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Abstract

In this paper the well-known problem of optimal input de-
sign is considered. The problem is formulated as follows:
given a dynamic non-linear model structure which is as-
sumed to be affine in the input, and a specific parameter
of interest θk, find a feedback law that maximizes the sen-
sitivity of the model output to the parameter. Analytical
solutions to this specific problem for a general single state
model structure are presented. As an example a bioreac-
tor with a biomass that grows according to the well-known
Haldane kinetics under regulated biomass concentration is
considered.

1 Introduction

A natural question in experimental modelling is how
should the input sequence be chosen such that the un-
known model parameters can be optimally estimated.
This is the well known problem of ‘optimal’ input design
(see e.g. Goodwin and Payne (1977); Zarrop (1979); Wal-
ter and Pronzato (1990)).

In the late eighties Munack and co-workers (see Munack
(1989) and Munack and Posten (1989)) provided a numer-
ical solution to the optimal input design problem for the
estimation of the Monod parameters in a bioreactor model
using a so-called modified E-criterion. Optimal feed rate
profiles to provide good estimation conditions for µmax

and KS have also been obtained in an ‘ad hoc’ manner
using control parametrization (see Versyck (2000)). It has
been recognized that numerical solutions to these type of
problems are very difficult to find. Recently, Stigter and
Keesman (2001) and Keesman and Stigter (2002) have
shown how a closely related problem for a fed-batch reac-
tor can be solved analytically using the minimum principle
of Pontryagin. In these papers a sequential input design

for µmax and KS in a bioreactor under different condi-
tions, has been considered.

In this paper the previous results are generalized, but
it still focusses on sequentially finding a control law that
maximizes the parametric sensitivity ∂y

∂θk
for the specific

parameter θk, just to allow more or less simple analyt-
ical solutions and thus to avoid the numerical problems
frequently mentioned in the cited references! Hence, the
classical optimal input design problem is reformulated by
decomposing it into a number of related, but simpler, sub-
problems and thus attacked from a slightly different angle.
The goal of the paper is to present these general results
and further demonstrate it to the Haldane kinetic case, in
particular for the estimation of the Haldane parameters
µmax, KP and KI . This particular choice for Haldane ki-
netics is motivated as follows: (i) in addition to Monod,
Haldane kinetics are widely used, easily understood and
under substrate-limiting or inhibition conditions KP and
KI are crucial parameters, and (ii) relatively simple solu-
tions to the optimal input design problem appear.

In section 2 first the problem is formulated and the idea
of optimal input design via direct parametric sensitivity
control is further worked out. In particular, the theory
of singular optimal control is used to solve the problem.
Then, in section 3 some simulation results are presented
and discussed. Finally, the paper finishes with some con-
cluding remarks.

2 Optimal Input Design

2.1 Problem formulation

Consider the following general state equation affine in u:
dx

dt
= f(x, θ) + g(x, θ)u (1)

where u, x ∈ R and θ ∈ Rp. The corresponding paramet-
ric sensitivity equation with, xθ

4
= ∂x

∂θk
and xθ(0) = 0,

becomes:
dxθ

dt
= (fx(x, θ)+ugx(x, θ))xθ +(fθ(x, θ)+ugθ(x, θ)) (2)



where in what follows the functions and their derivatives
are denoted as f, fx, fθ, etc, thus without arguments and
without a reference to the parameter index k. Further-
more, it is assumed that f, g ∈ C3[(−∞,∞) × (−∞,∞)].
The objective is now to maximize the parametric sensi-
tivity associated with one specific parameter, θk from the
set {θi, i = 1, . . . , p} under the assumption that the state
can be directly measured, so that y = x and thus yθ = xθ.
Extension to the case with indirect state measurements
i.e

y = h(x, θ) (3)

so that yθ = hxxθ + hθ, is straightforward and will not be
treated any further here. Hence, the following quadratic
cost function must be maximized,

J =

tf∫

0

x2
θdτ (4)

which is directly related to the Fisher information matrix
for the scalar case y = x. The time tf indicates the final
time of the experiment. Let the Hamiltonian H for the
associated optimization problem (max{J} = min{−J})
be defined as

H , −x2
θ(t) + λ1[f(x, θ) + g(x, θ)u

+λ2[(fx + ugx)xθ + (fθ + ugθ)] (5)

Pontryagin’s minimum principle states that the input
u(t) ∈ U, an admissible set of input trajectories, that
minimizes H is optimal and thus in this case maximizes
J .

In the next section the theory of singular optimal con-
trol will be used to obtain a solution to the problem.

2.2 Singular Optimal Control

Since the Hamiltonian H does not explicitly depend on
time a first integral of the problem is H = constant. Also,
since the final time tf is assumed unknown and no ter-
minal conditions are specified (determining the value of
the co-states at tf ) this constant can be assumed equal
to zero. Furthermore, since the problem is affine in the
control variable u(t), three possible minima can be found:
u(t) = umax if sf < 0, 0 ≤ u(t) ≤ umax if sf = 0 and

u(t) = 0 if sf > 0, where sf
4
= ∂H

∂u is the so-called switch-
ing function. For this optimal input design problem one
finds from (5) sf = λ1g + λ2(gθ + xθgx). The case sf = 0
corresponds to a singular arc. A singular control law that
minimizes the Hamiltonian H over all possible input se-
quences u(t) can be derived by setting (see A. E. Bryson
(Jr.) (1999), Keesman and Stigter (2002))

∀i ∈ {0, 1, 2, ...} :
di

dti
∂H
∂u

= 0 (6)

In this case with one state equation and one specific pa-
rameter only two differentiations are needed to determine

u(t) explicitly. From the conditions H = 0 and ∂H
∂u = 0,

i.e. for i = 0, we obtain

λ1 =
x2

θ(gθ + xθgx)
−g(fθ + xθfx) + f(gθ + xθgx)

(7)

λ2 =
−gx2

θ

−gfθ + fgθ − xθ(gfx − fgx)
(8)

Consequently, from the case i = 1, the singular arc condi-
tion (or interior boundary condition) can be derived as

xθ

[
f(2g2

θ + 5xθgθgx + 3x2
θg

2
x) + g2xθ(f + xθfxx)−

· · ·
−g

(
fθ(2gθ + 3xθgx) + xθ

(
2gθfx + fgxθ+

· · ·
+xθ(3fxgx + fgxx)

))]

−g(fθ + xθfx) + f(gθ + xθgx)
= 0 (9)

which gives three solutions for xθ provided g(fθ +xθfx)+
f(gθ + xθgx) 6= 0.

Finally, the case i = 2, under the interior boundary
condition (9), gives the optimal input

u∗(t) = −
[
f(gθ + xθgx)

(
2fθ(gθ + 3xθgx) + xθ

(
4fgxθ +

+xθ(3fxgx + 5fgxx)
))

+ g2xθ

(
fθ(2fxθ + 3xθfxx) + xθ

(
ffxxθ + xθ(fxfxx + ffxxx)

))− g

(
2f2

θ (gθ + 3xθgx) +

+xθfθ

(
2gθfx + 4fgxθ + 3xθ(3fxgx + 2fgxx)

)

+xθ

(
2fgθfxθ + fxθ(gxfxθ + 3fxgxθ + 2gθfxx + fgxxθ

+x2
θ

(
3f2

xgx + 5ffxgxx + f(gxfxx + fgxxx)
)))]

/

[
f(gθ + xθgx)(2g2

θ + 6xθgθgx + 3x2
θg

2
x)− g

(
fθ(2g2

θ +

+6xθgθgx + 3x2
θg

2
x) + xθ

(
2g2

θfx + xθgx

(− 4fgxθ + xθ

(3fxgx − 4fgxx)
)− 2gθ

(
fgxθ + xθ(−3fxgx + fgxx)

)))

+g3x2
θ(fxxθ + xθfxxx) + g2xθ

(− fθ(2gxθ + 3xθgxx) +
+xθ(−gxfxθ + gθfxx − fx(3gxθ + 4xθgxx)−

−fgxxθ − fxθgxxx)
)]

(10)

provided that the denominator is unequal to zero.
Notice that after substitution of (9) in (10) a feedback

law that is completely determined by the system functions
f and g and their derivatives is found. The solution of (9):
xθ(t) = 0 results in the feedback law u∗(t) = − fθ

gθ
. This

solution clearly minimizes the cost function (4). In con-
clusion, Eqn. (10) together with the singular condition (9)
determine an optimal sensitivity trajectory in state space.
The condition (9) determines when to switch from a ‘bang’
input to the singular control law (10). We summarize this



main result in the following theorem for the case of a one-
dimensional state x(t) (without loss of generality).

Theorem 1 Given the model structure (1) and if
H(x∗(t), u∗(t), λ∗(t)) ≤ H(x∗(t), u(t), λ∗(t)), the optimal
singular control law that maximizes the cost function (4),
containing the parametric sensitivity xθ of x with respect
to θk (Eqn. 2) for xθ 6= 0 is given by Eqn. (10) under the
singular arc condition given by Eqn. (9).

Remark 1 If g(x, θ) = b, a constant input parameter,
then the optimal singular feedback law reduces to

u∗(t) = g2xθ

(
fθ(2fxθ + 3xθfxx) + xθ

(
ffxxθ + xθ(fxfxx + ffxxx)

))
/

+g3x2
θ(fxxθ + xθfxxx) (11)

with interior boundary condition: xθ = − fxθ

fxx
. Substitu-

tion of this condition in the feedback law gives results as
in Keesman and Stigter (2002).

In the next section the theory will be illustrated to an ex-
periment design for the estimation of Haldane parameters
in a fed-batch reactor.

3 Results and Discussion

3.1 Fed-Batch Bioreactor Modelling

Consider a fermentation process with Haldane type
growth kinetics. The specific growth rate µ(CS) is then
given by

µ(CS) = µmax
CS

KP + CS + C2
S

KI

(12)

where CS is the substrate concentration and µmax, KP

and KI are specific constants (see Fig. 1).
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Fig. 1: Haldane kinetics.

Under fed-batch conditions the following mass balance
equations holds:

dCS

dt
= −µ(CS)

YX/S
CX +

F

V
(u− CS) (13)

dCX

dt
= µ(CS)CX − F

V
CX (14)

dV

dt
= F (15)

where µ(CS) is the specific growth rate (see 12) in 1/h, 0 <
YX/S < 1 (-) the yield coefficient of biomass on substrate,
F (l/h) the flow rate, V (l) the volume of the reactor and
u = CS,in (g/l) the variable substrate concentration in
the influent. In order to avoid the effect of variations in
the biomass concentration on the input design, CX is kept
constant at C∗X , the biomass set-point, by selecting

F = µ(CS)V (16)

Hence, the flow rate F is related to the biomass growth
and the actual volume of the reactor. Consequently,

dCS

dt
= µ(CS)[−CS − C∗X

YX/S
+ u] (17)

Notice that this dynamic state equation is affine in u. As
before the optimal input design problem is translated into
an optimal parametric sensitivity problem, but let us first
investigate the partial sensitivities (fx+ugx) and (fθ+ugθ)
in (2) for the parameters in the Haldane kinetics model.
The partial sensitivities are given by

∂f+gu
∂CS

= −KIµmax

[
KIKP CX∗+2KIKP YX/SCS+

···
(KIYX/S−C∗X)C2

S+YX/Su(C2
S−KIKP )

]
YX/S(KIKP +KICS+C2

S)2
(18)

∂f + gu

∂µmax
= −

KICS( C∗X
YX/S

− u + CS)

(KIKP + KICS + C2
S)

(19)

∂f + gu

∂KP
=

µmaxK2
I CS( C∗X

YX/S
− u + CS)

(KIKP + KICS + C2
S)2

(20)

∂f + gu

∂KI
= −

µmaxC3
S( C∗X

YX/S
− u + CS)

(KIKP + KICS + C2
S)

(21)

where in what follows e.g. ∂CS

∂KP
with x = CS is simply

denoted as xKP
.

On the basis of these equations, (17)-(21), the corre-
sponding parametric sensitivity equation can be evaluated
and an optimal input design for the estimation of a spe-
cific parameters can be found. In the next section feed-
back laws will be derived for optimal input design of the
Haldane parameters.



3.2 Parametric Sensitivity Control

Let the fed-batch bioreactor model be given by (17).

Hence, f(x, θ)
4
= −µ(CS)[CS + C∗X

YX/S
] and g(x, θ)

4
= µ(CS)

with µ(CS) given by (12). After taking derivatives and
substitution in Eqn. (10) an optimal input for the estima-
tion of µmax is found, i.e.

u∗ = K2
I K2

P C∗X+2K2
I KP C∗XCS+KIKP (4C∗X+KIYX/S)C2

S+

···
+4KIKP YX/SC3

S+(KIYX/S−C∗X)C4
S

YX/S(K2
I K2

P +2K2
I KP CS+4KIKP C2

S−C4
S)

(22)

under the interior boundary condition

xµmax
= −KIKP CS + KIC

2
S + C3

S

µmax(KIKP − C2
S)

(23)

where K2
I K2

P + 2K2
I KP CS + 4KIKP C2

S − C4
S 6= 0 and

CS 6= √
KIKP . The question is now how to choose the

initial substrate concentration CS(0). Recall that xθ(0) =
0, i.e the initial parametric sensitivity does not depend
on the parameter values. Hence, if one wants to start
directly on a singular arc, CS(0) much be chosen such
that KIKP CS + KIC

2
S + C3

S = 0. Choosing CS(0) = 0
and thus u∗ = C∗X

YX/S
leads to a minimum of J ! However,

from (23) it can be easily verified that no real positive
initial concentration exists such that the experiment can
immediately start on a singular locus. Hence, the input
should be of an impulse-bang-singular type. It has been
found by a numerical line search that CS(0) ≈ √

KIKP

is a good starting point. However, since in practice the
parameters are unknown we start at CS(0) = 4 g/l to
avoid singularities in the interior condition. A simulated
experiment, setting µmax=2.1 1/h, KP =100 g/l, KI=1
g/l and YX/S=0.5, for the estimation of µmax is presented
in Fig. 2. Notice that first a input pulse is given to the
system followed by a bang, where the input concentration
is set to zero. The estimates of µmax are obtained by using
a simple Newton-like observer with gain γ = 0.05.
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Fig. 2: Optimal experiment for the estimation of µmax.

The sensitivity of xµmax
for a deviation in the optimal

control input is depicted in Fig. 3.
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Fig. 3: Effect of deviation on u∗(t) on sensitivity.

Similarly, an optimal experiment design can be per-
formed for KP , leading to the singular feedback law,

u∗ =
KIKP C∗X + C∗XC2

S + 2YX/SC3
S

YX/S(KIKP + C2
S)

(24)

under the interior boundary condition

xKP
=

KICS

(KIKP − C2
S)

(25)

and assuming that CS 6=
√

KIKP . It appears again that
CS(0) ≈ √

KIKP is a good starting point. The results
of the simulated experiment, using the same parameter
values as before but now setting γ = 0.01, for optimal
estimation of KP are presented in Fig. 4. Notice that
due to the total removal of the substrate the experiment
is limited to 100 h.
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Fig. 4: Optimal experiment for the estimation of KP .



Finally, for the parameter KI it has been found that

u∗ =
−3KIKP C∗X − 2KIKP YX/SCS + C∗XC2

S

YX/S(−3KIKP + C2
S)

(26)

under the interior boundary condition

xKI
=

C3
S

KI(−KIKP + C2
S)

(27)

and assuming that CS 6= √
3KIKP and CS 6= √

KIKP .
Unlike the previous cases it now appears that a high ini-
tial substrate concentration CS(0) is a good starting point.
The results of the simulated experiment, using the same
parameter values as before but changing the initial sub-
strate concentration to CS(0) = 8 g/l and γ = 0.01, for
optimal estimation of KI are presented in Fig. 5 and 6.
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Fig. 5: Optimal experiment for the estimation of KI .
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Fig. 6: Hydraulic behaviour reactor.

Notice that instead of solving the full optimal design
problem for all parameters together, we propose here to
solve it sequentially. Clearly, solving the full example

problem leads to four states (i.e. substrate concentra-
tion and three parametric sensitivities) with four co-state
equations. Hence, in order to obtain a control law that
only depends on the states four co-states have to be elim-
inated. In general this problem is too complex to solve
it analytically. Therefore the sequential procedure, de-
composing the problem into smaller problems for which
feedback laws can be rather easily found using symbolic
software, has been proposed. Obviously, in each separate
experiment full attention is given to the reduction of the
estimation uncertainty of a specific parameter, which will
most often also affect the uncertainty in the other parame-
ters. Because in general the prior knowledge of parameters
values is limited an iterative procedure is suggested. The

sensitivity of J =
tf∫
0

x2
θdτ with tf = 100 h to normalized

errors in the parameters (±10%) using a factorial design
for the deviations is summarized in Table 1. The cen-
ter point is defined by: [µ̄max K̄P K̄I ]

4
= [2.1 100 1]

where the overbar denotes the nominal value. In the last
row of this Table the normalized center point is indicated
by zeros. In this sensitivity study the same initial condi-
tions as in the simulation study are used.

Table 2 contains the parameter estimates β̂0, ..., β̂3, i.e
the parameter sensitivities and associated standard devi-
ations of J to errors in the kinetic model parameters, of
the linear regression model,

J = β0 + β1X1 + β2X2 + β3X3 + e (28)

where X1 = µmax−µ̄max

0.1µ̄max
, X2 = KP−K̄P

0.1K̄P
, X3 = KI−K̄I

0.1K̄I
.

Clearly for 10 % deviation there holds: Xi = ±1 for i =
1, ..., 3 (see Table 1). It appears that the error e for each
of the three experiments is smaller than 0.03, 2.10−5 and
0.22, respectively. Hence the residuals are relatively small.
Furthermore, for the optimal experiment design for µmax

it appears that the 10 % errors in parameter KI does not
affect the cost J and the cost in the experiment for KI is
not affected by errors in µmax. In addition to this, using
an overall curvature check, it turned out that second-order
terms in this regression-based sensitivity analysis do play
a minor role and can thus be neglected.

3.3 Concluding remarks

In this paper, for a general one-dimensional model struc-
ture affine in u, a feedback law for optimal input design of
a specific parameter has been derived. Implementation of
this feedback law leads to the maximization of a quadratic
cost function containing the associated parametric sensi-
tivity.

The approach is illustrated to the dynamic input design
for the estimation of Haldane kinetic parameters in a fed-
batch bioreactor. In the experimental set-up the biomass
concentration is kept constant by manipulating the flow,
so that effectively only one state equation remains.



Table 1: Factorial design parameter perturbations.

∂CS/∂µmax ∂CS/∂KP ∗ 10−4 ∂CS/∂KI

- - - 2.11 - - - 6.94 - - - 4.28
+ - - 1.55 + - - 7.73 + - - 4.13
- + - 1.80 - + - 4.12 - + - 3.15
+ + - 1.35 + + - 4.67 + + - 3.10
- - + 2.11 - - + 7.23 - - + 2.07
+ - + 1.55 + - + 8.03 + - + 1.98
- + + 1.81 - + + 4.29 - + + 1.52
+ + + 1.36 + + + 4.84 + + + 1.48
0 0 0 1.67 0 0 0 5.76 0 0 0 2.47

Table 2: Parameter sensitivities.

∂CS/∂µmax ∂CS/∂KP ∗ 10−4 ∂CS/∂KI

β0 1.701 ± 0.012 5.960 ± 0.043 2.687 ± 0.069
β1 -0.251 ± 0.013 0.336 ± 0.045 -0.042 ± 0.073
β2 -0.126 ± 0.013 -1.501 ± 0.045 -0.399 ± 0.073
β3 0.002 ± 0.013 0.116 ± 0.045 -0.950 ± 0.073
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