + 1)
have been made towards extending the state space representa- o . .
tion to more general systems, e.g. time-delay systems or sys- + Aoz (i, j) + Bru(i +1,5)
tems described by partial differential equations. Another ex- + Bou(i,j + 1) + Bou(i,j) (1)
tension from 1-D to 2-D is the 2-D discrete state space model y(i,j) =Cx(i, j) + Du(i, j) )
which has a number of variants as given by Roesser (197\?,?1 s th s the i
Attasi (1973) or Fornasini-Marchesini (1976). One of the limi- .elje:’L‘(’L,j) is the state vector(i, ) is the input vector,
tations of these models is that they can only be used to desc s J) i the output vecto?, Ao, Ay, As, Bo, Bi, By, C and
2-D proper transfer functions. In other words, they are suita edre constant real matrices of appropriate dimensionsénd
only for the representation of northeast quarter plane 2-D S)'E?y be singular.
tems. Several authors have suggested a generalized state spaer, taking the — D z-transformof (1) and(2) and assuming
description for 2-D systems. Zak (1984) suggested a genetadro boundary conditions yields
ized model based on Roesser's model while Kaczorek (1988)
proposed a model based on that of Fornasini-Marchesini. Since
the natural description of a system is not necessarily in a st{téZE —sA1 — 245 — Ag \ sB1 + 28> + By } { Z(s, 2) ]
space form, it is desirable to transform such a description into -C \ D - )

a state space one. The reduction of an arbitrary 2-D polyno- 0

mial system matrix to 2-D generalized state space form was = { (s, ) } 4)
first studied by Pugh et al.§98). Their algorithm involves the ) ] o

application of a two stage reduction procedure which includ&§€ polynomial matrix oveR[s, z],

the removal of factors from certain matrices to ensure that the s2E — sA; — 245 — Ay ‘ sB1 + 2B + By
transformations linking the original system matrix with the fi-P(s,2) = { —_C ‘ D ]
nal GSS form are polynomial. The method does not give a (5)

priori the form of neither the resulting 2-D GSS system matriy (4), is a sytem matrix in GSS form. The general form of a
nor the transformation linking it to the original 2-D polynomiab-p polynomial system matrix is given by

system matrix.
ploa— | T(s2)  Uls.2)
In the present work, we show that every 2-D polynomial sys- (5,2) = —Vi(s,z) W(s,z2)

(6)



where T(s, z), U(s, z), V (s, z) and W (s, z) are respectively 3 ~Reduction to GSS Form

r X1, rxXn,mxrandm xn polynomial matrices witl'(s, z)

invertible, in which case the system matrix(i6) is said to be Let P(s,z) be a 2-D(r + m) x (r + ) polynomial system
regular. The transfer function matrix of the system matrix 'ﬁHatrlx given by(6). First write P(s, z) as
(6) is given by ’

G(s,2) = V(s,2)T s, 2)U(s,2) + W(s,z)  (7) =33 Pis's (10)

=0 j=0

Definition 1 Two polynomial matrices” (s, z) and Si(s,z) whereP, ;,i=0,1,....,pandj =0,1,...,gare(r+m) x (r+
of appropriate dimensions, are said to be zero left car) real constant matrices. Now construct the matrices
prime if the compound matrik Py (s,z) Si(s,z) ] has full

rank for all complex values of the indeterminate péit z). O(rtm) (pg—1).(r-4m)

Similarly, Py(s,z) and Sy(s, z), of appropriate dimensions, E = { TEl TR } (11)
are said to be zero right coprime if the compound matrix ! /

[ Pf(s,z) S5(s,2) }T has full rank for all complex values WNere

of the indeterminate paifs, z). E; = [ P, Pp1; - Py ] i=1,2,...,q. (12)

Definition 2 Two polynomial system matrice’, (s, z) and

Py(s, z) € P(m,n), whereP(m, n) denotes the class ¢f + Ao = Diag(—I(rin)(pg—1)s —F0,0), (13)
m) X (r+mn) polynomial matrices where, n are fixed positive

integers and- is variable and ranges over all integers greater

thanmax(—m, —n), are said to be zero coprime system equiv- A =

alent (z.c.s.e.) if they are related by the following Ot m)p(g—1).(rm)
TTn)plq— TN )pq

O(r4n) (p—1),(r+n) (pa—p+1)  L(rn)(p-1) ;

M(s,z) 0 Ti(s,z)  Ui(s,2) Ort+m),otn)p(a—1)  —Ppo  —Fp-10 -+ —Pro
X(s,2) I ~Vi(s,z) Wi(s,2) (15)
and
S1(s,z) P>(s,z)
Or+n)p(a=1).(+n)p L(rtn)p(a-1)
_ TQ(sz) UQ(SVZ) N(S,Z) Y(S,Z) (9) Ay = 0(,,«_,_”)(1]_1)7(7._;'_”)1,(1 (16)
—Va(s,z) Wa(s, 2) 0 I, Az g Asg1 -+ Aon
P (s,2) Sa(s,z) where

where Pj(s,z),S1(s,z) are zero left coprime and Ay =10 Py =12
Py(s,z),S2(s,z) are zero right coprime andM(s,z), 2.3 = L Hrdm),(r+n)(p—1) 04 120 =% ""’q('17)
N(s,z), X(s,z) and Y(s,z) are polynomial matrices of

appropriate dimensions. .
pprop Theorem 1 Let the matricestl, Ay, A; and A, be as con-

structed in(11), (13), (15) and (16) respectively, then the
The transformation of.c.s.e.is an extension of Fuhrmann's|(r + n)pq + 2m] x [(r + n)pq + m + n] polynomial system
strict system equivalendeom the 1-D to the 2-D setting andmatrix in GSS fornt5):
has been shown by Jonhson (1993) to preserve important prop-

erties of the system matrik(s, z) szFE —sA| —zAy — Ay —Z, | 0
Q(s,2) = —Zn 0 |7, | (@8)
0 I, |0

Lemma 1 (Johnson 1993) The transformation of z.c.s.e. pre-
serves the transfer function and the invariant polynomials @fere 7, = [ O ((rin)pgtrim—n] In | and ZL =

the matrices: [ Op,((r4n)pg—m] Im | is related to the original system ma-

trix P(s, z) by the following :
() Ti(s,2),i=1,2.

51(87’2)P(5a2) = Q(S,Z)SQ(S,Z) (19)
i) Pi(s,z),i=1,2.
(W) Pi(s,z),0 where
iy | Ti(s, Ui(s, yi=1,2.
(i) [ Tis,2) Uils,2) ], O(r+n) (pa—1),r 0(7‘+"8<pq—1>,m
Tz( , 2 51(8,2) = " o ,

0(m+n),r O(m+n),7n
Om,r ‘ I,

(iv) [ sz&z)] i=1,2.



[ Y, i where
Y5
. t(s,2) =(22 +1)s® — (22 — 2 = 3)s + 22 — 4z + 1, (28)
Sa(s,z) = ) ) (21) .2 2 2 2
Y, u(s,z) =(2° — 2)s° — (2 = 2)s+ z° — z, (29)
-V |w v(s,2) = — (2 +2)s* + (22 — 2)s + 42 + 1, (30)
Onr | In ] w(s,z) =(22% — 2)s® + 525+ 2> —2+3 (31)
Vo= [ splga-i gp=2y0-i ... =i Tgr., (o) Herer=m=n=1landp=gq=2. o
I [ o 5 N ] @ rns (22) The transfer function of the system mathixs, z) is given by :
wherej = 1,2,...,¢ and ® denotes the matrix Kronecker
product. GIPl(s,2) = L
’ (2241)s2— (222 —2—3)s+ 22 —42+1
3 2 4 4 3 2 3
Proof. From the construction of)(s, z) and with appropri- X[=(27 427 = 22)8" + (27 = 27+ 327 — 22— d)s
ate partitioning of the matricesS; (s, z), P(s, z), Q(s, z) and — (2% =423 +22)8% + (2% — 62° + 132+ 2)s
Sa(s, z), it can be easily verified that RVPS B PR P (32)
Si(s,2)P(s,2) = Q(s,2)5(s, 2) (23)  and the invariant polynomials d?(s, z) are computed as :
O(r4n)(pg—1),r O(r4n)(pa—1).n P
_ T U (24) !
o Omtn,r Omtnn sggp] = (22" =223 + 22 + 2)st — (—3z4 +82% +82% — 4) s3
s w + (224 — 162 + 1322 + 122 + 3) s2
" (=2t +22° - 2422 £ 132 4+ 11) s

4 3 2
Lemma 2 The matrices ir(19), Q(s, z) and S (s, z) are zero +t2 -2 452" — 14z +3 (33)

left coprime andP(s, 2) and Sx(s, z) are zero right coprime. Writing P(s, z) in the form(10), the coefficient matrice®; ;

are given by
Proof. This follows from the fact that the minor obtained by

deleting the columnér + n)(pg — 1) + 1,...,(r + n)(pq — po—| 1 0 P -4 -1 |1 1
1) + r + n of the matrix 0,0 = 1 3 |for= 4 —1 |Pe2=1¢ 1|

Y S b 25 p— J—
N R T E |

is equal to+1 and the minor obtained by deleting the rows

1,...,7r+npgandthe rows +n+1,...,r +m+ 2n of the P _[1 0} P _[O —1} P _[1 1}
matrix 2,0 — 2 0 4721 — 1 -1 4722 — 0 2
{ P(s,z) ] (26) (36)
Sa(s,2) Then, constructing theé0 x 10 polynomial system matrix in

is equal tol. m GSS formQ(s, z) corresponding tq18) gives

Theorem 2 If P(s, z) is an arbitrary (r +m) x (r +n) poly-

nomial system matrix ovék[s, z] given by(6) andQ(s, z) is L 0 =2 0 0 |0
the correspondind(r + n)pq + 2m] x [(r 4+ n)pq + m + n) 0 L 0 —zb 0 10
2-D system matrix in GSS for(@8), thenP(s, z) andQ(s, z) Q(s,2) = 0 0 I —slp 0 10 (37)
are z.c.s.e. %1 %2 6(2)3 _%g —(])52 (1)

. . 0 0 0 0 1 0
Proof. The result follows immediately from Theorem 1 and
Lemma2.m where
Example 1 Consider the2 x 2 system matrixP(s,z) over Q, = { sz 8z ] Qo = { —25z2+2z —sz+z } :
R[s, z] given by 0 2sz —s2 z

[ t(s,2) | u(s,z2) _ s —sz
Pls,2) = —v(s,z) | w(s,z) (27) @ = s(z+2) —sz |’



Qs = s(z+3)—4z+1 25 — 2 and

sz—4z—1 5sz—2z+3 |’
Sa(s,2) = ”(‘B’ 2 | 9(51’ 2 (46)
and E, is the second column @%. ‘
The matricesF, Ay, A; and A, corresponding tq11, 13, 15 where
and16) are given by - -
SZ
00 0 0 0 0 0 0] 0
0 0 O 0O 0 0 00 z
00 0 0 0 0 00 (5. 0
0 0 O 0O 0 O 0 0 ns,z) = s
E=1690 0 00 0 00/ ©D 0
00 0 0 0 0 00 1
11 -2 -10-110 0
02 -1 0 1 -1 1 5 _(2—1—2)52—(22—1—2)5—42—1_
-1 0 0 0 0 0 0 0] and
0 -1 0 0 0 0 0 0 r 0 .
0 0O -1 0 0 0 0 0 52
0 0 0 -1 0 0 0 0
= 0
Ao o 0 0 0 -1 0 0 0 |’ .
0 0 0 0 0 -1 0 0 Y(s,2) = 0
0 0 0 0 0 0 -1 0 s
I 0 0 0 0 0 0 1 -3 | 0
] (42) 1
0000 0 0 0 0 (222 —2)s> +bsz+22 — 243
0O 0 0 0 0 0 O 0 - -
0000 0 0 0 0 _ o
0000 O 0 O 0 In fact it can be easily verified that
A=10000 0 0 1 o0 |
00 00 0 0 O 1 06,1 06,1
0000 -10 -3 -2 Si(s,2)P(5,2) = Qs,2)Sa(s,2) = | W92 uls2)
00 0 0 -2 0 O 0 02,1 02,1
) ) —’U(S,Z) UJ(S,Z)
00 0 0 1 0 0 0] (49)
00 0 O 0100 wheret(s, z), u(s, z), v(s,z) and w(s, z) are given by(28),
00 0 0 0O 10 (29), (30) and(31) respectively.
Ay = 00 0 0 0001 (44) The matricesQ(s, z), S1(s,z) are zero left coprime and the
00 0 0 0000 matricesP(s, z), Sa(s, z) are zero right coprime since the ma-
00 O 0 0 0 0 O trices
00 -1 -1 0 0 4 1
00 0 —100 4 1 [ Q(s,2) Si(s,2) ]

By virtue of Theorem 1 and Theorem 2, the polynomial mat@ad
P(s,z) in (27) and the corresponding system matrix in GSS [ P(s, z) }
form Q(s, z) in (37) are related by the z.c.s.e. transformation Sa(s, 2)

S1(s,2)P(s, z) = Q(s,2)5a(s, 2), where have respectively &0 x 10 and a2 x 2 minor which is equal

to 1.
The transfer function of the system matflxs, z) is given by :

1
(224 1)s2— (222 —2—3)s+22—4z+1
(45) x[—(23 + 2% — 22)s* + (2" — 23 + 322 — 22 — 4)s°
— (2t =428 +22)s2 + (21 — 622 + 132+ 2)s
+42% — 222 — 224 3]
=GFl(s, 2) (52)

elld (5,2) =

S1(s,z)

O‘OOHOOOOOO

»—K‘OOOOOOOOO




and the invariant polynomials @ (s, z) are : [5] T. Kaczorek,“The singular general model of 2-D sys-
tems and its solution”, I.E.E.E. Transactions on Auto-

elPl = el = [P = R = el = o) — R — 9 — 4 matic Control, 33, pp. 1060-1061, (1988).
= 6[1P], [6] B.C. Levy,“2-D polynomial and rational matrices and
[Q _ (9,4 _ 9,3 ,2 4 (3,4 18,8 1852  4)s their applications for the modelling of 2-D dynamical sys-
c10 = Z4 S A4 2)s 4 (237 487+ 82 s tems”, Ph.D. Thesis, Stanford University, U.S.A., (1981).
+ (22 — 1623 + 1327 + 122 + 3)s?
4 3 2 [7] M. Morf, B.C. Levy, S.Y. Kung,“New results in 2-D sys-
— 22° — 24 1 11 .
+ (=422 2+ 132+ 11)s tems theory: Part I”, Proceedings of the IEEE, 65, pp.
42t =23 4522 - 14243 861-872, (1977).
=lf] (53)
2 [8] A.C. Pugh, S.J. Mclnerney, M. Hou, G.E. Hayton,"A
Transformation for 2-D Systems and its Invariants”, Pro-
which is in accord with Lemma 1. ceedings of the 35th I.E.E.E. conference on decision and

control, (1996).

[9] A.C. Pugh, S.J. Mclnerney, M.S. Boudellioua, G.E. Hay-
ton,”Matrix pencil equivalents of a general 2-D poly-
nomial matrix”, International Journal of Control, 71, 6,

In this paper, a new reduction procedure to GSS form of 1027-1050, (1998).

an arbitrary 2-D system matrix has been presented. The exact .

nature of the equivalence transformation linking the origin&t0l A-C. Pugh, S.J. Mcinerney, M.S. Boudellioua, G.E. Hay-

system matrix with its corresponding GSS form has been set ON."A transformation for 2-D linear systems and a gen-

out and shown to be that @kro coprime system equivalence  €ralization of a theorem of Rosenbrock”, 71, 3, 491-503,

Despite the fact that the resulting 2-D system matrix may be (1998).

larger in size than the one obtained by the algorithm used V| R p. Roesser, A discrete state space model for linear im-
Pugh et al. (1998), the method presented in this paper has the age processing”, IEEE Trans. Autom. Control, AC-20, 1,
advantage of providing a priori both the final 2-D system matrix pp. 1-10, (1975).

in GSS form and the transformation relating it to the original

polynomial system matrix. To reduce the size of the resultifig§2] H.H. Rosenbrock, State space and multivariable theory,
system matrix while preserving its GSS form, a constams.e. Nelson, (1970).

transformation may be used.

4 Conclusions
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