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Abstract

In this paper a novel way to handle the analysis and design
of control systems with bounded asymmetrical signals is pre-
sented. Instead of the standard peak-to-peak norm, normally
used in `1-optimal control, this paper propose to use an asym-
metric objective functional, which simplifies the consideration
of asymmetrically bounded signals. Necessary and sufficient
conditions are derived to check if some performance specifi-
cations, expressed using this objective functional, are fulfilled.
The analysis and the synthesis problems are also formulated
with respect to this objective functional: As in the standard `1-
optimal control, this approach leads to a linear programming
problem which can be solved by off-the-self tools.

1 Introduction

Usually, real plants are subject to constrained variables. The
most frequent constraints are of saturation type, that is, limi-
tations on the magnitude of certain variables, usually the con-
trol signal. Hence, the topic of designing control systems that
maintains stability (and performance) in the presence of these
constraints is a topic of continuing interest. There are several
approaches proposed in the literature to solve the this problem;
we can cite, not exhaustively, the Positive Invariance concept
[1,2], the Small and High Gain concept [9], the l1 Norm Opti-
mization concept [6], Predictive Control [4] and several other
approaches [8,13].

This paper uses the `1-optimal control theory [6], which has
received considerable attention, because it gives simple meth-
ods to calculate controllers, for different kinds of constraints
(limitations in magnitude, slope, overshoot, undershoot, etc).
This approach is based on Constraint Avoidance as defined in
[8]: preventing the saturation, the closed-loop system stays in a
region of linear behavior. In [17] this problem was first formu-
lated. Some basic results on this theory were presented in [7]
for the special case of square systems. Then, the solution of the
non square case was given in [5]. These results have shown that
the `1-optimal control problem can be stated as linear program-
ming problem. Since then, many other results and extensions
have been presented [3,12]. Furthermore, compared with other

optimal techniques to deal with constraints, application to real
process have already been published [10,15,16].

This paper studies a novel extension of the `1-optimal control
theory, to directly handle the asymmetrical aspect of bounded
signals, following the ideas presented for the Positive Invari-
ance concept in [1]. Furthermore, the analysis problem of
closed-loop systems performance is formulated, and the trans-
formation of the synthesis problem of an appropriate controller
as a linear programming problem is presented. For simplicity
reasons the problem is presented and solved in the SISO case,
but can be easily extended to the multivariable case, following
the ideas presented in [6].

The paper is organized as follows: Section 2 defines a new
asymmetric objective functional which can handle asymmetri-
cal signals. In addition, a necessary and sufficient condition
to check if some performance specifications are fulfilled is dis-
cussed and proved. In section 3, the formulation of the analysis
problem taking into account the previous result is presented,
and an illustrative example will also be given. Section 4 is con-
cerned with the design procedure of an optimal controller with
respect to the proposed objective functional.

2 Asymmetric objective functional definition

In this section we define the new objective functional which
will replace the peak-to-peak-norm normally used in the ` 1
analysis.

A drawback of using the peak-to-peak-norm appears when the
considered signal x(k) is constrained to evolve in asymmetri-
cal domain (i.e., signal x(k) is such that �xmin � x(k) �
xmax , where xmin � 0; xmax � 0; xmin 6= xmax). In this
case the peak-to-peak-norm of the signal x(t) (by definition,
its -norm: kx(k)k1 = max

t
(jx(k)j) = max(xmax , xmin) )

gives a truncated information on the signal amplitude.

Of course this problem can be solved, in some situa-
tions, by redefining the working point. For example,
if the control signal is bounded in amplitude, the value
of the control signal at the working point can be as-
signed to the mean value of the constraints (xmean =
xmax � xmin; kx(k)k1 = max

t
(jx(k)j) = xmax+xmin

2 ). How-

ever, even for this simple situation, this technique is inadequate
if the constraints change with time, or the system behaviour



changes with the working point. Moreover, it is very cumber-
some if additional constraints are imposed (constraints on the
control variation, on the output amplitude, etc.).

This paper proposes to solve this drawback by defining a new
objective functional (noted kx(k)kd) which gives more infor-
mation on the signal amplitude, including its asymmetricity:

kx(k)kd =

2
664

max

�
0;max

k
(x(k))

�

max

�
0;�min

k
(x(k))

�
3
775 :

In our context this objective functional is used to handle the
asymmetrical aspect of any bounded signal as the examples
discussed below:

� In most practical control systems, due to technological
and safety reasons the actuators cannot drive unlimited
energy to the controlled plant. This fact can be trans-
lated into bounds on control u(t) as �umin � u(k) �

umax: This can be written as ku(k)kd � U where U
t

=
[umax; umin].

� In many industrial systems only a range on the amplitude
of disturbance signal may be known. Generally, w(t) is
such that �wmin � w(k) � wmax which can be rewrite
as kw(k)kd �W where W

t

= [wmax; wmin].

� Moreover, there are frequently limitations on the control
rate: In many applications these limitations arise as an
inherent behavior of the actuators [11]. The control incre-
ment between sample times fulfills ��umin � u(k) �
u(k � 1) � �umax, or in more compact form using the
shift operator ��umin � (1 � z�1)u(k) � �umax this
can be rewritten as



(1� z�1)u(k)



d
� �U .

Following the usual approach in `1 Optimization, these and
some additional specifications can be written as:

G(z�1)u(k)



d
� U:

Let us now consider u(t) and y(t) as input and output signals
of a linear time invariant discrete-time system described by its
transfer function G(z�1). Necessary and sufficient condition
to have kykd � Y for any bounded input kukd � U is given
by the following proposition.

Proposition 1. The output y(k) of a LTI system is constrained
in the non symmetrical domain defined by kykd � Y for any
input u(k) such that kukd � U if and only if:

	U � Y (1)

where 	 =

2
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775 ;

�+
i = max f�i; 0g

��i = max f��i; 0g

and f�i i = 1; :::;1g denotes the impulse response of the
transfer function G(z�1) of the system.

Proof. Since the output can be written using the impulse re-
sponse of the system as

y(k) =

kX
i=1

�i u(k � i)

then, for any bounded input signal such that kukd � U we can
write8>><

>>:
max
kuk

d
�U

fy(k)g =
kP
i=1

�+
i umax +

kP
i=1

��i umin

min
kuk

d
�U

fy(k)g = �
kP
i=1

��i umax �
kP
i=1

�+
i umin

:

thus, it follows that
8>><
>>:

�
kP
i=1

��i umax �
kP
i=1

�+
i umin � y(k)

y(k) �
kP
i=1

�+
i umax +

kP
i=1

��i umin:

Since y(k) can reach these limits, then a necessary and suffi-
cient condition to have -ymin � y(k) � ymax is given by

8>><
>>:

kP
i=1

�+
i umax +

kP
i=1

��i umin � ymax

�ymin � �
kP
i=1

��i umax �
kP
i=1

�+
i umin

:

which is equivalent to 	U � Y .

Remark 2. It is well known that the sums defined in matrix 	
converge if and only if G(z�1) is a stable transfer function.

Remark 3. If the constraints are symmetric (umin = umax and
ymin = ymax), the second row in the definition of � is redun-
dant, and the standard `1 optimization problem is obtained:
kP
i=1

j�ij umax � ymax

3 Analysis Problem

This section shows how the previous result can be used to check
if a given regulator fulfills some performance specifications.
For this, let us first consider an illustrative example given in
figure (1).

Assume that the input and the disturbance signals are subject
to non symmetrical constraints.

u(k) 2
�
u(k) = ku(k)kd � U ; UT = [2; 3]

	
w(k) 2

�
w(k) = kw(k)kd �W ; W T = [1; 4]

	
:

The transfer function of the plant and the controller are given
by

G(z�1) = z�1(3�z�1)
(2�z�1)(4�z�1) and K(z�1) = (2�z�1)

(3�z�1) :

Our objective is to check if the considered regulator prevents
input saturation for any disturbance signal in the predefined
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Figure 1: System with constrained input.

domain. For this, denote as H(z�1) the input-output transfer
function between u(k) and w(k).

H(z�1) =
�K(z�1)

1 +K(z�1)G(z�1)
=
�(2� z�1)(4� z�1)

4(3� z�1)

The inequality (1) given in the last proposition is then tested

�
0:2917 0:6667
0:6667 0:2917

� �
1
4

�
�

�
2
3

�

It is easy to check that (1) is satisfied: Thus, for every distur-
bance signal w(k) such that kw(k)kd � W it is possible to
ensure that no saturation occurs.

Remark 4. It is interesting to note that for this same exam-
ple, using the standard peak-to-peak norm it is impossible to
make such judgement. Effectively, using the peak-to-peak norm
we have to consider that the control must be as ku(k)k1 �
(min(umax; umin) = 2) and that the disturbance signal w(k)
is such that kw(k)k1 � (max(wmax; wmin) = 4). The `1-
norm of H(z�1) is computed,



H(z�1)



1
= 0:9583. It is

possible to see that


H(z�1)




1
4 > 2.

Then, the analysis problem can be summarized in three steps:

� Express the input and output signals using the asymmetric
objective functional ku(t)kd � U and ky(t)kd � Y .

� Find the transfer function between input and output signal
y(t) = H(z�1)u(t).

� Check if


H(z�1)




d
U � Y .

Remark 5. As it is possible to see in the previous example, the
denominations Input and Output are context dependent.

4 Synthesis Problem

By analogy with the `1-optimal control this section gives a new
formulation which take into account the asymmetrical aspect
of different signals. Note that, for simplicity reasons, the study
presented in this paper is restricted to the one block problem,
but can be easily extended to the non-square case.

O G(z) 
u(k) 

O 

w(k) 

+ 

− 
K(z) 

Figure 2: System with output disturbance

Consider the system given in in figure (2), where G(z�1) and
K(z�1) are respectively the plant and the controller trans-
fer function. We note H(z�1) the closed-loop transfer func-
tion from the disturbance signal to the output. The distur-
bance signal is supposed to evolve in the domain given by
fw 2 R = kwkd �W g. In this context we are looking,
among all internally stabilizing controllers, for the one which
minimizes the effect of the non symmetrical bounded distur-
bance signal on the output. Using the previous development
this can be stated as:

min " such that 	W � " I

Where 	 is formed, as in Proposition 1, by the impulse re-
sponse of the transfer function H(z�1); and IT = [1; 1]. This
study does not use the Youla Parametrization to describe the
set of all stabilizing controllers [9]. Instead, the Optimization
problem is expressed directly on the coefficients of the impulse
response of the closed-loop system [14]. When the optimal
transfer function H(z�1) is computed, one can easily extract
the regulator transfer function from the relation which define
H(z�1):

Furthermore, additional constraints (or namely interpolation
constraints) must be added to the optimization problem to en-
sure the internal stability of the system. These constraints
mean that any unstable pole (resp. zero) of the plant can not
be cancelled by any zero (resp. pole) of the controller. De-
note as fqk; k = 1; :::; ng the unstable zeros of the plant and
fpk; k = 1; :::;mg its unstable poles, then

�
K(z�1)G(z�1) jz=qk must be equal to 0
K(z�1)G(z�1) jz=pk must be 1

(2)

In terms of the impulse response this can be stated as the fol-
lowing interpolation constraints:

8>><
>>:

1P
i=0

�i q
�i
k = �k k = 1; :::; n

1P
i=0

�i p
�i
k = �k k = 1; :::;m

where �k and �k are the value of the closed-loop transfer func-
tion at these points while taking into account the equalities (2).
For example, if H = KG

1+KG
then �k = 0 and �k = 1 [14].



Hence, the optimization problem becomes

min "8>>>>>>>>><
>>>>>>>>>:
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��i p
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k = �k k = 1; :::;m:

In order to obtain a finite dimensional problem, this semi-
infinite linear programming problem can be truncated. The di-
mension of the new linear programming problem noted � can
be calculated from the dual problem. Finally, we have a linear
programming problem in 2�+1 variables which can be solved
by any of the commonly available tools.

5 Conclusion

In this paper a new way to handle asymmetrical signals is
given. Using a new asymmetric objective functional instead
of the usual peak-to-peak norm, necessary and sufficient con-
dition are given to check if some performance specifications
are fulfilled. In the next step the analysis and the synthesis
problems are also formulated with respect to this new objective
functional. As in the `1-optimal control, this approach leads to
a linear programming problem which can be solved by off-the-
self tools.

Compared with the linear problem obtained using standard ` 1-
optimal control, no additional variables are added to the primal
problem, but the number of constraints is doubled, to cope with
the asymmetricity. Further work must be done to simplify the
linear programming problem.
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