
COMPARISON OF ALGORITHMS FOR COMPUTING INFINITE
STRUCTURAL INDICES OF POLYNOMIAL MATRICES

J.C. Zúñiga1 and D. Henrion1,2,3

1. Laboratoire d’Analyse et d’Architecture des Systèmes,
Centre National de la Recherche Scientifique.

7 Avenue du Colonel Roche,
31 077 Toulouse, France.

2. Institute of Information Theory and Automation,
Academy of Sciences of the Czech Republic.

Pod vodárenskou věž́ı 4,
182 08 Prague, Czech Republic.

3. Corresponding author. FAX: +33 5 61 33 69 69.
E-mail: henrion@laas.fr

Keywords : Polynomial matrices, structural indices,
decoupling control, numerical linear algebra, computer-
aided control system design.

Abstract

A new algorithm is proposed to compute the infinite struc-
tural indices of a polynomial matrix, i.e. the algebraic and
geometric multiplicities of its poles and zeros at infinity.
The algorithm is based on numerically stable operations
only, and takes full advantage of the block Toeplitz struc-
ture of a constant matrix built directly from the polyno-
mial matrix coefficients. Comparative numerical examples
and a full computational complexity analysis indicate that
the Toeplitz algorithm can be viewed as a competitive al-
ternative to the well-known state-space pencil matrix al-
gorithm for obtaining structural indices.

1 Introduction

Polynomials and polynomial matrices arise naturally and
cannot be avoided in linear system theory. By analogy
with scalar rational transfer functions, matrix transfer
functions of linear systems can be written in polynomial
matrix fraction form as N(s)D−1(s) where D(s) is a non-
singular polynomial matrix [8, 6, 1].

Zeros of polynomial matrices naturally represent either
poles or zeros of linear multivariable systems described by
polynomial matrix fractions. They are frequently encoun-
tered when analyzing and/or designing linear systems or
filters. Associated with the zeros are the finite and infinite
structures of a polynomial matrix A(s), defined from spe-
cific canonical forms under matrix equivalence: the Smith

form for the finite structure [3] and the Smith-MacMillan
form at infinity for the infinite structure [15].

In this paper, we are concerned with numerical algorithms
for computing the so-called infinite structural indices of a
polynomial matrix, i.e. algebraic and geometric multiplic-
ities of its zeros and poles at infinity. Dynamically, infi-
nite zero orders of the system are related to the number
of times that the outputs of the system have to be dif-
ferentiated for a component of the input vector to appear
explicitly. Thus, this information is crucial in the solu-
tion of important control problems. For instance, a linear
multivariable system is row by row decouplable by static
state feedback if and only if the sum of its infinite zero or-
ders equals the sum of its row infinite zero orders. Other
typical control problems where infinite structural indices
of polynomial matrices play a fundamental role are model
matching and disturbance rejection, see the introduction
in [5] and the references therein.

Up to our knowledge there basically exist two algorithms
to compute structural indices of polynomial matrices:

• The pencil algorithm, based on generalized state-
space realizations and the correspondence between
the Smith-MacMillan form of a rational matrix and
the Kronecker canonical form of an associated pencil
matrix [13]. The pencil algorithm allows to compute
all the structural indices (finite and infinite) of a poly-
nomial matrix [14].

• The Toeplitz algorithm, proposed in [5] as an exten-
sion of a method originally described in [4] to com-
pute and extract the finite structure of a polynomial
matrix. The algorithm is rather similar in spirit to
the algorithm proposed in [12]. In this reference, the
structure of a rational matrix at any point is com-
puted via orthogonal transformations on Toeplitz ma-

trices built from the Laurent expansion.

In this paper, our objective is to revisit the Toeplitz al-
gorithm of [5] in order to take full advantage of the block
Toeplitz structure and therefore to reduce the compu-
tational burden as much as possible. The algorithm is
designed while keeping with our main impetus, which is
the development of reliable numerical methods for dealing
with polynomial matrices and their implementation in a
user-friendly commercial Matlab package called the Poly-
nomial Toolbox, developed and produced by the company
PolyX Ltd. [10]. In this regard, all the routines used
in the algorithm are numerically stable in the sense that
they are based on backward stable (orthogonal) transfor-
mations [2, 9].

By a thorough computational complexity analysis, we
show that the Toeplitz algorithm may be considered as
a competitive “polynomial approach” alternative to the
“state-space approach” algorithms proposed in [13] and
recently implemented in the Fortran library Slicot [11].

2 Toeplitz Approach

Consider a non-singular n× n polynomial matrix

A(s) = A0 +A1s+ · · ·+Ad−1s
d−1 +Ads

d (1)

of degree d and let Tk = Ad+1−k.

The algorithm to obtain the structure at infinity of A(s)
processes the block Toeplitz matrix

T =

T1

T2 T1

...
...

. . .
Tk Tk−1 · · · T1

and is described as follows:

• Step 1. Obtain the singular value decomposition
(SVD) S = PTT1Q1 and the rank r1 of T1.

If v1 = n − r1 is not zero, make the column com-
pression T1Q1 = [C1 0] where C1 has r1 columns and
update the next row block of T , T̂2 = [T2Q̄1 T1] where
Q̄1 contains the v1 rightmost columns of Q1.

If v1 is zero then go to End.

• Step k. Obtain the SVD S = PT T̂kQ̂k and the rank
rk of T̂k.

If vk = n − rk is not zero, make the column com-
pression T̂kQ̂k = [Ck 0] where Ck has rk columns,
let

Qk =
[
Qk−1 0

0 In

] [
Ir1+r2+···+rk−1 0

0 Q̂k

]

and update the next row block of T , T̂k+1 = [[Tk+1

· · · T3 T2]Q̄k T1] where Q̄k contains the wk = v1 +
v2 + · · ·+ vk rightmost columns of Qk.

If vk is zero then go to End.

• End. For i = 1, 2, . . . , k − 1, if i ≥ d then A(s) has
vi−vi+1 zeros at infinity of degree i−d. If i ≤ d then
A(s) has vi − vi+1 poles at infinity of degree d − i.
A(s) has n− v1 poles at infinity of degree d.

In order to count the number of operations that the pre-
vious algorithm requires, we present its basic code in a
Matlab-like syntax.

Function sinftoep
Returns vector v = [v1 v2 · · ·] of nullities characterizing
the structure at infinity of a given non-singular polynomial
matrix A(s) ∈ Rn×n[s] of degree d.

• Step 0. T̂1 = T1

w0 = 0
Q0 = In
k = 1

• Step k. [P,D, Q̂k] = svd(T̂k)
rk = rank(T̂k)
vk = n− rk
wk = wk−1 + vk
If vk = 0, goto End
Qk1 = Qk−1 ∗ Q̂k(1 : wk−1, (rk + 1) : (n+ wk−1))
Qk2 = Q̂k((wk−1 + 1) : (n + wk−1), (rk + 1) : (n +
wk−1))
Qk = [Qk1 ; Qk2]
T̂k+1 = [[Tk+1 · · · T3 T2] ∗Qk T1]
k = k + 1

• End. Return v

We consider that an SVD for a matrix A ∈ Rm×n requires
4m2n+ 8mn2 + 9n3 operations, and that a multiplication
C = AB with A ∈ RmA×n and B ∈ Rn×nB requires (2n−
1)mAnB operations [2].

In step k, sinftoep executes one SVD of dimension n ×
(n + wk−1), one multiplication of dimensions (k − 1)n ×
wk−1 by wk−1×wk, and one multiplication of dimensions
n× kn by kn× wk, namely

flopsTk = 9w3
k−1 + n(33 + 2k)w2

k−1 +
n(47n+ 2kn+ 2vkk − 2vk − k)wk−1 +

kn(2n− 1)vk + 21n3 (2)

operations.

Supposing that q steps are needed to recover all the struc-
ture at infinity of matrix A(s), that is to say vq+1 = 0,

then the total number of operations that sinftoep per-
forms is

flopsT =
q+1∑
k=1

flopsTk (3)

3 Pencil Approach

The algorithm to obtain the structure at infinity of the
matrix A(s) given in (1) processes the pencil

P (s) = sE − L = s

−In

. . .
−In

A0 A1 · · · Ad−1

−

−In

. . .
−In

−Ad

and is described as follows. For more details see [13].

Let us take L1 = L, E1 = E, w0 = 0, and r0 = nd.

• Step k. Obtain the SVD S = PTLkQ and the rank
rk of Lk.

If vk = rk−1 − rk is not zero, make the column com-
pressions LkQ = [RLk 0], and EkQ = [REk Nk],
where REk and RLk have rk columns. Obtain the
SVD S = PTNkQ, and make the permuted row com-
pressions

IpP
TRk =

[
Lk+1

RLk,2

]
, IpP

TRbk =
[
Ek+1

REk,2

]
,

IpP
TNk =

[
0

Nk,2

]
where Lk+1 and Ek+1 have rk rows, and

Ip =
[

0 Irk
Ivk 0

]
.

If vk is zero then go to End.

• End. For i = 1, 2, . . . , k − 1, if i ≥ d then A(s) has
vi−vi+1 zeros at infinity of degree i−d. If i ≤ d then
A(s) has vi − vi+1 poles at infinity of degree d − i.
A(s) has n− v1 poles at infinity of degree d.

In order to count the number of operations that the pre-
vious algorithm requires, we also present its basic code in
a Matlab-like syntax.

Function sinfpenc
Returns vector v = [v1 v2 · · ·] of nullities characterizing
the structure at infinity of a given non-singular polynomial
matrix A(s) ∈ Rn×n[s] of degree d.

• Step 0. Obtain pencil P (s) = sE − L
L1 = L
E1 = E
w0 = 0
r0 = n ∗ d
k = 1

• Step k. [P,D,Q] = svd(Lk)
rk = rank(Lk)
vk = rk−1 − rk
wk = wk−1 + vk
If vk = 0, goto End
Lk+1 = Lk ∗Q(:, 1 : rk)
Ek+1 = Ek ∗Q
[P,D,Q] = svd(Ek+1(:, (rk + 1) : (nd− wk−1))
P̄ = Ip ∗ PT
Lk+1 = P̄ ∗ Lk+1

Lk+1 = Lk+1(1 : rk, :)
Ek+1 = P̄ ∗ Ek+1(:, 1 : rk)
Ek+1 = Ek+1(1 : rk, :)
k = k + 1

• End. Return v

In step k, sinfpenc executes one SVD of dimension
(nd − wk−1) × (nd − wk−1), another one of dimension
(nd−wk−1)×vk, two multiplications of dimensions (nd−
wk−1)×(nd−wk−1) by (nd−wk−1)×(nd−wk−1), and three
multiplications of dimensions (nd− wk−1)× (nd− wk−1)
by (nd− wk−1)× (nd− wk), namely

flopsPk = −31w3
k−1 + (93nd− 2vk − 5)w2

k−1 +

(10nd+ 4ndvk − 93n2d2 − 3vk − 8v2
k)wk−1 +

9v3
k + 8ndv2

k + nd(3− 2nd)vk + n2d2(31nd− 5) (4)

operations.

Now, supposing that q steps are needed to recover all the
structure at infinity of matrix A(s), the total number of
operations that sinftoep performs is equal to

flopsP =
q+1∑
k=1

flopsPk (5)

4 Comparison

As we can see from equations (2) and (4), when obtaining
the structure at infinity of a polynomial matrix A(s) sev-
eral quantities are involved, not only the dimension n of
the matrix, but also its degree d and in general its struc-
ture, namely nullities vk and number of steps q. In this
section we present an analysis of the dependence of the
functions sinfpenc and sinftoep on these dimensions.

4.1 Dependence on the degree d and the dimension
n for given infinite structural indices

If we consider the nullities fixed, we can see from equa-
tion (4) that the algorithmic complexity of the pencil ap-
proach is O(n3d3). On the other hand, with the Toeplitz
approach we can eliminate the dependence on degree d.
We can see from equation (2) that the algorithmic com-
plexity is O(n3). The reason is that the pencil algorithm
always executes an SVD of dimension nd× nd.

Test 1 Consider the polynomial matrix of degree d

A(s) =

 sd p1(s) p2(s)
0 sd−a p3(s)
0 0 sd−a−b

 ,
where a, b are given integers and p1(s), p2(s), p3(s) are
given polynomials.

If the degree of p3(s) is less than d − a, then we can see
that the vector of the nullities of A(s) is

v = [2, 2, . . . , 2︸ ︷︷ ︸
a

, 1, 1, . . . , 1︸ ︷︷ ︸
b

, 0].

Now fix the structure of A(s) with a = 5 and b = 2 and
vary the degree d in order to show how it affects the num-
ber of operations in functions sinftoep and sinfpenc.
Some representative results are: with d = 20, flopsT =
136683 and flopsP = 37181275 and with d = 60, flopsT =
136683 and flopsP = 1246161955.

We can see that the algorithmic complexity of function
sinftoep does not depend directly on the degree of the
matrix. On the other hand, we can see the rapid growth in
the number of operations executed by function sinfpenc
when degree d increases.

Test 2 Now consider the polynomial matrix

A(s) =

s3Ib

1 s3 0
0 1 s
0 0 1

where b is a given integer.

For this matrix, we can increase b in order to increase the
dimension n of A(s), nevertheless the degree d = 3 and
the vector of nullities v do not change.

We are going to vary b in order to show how it af-
fects the number of operations in functions sinftoep and
sinfpenc. Some representative results are: with n = 20,
flopsT = 2518093 and flopsP = 39830120 and with n = 60,
flopsT = 45335133 and flopsP = 1275721160.

Now we can see that algorithmic complexities of both
functions depend on the dimension n.

From these results we can conclude that one apparent ad-
vantage of Toeplitz approach is the independence on the
matrix degree in some specific cases. Nevertheless, gen-
erally a change in the degree or the dimension of a poly-
nomial matrix causes a change in its structure at infinity,
namely a change in the values of nullities vk and in the
number of steps q. Then, in order to determine which ap-
proach is more efficient, we are going to analyze equations
(3) and (5) in a more general way.

4.2 General case, dependence on infinite structural
indices

First, we have to bound numbers q, vk and wk for k =
1, 2, . . . , q. Let us consider a non-singular polynomial ma-
trix A(s) ∈ Rn×n[s] of degree d. From the Toeplitz ap-
proach it is easy to see that

n− 1 ≥ v1 ≥ v2 ≥ v3 ≥ · · · ≥ vq ≥ 1,
k ≤ wk ≤ k(n− 1).

However, from the pencil approach we know that wk
cannot be greater than nd. Said in another way, when
wk = nd we have all the structure at infinity of A(s), then
in general k ≤ wk ≤ nd.

From this results we conclude that in the worst case, when
v1 = v2 = · · · = vq = 1, at most q = nd steps are required
to obtain the structure at infinity of A(s), namely

1 ≤ q ≤ nd.

As to the number of operations, it can be seen that the
worst case for the pencil approach is when vk is small.
vk small implies not only more steps, but also operations
on larger matrices because the deflation at each step will
be smaller. On the other hand, when vk is large, the
number of steps and the dimension of the operations are
reduced. It is more difficult to find the worst or the best
case for the Toeplitz approach. If vk is small we have less
steps, however we also have a smaller deflation, namely
operations on larger matrices. On the other hand, if vk
is large the number of steps increases but the deflation
increases too, namely, smaller matrices are processed. To
continue with this analysis we consider the extreme cases.

Extreme case 1: vk = n− 1

First let us consider that vk = n − 1 for k = 1, 2, . . . , q.
We know that at the last step wq−1 = (q − 1)(n − 1) ≤
nd, therefore the maximum number of steps is qmax =
floor(nd

n−1 + 1), where floor(x) is the largest integer less
than or equal to x. However, it is important to notice
that in a non-singular polynomial matrix the number of
poles (we only have poles at infinity) must be equal to the
number of zeros (finite or infinite) including multiplicities
[15]. This condition limits the maximum number of steps
qmax. For example consider a polynomial matrix A(s)
of degree 3 and dimension 7, if vk = n − 1 = 6, A(s)
has one pole at infinity of degree 3 and we can not have

q = floor(nd
n−1 + 1) = 4 because this would imply that

A(s) has 6 zeros at infinity of degree 1, hence 3 finite
poles which is impossible. Then, in general we can verify
that qmax = d.

Test 3 Consider an n×n polynomial matrix of degree d,
with nullities v1 = v2 = · · · = vq = n− 1.

For various values of n, d and q, we obtain the number of
operations performed by the Toeplitz and the pencil algo-
rithm. Some conclusions are as follows.

We observe that when d = 1 the pencil algorithm is always
more efficient. The reason is that in step q + 1, while the
pencil algorithm processes a matrix of dimension 1 × 1,
the Toeplitz algorithm processes a matrix of dimension n×
(2n+ 1).

Nevertheles, when degree d increases q must be equal to
d for the pencil algorithm to be more efficient. If d keeps
increasing, not only q must be equal to d but also n must be
very large. For example, when d = 3, the pencil algorithm
is more efficient only when n > 36.

Extreme case 2: vk = 1

Now let us consider that vk = 1 for k = 1, 2, . . . , q. In this
case we can easily check that qmax = nd. For example
consider a polynomial matrix A(s) of degree 3 and dimen-
sion 7. If vk = 1 with q = 1, 2, . . . , nd, A(s) has 6 poles at
infinity of degree 3 and one zero at infinity of degree 18.

Test 4 Consider an n× n polynomial matrix of degree d
with nullities v1 = v2 = · · · = vq = 1.

For various values of n, d and q, we obtain the number of
operations performed by the Toeplitz and the pencil algo-
rithm. Some conclusions are as follows.

Here too we observe that when d = 1 the pencil algorithm
is always more efficient.

When d increases we observe that the pencil algorithm is
more efficient only when q approaches qmax = nd. If d
keeps increasing, not only q must be close to nd but also
n must be large. For example, when d = 6 the pencil
algorithm is more efficient only when n > 5 .

General conclusion

From the results of Tests 3 and 4, where we considered the
extreme cases, we can say as a general conclusion that the
type of matrices for which the pencil algorithm is more
efficient than the Toeplitz algorithm are matrices with a
small degree d but with a structure that implies a number
of steps q close to qmax, namely matrices with zeros at
infinity of high degree. Also notice that in general n must
be large. On the other hand, the type of favorable matrices
for the Toeplitz algorithm are matrices with d large and

q small, namely matrices with poles at infinity of high
degree.

We have seen that the algorithmic complexity of the pencil
algorithm depends on dimension n, degree d and expect-
edly on the number of steps q. Then although the matrices
with n large, q large and d small are more favorable for
the pencil algorithm than for the Toeplitz one, the number
of operations performed by both algorithms will be com-
paratively large. On the other hand, we can easily find
a polynomial matrix very favorable for the Toeplitz algo-
rithm and simultaneously very unfavorable for the pencil
algorithm, as we can see in the following example.

Example 1 First consider the 40×40 polynomial matrix

A(s) =

1 s2 0

.
. . . s2

0 1

which has 39 poles at infinity of degree 2 and 1 zero at
infinity of degree 78. The vector of nullities is

v = [1, 1, . . . , 1︸ ︷︷ ︸
80

, 0].

The pencil algorithm is more efficient: the number of oper-
ations are flopsP = 324244800 and flopsT = 2052129600.
We can notice that although the pencil algorithm is more
efficient, the number of operations that both algorithms
perform is very large.

Now consider the matrix

A(s) =

 s40

s39

s39

which has 1 pole at infinity of degree 40 and 2 poles at
infinity of degree 39. The vector of nullities is

v = [2, 0].

The Toeplitz algorithm is more efficient: the number of
operations are flopsP = 87946704 and flopsT = 2502. We
can see the great difference between the number of opera-
tions performed by the pencil algorithm and the Toeplitz
algorithm.

5 Conclusions

In this paper we have improved the Toeplitz algorithm
originally proposed in [5] to compute infinite structural
indices of polynomial matrices. By taking advantage of
the special block Toeplitz structure of the problem we
have reduced the number of operations involved in the

computation. A bunch of numerical experiments indicate
that the Toeplitz algorithm can be considered as an alter-
native, if not a competitor, to the classical pencil matrix
algorithm originally proposed in [13].

Our work can be extended in various directions:

• It would be insightful to carry out a backward error
anaysis (see e.g. [9] for a nice introduction) of the
Toeplitz algorithm and to compare the obtained error
bounds with those of the pencil algorithm.

• With the Toeplitz algorithm the whole infinite eigen-
structure (structural indices + eigenvectors) of the
polynomial matrix can be obtained with almost no
extra computational effort. We are not aware of any
straightforward modification of the pencil algorithm
to obtain the eigenstructure of a polynomial matrix.
It is not obvious to us how the infinite eigenstruc-
ture of a polynomial matrix relates with that of its
associated matrix pencil. Besides structural indices,
eigenvectors are also important when solving several
problems, see [5] and references therein.

• The Toeplitz algorithm as presented in this paper can
also pave the way for the development of more gen-
eral structured algorithms dealing with medium-size
or large polynomial matrices. We are currently study-
ing the application of block Toeplitz algorithms to ex-
tract minimal bases for polynomial null-spaces of rank
deficient polynomial matrices. It is likely that similar
algorithms can be used to solve large polynomial ma-
trix Diophantine equations arising in pole placement
problems. Relationships with the block Toeplitz algo-
rithms recently described in [7] must also be clarified.

• Finally, we plan to apply the Toeplitz algorithm to
perform multivariable decoupling and solve related
control problems, along the direction reported in our
companion paper [16].

Acknowledgments

Juan-Carlos Zúñiga acknowledges support from the Na-
tional Council of Science and Technology of Mexico
(CONACYT) and from the Secretariat of Public Educa-
tion of Mexico (SEP). Didier Henrion acknowledges sup-
port from the Grant Agency of the Czech Republic under
Project No. 102/02/0709.

References

[1] Callier F.M. and Desoer C.A., Multivariable Feed-
back Systems. Springer Verlag, Berlin, 1982.

[2] Golub G.H. and Van Loan C.F., Matrix Compu-
tations. The Johns Hopkins University Press, New
York, 1996.

[3] Gantmacher F.R., Matrix Theory. Chelsea Publish-
ing, New York, 1959.

[4] Henrion D. and Šebek M., An Algorithm for Polyno-
mial Matrix Factor Extraction. International Journal
of Control, Vol. 73, No. 8, pp. 686-695, 2000.

[5] Henrion D., Ruiz-León J.J. and Šebek M., Extraction
of Infinite Zeros of Polynomial Matrices. Proceedings
of the IEEE Conference on Decision and Control, pp.
4221-4226, Sydney, Australia, 2000.

[6] Kailath T., Linear Systems. Prentice Hall, Engle-
wood Cliffs, 1980.

[7] Kressner D. and Van Dooren P., Factorizations and
linear system solvers for matrices with Toeplitz struc-
ture. Slicot Working Note, No. 2000-2, Katholieke
Universiteit Leuven, Belgium, 2001.

[8] Kučera V., Discrete Linear Control: The Polynomial
Equation Approach. John Wiley and Sons, Chich-
ester, 1979.

[9] Petkov P.Hr., Christov N.D. and Konstantinov
M.M.,. Computational Methods for Linear Control
Systems. Prentice Hall, New York, 1991.

[10] Polyx, Ltd. The Polynomial Toolbox for Matlab. Ver-
sion 2.5 released in 2000. See www.polyx.cz

[11] Slicot: Control and Systems Library, Working Group
on Software, Katholieke Universiteit Leuven, Bel-
gium, 2001. See www.win.tue.nl/niconet

[12] Van Dooren P., Dewilde P. and Vandewalle J., On
the Determination of the Smith-MacMillan Form of
a Rational Matrix from its Laurent Expansion. IEEE
Transactions on Circuits and Systems, Vol. 26, No.
3, pp. 180–189, 1979.

[13] Van Dooren P., The Computation of Kronecker’s
Canonical Form of a Singular Pencil. Linear Algebra
and Its Applications, Vol. 27, pp. 103–141, 1979.

[14] Van Dooren P. and Dewilde P., The Eigenstructure
of an Arbitrary Polynomial Matrix. Computational
Aspects. Linear Algebra and Its Applications, Vol. 50,
pp. 545–580, 1983.

[15] Vardulakis A.I.G., Linear Multivariable Control. Al-
gebraic Analysis and Synthesis Methods. Wiley,
Chichester, 1991.

[16] Zúñiga J.C., Ruiz-León J.J. and Henrion D., Algo-
rithm for decoupling and pole assignment of linear
multivariable systems. Proc. of the European Control
Conference 2003, Cambridge, U.K. 2003.

	Session Index
	Author Index

