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Abstract

In this paper, it is shown that any arbitrary 2-D polynomial sys-
tem matrix can be reduced by zero coprime system equivalence
to a generalized state space form. The exact form of both the
generalized state space (GSS) system matrix and the transfor-
mation linking it to the original system matrix are established.

1 Introduction

State space models play an important role in the theory of
1-D finite-dimensional linear systems. In recent years attempts
have been made towards extending the state space representa-
tion to more general systems, e.g. time-delay systems or sys-
tems described by partial differential equations. Another ex-
tension from 1-D to 2-D is the 2-D discrete state space model
which has a number of variants as given by Roesser (1975),
Attasi (1973) or Fornasini-Marchesini (1976). One of the limi-
tations of these models is that they can only be used to describe
2-D proper transfer functions. In other words, they are suitable
only for the representation of northeast quarter plane 2-D sys-
tems. Several authors have suggested a generalized state space
description for 2-D systems. Zak (1984) suggested a general-
ized model based on Roesser’s model while Kaczorek (1988)
proposed a model based on that of Fornasini-Marchesini. Since
the natural description of a system is not necessarily in a state
space form, it is desirable to transform such a description into
a state space one. The reduction of an arbitrary 2-D polyno-
mial system matrix to 2-D generalized state space form was
first studied by Pugh et al.(1998). Their algorithm involves the
application of a two stage reduction procedure which includes
the removal of factors from certain matrices to ensure that the
transformations linking the original system matrix with the fi-
nal GSS form are polynomial. The method does not give a
priori the form of neither the resulting 2-D GSS system matrix
nor the transformation linking it to the original 2-D polynomial
system matrix.

In the present work, we show that every 2-D polynomial sys-

tem matrix is equivalent to a 2-D generalized state space form.
The exact form of both the GSS system matrix and the transfor-
mation linking it with the original system matrix will be given.

The transformation linking the original system matrix to its cor-
responding GSS form is shown to bezero coprime equivalence.
This type of equivalence has been studied by Levy (1981) ,
Johnson (1993) and Pugh et al. (1996) and has been shown to
provide the connection between all least order polynomial re-
alizations of a given 2-D transfer function matrix (Pugh et al.
1998).

2 System Matrices in GSS Form

Consider the following 2-D singular state space system as given
by Kaczorek (1988):

Ex(i + 1, j + 1) =A1x(i + 1, j) + A2x(i, j + 1)
+ A0x(i, j) + B1u(i + 1, j)
+ B2u(i, j + 1) + B0u(i, j) (1)

y(i, j) =Cx(i, j) + Du(i, j) (2)

wherex(i, j) is the state vector,u(i, j) is the input vector,
y(i, j) is the output vector,E, A0, A1, A2, B0, B1, B2, C and
D are constant real matrices of appropriate dimensions andE
may be singular.

Then, taking the2−D z-transformof (1) and(2) and assuming
zero boundary conditions yields

[
szE − sA1 − zA2 −A0 sB1 + zB2 + B0

−C D

] [
x(s, z)

−u(s, z)

]
=

[
0

−y(s, z)

]
(4)

The polynomial matrix overR[s, z],

P (s, z) =
[

szE − sA1 − zA2 −A0 sB1 + zB2 + B0

−C D

]
(5)

in (4), is a sytem matrix in GSS form. The general form of a
2-D polynomial system matrix is given by

P (s, z) =
[

T (s, z) U(s, z)
−V (s, z) W (s, z)

]
(6)



whereT (s, z), U(s, z), V (s, z) and W (s, z) are respectively
r×r, r×n, m×r andm×n polynomial matrices withT (s, z)
invertible, in which case the system matrix in(6) is said to be
regular. The transfer function matrix of the system matrix in
(6) is given by

G(s, z) = V (s, z)T−1(s, z)U(s, z) + W (s, z) (7)

Definition 1 Two polynomial matricesP1(s, z) and S1(s, z)
of appropriate dimensions, are said to be zero left co-
prime if the compound matrix

[
P1(s, z) S1(s, z)

]
has full

rank for all complex values of the indeterminate pair(s, z).
Similarly, P2(s, z) and S2(s, z), of appropriate dimensions,
are said to be zero right coprime if the compound matrix[

PT
2 (s, z) ST

2 (s, z)
]T

has full rank for all complex values
of the indeterminate pair(s, z).

Definition 2 Two polynomial system matricesP1(s, z) and
P2(s, z) ∈ P(m,n), whereP(m,n) denotes the class of(r +
m)×(r+n) polynomial matrices wherem,n are fixed positive
integers andr is variable and ranges over all integers greater
thanmax(−m,−n), are said to be zero coprime system equiv-
alent (z.c.s.e.) if they are related by the following

[
M(s, z) 0
X(s, z) Im

]
︸ ︷︷ ︸

S1(s,z)

[
T1(s, z) U1(s, z)
−V1(s, z) W1(s, z)

]
︸ ︷︷ ︸

P2(s,z)

=
[

T2(s, z) U2(s, z)
−V2(s, z) W2(s, z)

]
︸ ︷︷ ︸

P1(s,z)

[
N(s, z) Y (s, z)

0 In

]
︸ ︷︷ ︸

S2(s,z)

(9)

where P1(s, z), S1(s, z) are zero left coprime and
P2(s, z), S2(s, z) are zero right coprime andM(s, z),
N(s, z), X(s, z) and Y (s, z) are polynomial matrices of
appropriate dimensions.

The transformation ofz.c.s.e. is an extension of Fuhrmann’s
strict system equivalencefrom the 1-D to the 2-D setting and
has been shown by Jonhson (1993) to preserve important prop-
erties of the system matrixP (s, z)

Lemma 1 (Johnson 1993) The transformation of z.c.s.e. pre-
serves the transfer function and the invariant polynomials of
the matrices:

(i) Ti(s, z), i = 1, 2.

(ii) Pi(s, z), i = 1, 2.

(iii)
[

Ti(s, z) Ui(s, z)
]
, i = 1, 2.

(iv)

[
Ti(s, z)
−Vi(s, z)

]
, i = 1, 2.

3 Reduction to GSS Form

Let P (s, z) be a 2-D(r + m) × (r + n) polynomial system
matrix given by(6). First writeP (s, z) as

P (s, z) =
p∑

i=0

q∑
j=0

Pi,js
izj (10)

wherePi,j , i = 0, 1, ..., p andj = 0, 1, ..., q are(r+m)× (r+
n) real constant matrices. Now construct the matrices

E =
[

0(r+n)(pq−1),(r+n)pq

Eq Eq−1 · · · E1

]
(11)

where

Ej =
[

Pp,j Pp−1,j · · · P1,j

]
, j = 1, 2, . . . , q. (12)

A0 = Diag(−I(r+n)(pq−1),−P0,0), (13)

A1 = 0(r+n)p(q−1),(r+n)pq

0(r+n)(p−1),(r+n)(pq−p+1) I(r+n)(p−1)

0(r+m),(r+n)p(q−1) −Pp,0 −Pp−1,0 · · · −P1,0

 ,

(15)
and

A2 =

 0(r+n)p(q−1),(r+n)p I(r+n)p(q−1)

0(r+n)(p−1),(r+n)pq

A2,q A2,q−1 · · · A2,1

 (16)

where

A2,j =
[

0(r+m),(r+n)(p−1) −P0,j

]
, j = 1, 2, . . . , q.

(17)

Theorem 1 Let the matricesE, A0, A1 and A2 be as con-
structed in(11), (13), (15) and (16) respectively, then the
[(r + n)pq + 2m] × [(r + n)pq + m + n] polynomial system
matrix in GSS form(5):

Q(s, z) =

 szE − sA1 − zA2 −A0 −Zm 0
−Zn 0 In

0 Im 0

 (18)

where Zn =
[

0n,[(r+n)pq+r+m−n] In

]
and ZT

m =[
0m,[(r+n)pq−m] Im

]
is related to the original system ma-

trix P (s, z) by the following :

S1(s, z)P (s, z) = Q(s, z)S2(s, z) (19)

where

S1(s, z) =


0(r+n)(pq−1),r 0(r+n)(pq−1),m

Ir 0r,m

0(m+n),r 0(m+n),m

0m,r Im

 ,



S2(s, z) =



Y1

Y2

...
Yq

−V W
0n,r In


, (21)

Yj =
[

sp−1zq−j sp−2zq−j · · · zq−j
]T ⊗ Ir+n, (22)

wherej = 1, 2, . . . , q and⊗ denotes the matrix Kronecker
product.

Proof. From the construction ofQ(s, z) and with appropri-
ate partitioning of the matricesS1(s, z), P (s, z), Q(s, z) and
S2(s, z), it can be easily verified that

S1(s, z)P (s, z) = Q(s, z)S2(s, z) (23)

=


0(r+n)(pq−1),r 0(r+n)(pq−1),n

T U
0m+n,r 0m+n,n

−V W

 (24)

Lemma 2 The matrices in(19), Q(s, z) andS1(s, z) are zero
left coprime andP (s, z) andS2(s, z) are zero right coprime.

Proof. This follows from the fact that the minor obtained by
deleting the columns(r + n)(pq − 1) + 1, . . . , (r + n)(pq −
1) + r + n of the matrix[

Q(s, z) S1(s, z)
]

(25)

is equal to±1 and the minor obtained by deleting the rows
1, . . . , r + npq and the rowsr + n + 1, . . . , r + m + 2n of the
matrix [

P (s, z)
S2(s, z)

]
(26)

is equal to1.

Theorem 2 If P (s, z) is an arbitrary (r +m)× (r +n) poly-
nomial system matrix overR[s, z] given by(6) andQ(s, z) is
the corresponding[(r + n)pq + 2m] × [(r + n)pq + m + n]
2-D system matrix in GSS form(18), thenP (s, z) andQ(s, z)
are z.c.s.e.

Proof. The result follows immediately from Theorem 1 and
Lemma 2.

Example 1 Consider the2 × 2 system matrixP (s, z) over
R[s, z] given by

P (s, z) ≡
[

t(s, z) u(s, z)
−v(s, z) w(s, z)

]
(27)

where

t(s, z) =(z2 + 1)s2 − (2z2 − z − 3)s + z2 − 4z + 1, (28)

u(s, z) =(z2 − z)s2 − (z2 − 2)s + z2 − z, (29)

v(s, z) =− (z + 2)s2 + (z2 − z)s + 4z + 1, (30)

w(s, z) =(2z2 − z)s2 + 5zs + z2 − z + 3 (31)

Herer = m = n = 1 andp = q = 2.
The transfer function of the system matrixP (s, z) is given by :

G[P ](s, z) =
1

(z2 + 1)s2 − (2z2 − z − 3)s + z2 − 4z + 1
×[−(z3 + z2 − 2z)s4 + (z4 − z3 + 3z2 − 2z − 4)s3

− (z4 − 4z3 + 2z)s2 + (z4 − 6z3 + 13z + 2)s

+ 4z3 − 2z2 − 2z + 3] (32)

and the invariant polynomials ofP (s, z) are computed as :

ε
[P ]
1 = 1

ε
[P ]
2 = (2z4 − 2z3 + z2 + z)s4 −

(
−3z4 + 8z3 + 8z2 − 4

)
s3

+
(
2z4 − 16z3 + 13z2 + 12z + 3

)
s2

+
(
−z4 + 2z3 − 24z2 + 13z + 11

)
s

+ z4 − z3 + 5z2 − 14z + 3 (33)

Writing P (s, z) in the form(10), the coefficient matricesPi,j

are given by

P0,0 =
[

1 0
−1 3

]
, P0,1 =

[
−4 −1
−4 −1

]
, P0,2 =

[
1 1
0 1

]
,

P1,0 =
[

3 2
0 0

]
, P1,1 =

[
1 0
1 5

]
, P1,2 =

[
−2 −1
−1 0

]
,

P2,0 =
[

1 0
2 0

]
, P2,1 =

[
0 −1
1 −1

]
, P2,2 =

[
1 1
0 2

]
(36)

Then, constructing the10 × 10 polynomial system matrix in
GSS formQ(s, z) corresponding to(18) gives

Q(s, z) ≡


I2 0 −zI2 0 0 0
0 I2 0 −zI2 0 0
0 0 I2 −sI2 0 0

Q1 Q2 Q3 Q4 −E2 0
0 0 0 −ET

2 0 1
0 0 0 0 1 0

 (37)

where

Q1 =
[

sz sz
0 2sz

]
, Q2 =

[
−2sz + z −sz + z
−sz z

]
,

Q3 =
[

s −sz
s(z + 2) −sz

]
,



Q4 =
[

s(z + 3)− 4z + 1 2s− z
sz − 4z − 1 5sz − z + 3

]
,

andE2 is the second column ofI2.

The matricesE, A0, A1 andA2 corresponding to(11, 13, 15
and16) are given by

E =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 1 −2 −1 0 −1 1 0
0 2 −1 0 1 −1 1 5


, (41)

A0 =



−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 1 −3


,

(42)

A1 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 −1 0 −3 −2
0 0 0 0 −2 0 0 0


, (43)

A2 =



0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 −1 −1 0 0 4 1
0 0 0 −1 0 0 4 1


(44)

By virtue of Theorem 1 and Theorem 2, the polynomial matrix
P (s, z) in (27) and the corresponding system matrix in GSS
form Q(s, z) in (37) are related by the z.c.s.e. transformation
S1(s, z)P (s, z) = Q(s, z)S2(s, z), where

S1(s, z) =



0 0
0 0
0 0
0 0
0 0
0 0
1 0
0 0
0 0
0 1


, (45)

and

S2(s, z) ≡
[

n(s, z) y(s, z)
0 1

]
(46)

where

n(s, z) =



sz
0
z
0
s
0
1
0

(z + 2)s2 − (z2 + z)s− 4z − 1


and

y(s, z) =



0
sz
0
z
0
s
0
1

(2z2 − z)s2 + 5sz + z2 − z + 3


In fact it can be easily verified that

S1(s, z)P (s, z) = Q(s, z)S2(s, z) ≡


06,1 06,1

t(s, z) u(s, z)
02,1 02,1

−v(s, z) w(s, z)


(49)

wheret(s, z), u(s, z), v(s, z) and w(s, z) are given by(28),
(29), (30) and(31) respectively.

The matricesQ(s, z), S1(s, z) are zero left coprime and the
matricesP (s, z), S2(s, z) are zero right coprime since the ma-
trices [

Q(s, z) S1(s, z)
]

and [
P (s, z)
S2(s, z)

]
have respectively a10 × 10 and a2 × 2 minor which is equal
to 1.
The transfer function of the system matrixQ(s, z) is given by :

G[Q](s, z) =
1

(z2 + 1)s2 − (2z2 − z − 3)s + z2 − 4z + 1
×[−(z3 + z2 − 2z)s4 + (z4 − z3 + 3z2 − 2z − 4)s3

− (z4 − 4z3 + 2z)s2 + (z4 − 6z3 + 13z + 2)s

+ 4z3 − 2z2 − 2z + 3]

=G[P ](s, z) (52)



and the invariant polynomials ofQ(s, z) are :

ε
[Q]
1 = ε

[Q]
2 = ε

[Q]
3 = ε

[Q]
4 = ε

[Q]
5 = ε

[Q]
6 = ε

[Q]
7 = ε

[Q]
8 = 1

= ε
[P ]
1 ,

ε
[Q]
10 = (2z4 − 2z3 + z2 + z)s4 + (−3z4 + 8z3 + 8z2 − 4)s3

+ (2z4 − 16z3 + 13z2 + 12z + 3)s2

+ (−z4 + 2z3 − 24z2 + 13z + 11)s

+ z4 − z3 + 5z2 − 14z + 3

= ε
[P ]
2 . (53)

which is in accord with Lemma 1.

4 Conclusions

In this paper, a new reduction procedure to GSS form of
an arbitrary 2-D system matrix has been presented. The exact
nature of the equivalence transformation linking the original
system matrix with its corresponding GSS form has been set
out and shown to be that ofzero coprime system equivalence.
Despite the fact that the resulting 2-D system matrix may be
larger in size than the one obtained by the algorithm used by
Pugh et al. (1998), the method presented in this paper has the
advantage of providing a priori both the final 2-D system matrix
in GSS form and the transformation relating it to the original
polynomial system matrix. To reduce the size of the resulting
system matrix while preserving its GSS form, a constantz.c.s.e.
transformation may be used.
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