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Abstract

This paper aims at providing some new insights into the lin-
ear quadratic optimization problem in the behavioral approach.
A new problem statement is given and some comparisons with
the standard LQ problem in the state space approach are pro-
vided. The problem solution is analyzed in detailed terms so
that all optimal trajectories can be easily computed from the
initial data. Noteworthy, the set of optimal solutions proves to
be a behavior, too. The asymptotic stability of the optimal be-
havior as well as the finiteness of the cost function are finally
discussed.

1 Introduction

The behavioral approach represents a modern and powerful
framework where system and control problems can be stated
and solved in a very general form [4]. Within this setting, a dy-
namical system is completely described by its behavior, namely
the set of all possible evolutions of its system variables, and
hence any optimization problem is naturally stated as the prob-
lem of selecting, within this set of trajectories, “the best ones”,
for they either minimize a given cost function or maximize a
certain gain function.

The linear quadratic optimal control problem has received sev-
eral different statements (and, consequently, solutions) within
the behavioral approach. All of them are quite different one
from the other and by no means equivalent. Indeed, in [2],
two different optimization problems in the behavioral setting
are first stated (by Nieuwenhuis), and then proved to be two
special instances of a more general “concave problem”. The
explicit solution of the LQ-problem, however, makes use of the
standard state-space theory.

In [6], Jan Willems addresses the LQ problem for controllable
behaviors, by assuming that the cost function is expressed by
means of a quadratic differential form. Under these assump-
tions, the optimal behavior is defined as the set of all behavior
trajectories whose cost cannot be decreased by means of a fi-

nite support perturbation (namely by adding a finite support
behavior trajectory). The solution leads to a set of optimal so-
lutions which represents a behavior. However, no mentioning
of initial conditions or local constraints is made in the problem
statement.

Weiland and Stoorvogel [5] afford and solve the LQ control
problem in a purely behavioral framework, without referring
to an explicit cost function but deeply resorting to the idea of
control as interconnection. Indeed, the LQ problem is stated
as the problem of finding a controller such that the resulting
controlled system satisfies two control objectives, expressed (in
simplified terms) as an upper and a lower bound, respectively.
The final solution resorts, again, to a state-space realization.

Finally, Ferrante and Zampieri [1] adopt a problem statement
which involves a quadratic cost function and a local constraint
on the behavior trajectories. Basing on state-space realizations,
they obtain a set of optimal solutions which, in general, is not
a shift invariant set of trajectories, and hence is not a behavior.

In this paper, we aim at providing a different and simple state-
ment for the LQ problem in the behavioral framework, by con-
sidering linear, time-invariant and complete discrete-time sys-
tems, described as the kernels of some polynomial matrix op-
erators, and by assuming a quadratic cost function (the norm
of a suitable sequence which is related to the system trajectory
by means of some matrix shift operator). Initial conditions are
assigned in such a way that the autonomous part of any behav-
ior trajectory which fulfills such conditions is uniquely deter-
mined. The optimization problem thus becomes the problem
of choosing the controllable part of the trajectory in order to
minimize the assigned cost function.

Two main goals inspired our problem formulation: first of all,
providing what seems to be a natural extension of the stan-
dard LQ theory for state-space models which is, at the same
time, purely behavioral, by this meaning that the problem so-
lution does not involve any state-space representation. On the
second hand, we aim at endowing the set of optimal solutions
of some nice properties, as in the state-space setting, like lin-
earity, shift-invariance and completeness (namely the optimal
solutions constitute a behavior), autonomy and asymptotic sta-
bility.

Other issues, concerned with the existence of at least one



asymptotically convergent solution among all optimal solutions
which satisfy the assigned set of initial conditions, are also ad-
dressed.

2 Preliminaries

Consider a discrete-time finite dimensional dynamical system
Σ = (Z,R

q
, B) whose behavior B ⊆ (Rq)Z is defined as the

kernel of some Laurent polynomial (L-polynomial, for short)
matrix shift operator [4], i.e. there exists some L-polynomial
matrix with q columns and say p rows, R(ξ) ∈ R

p×q[ξ, ξ−1],
such that

B = ker(R(σ)) :=
{
w ∈ (Rq)Z | R(σ)w = 0

}
.

This is known as an autoregressive (AR) representation of the
behavior. Every discrete-time system which admits a kernel
representation is linear, shift invariant and complete [4] and the
converse holds true. It entails no loss of generality assuming
that R is a polynomial matrix in the indeterminate ξ. Moreover,
we can also assume that R(0) is of full row rank. As every
system Σ = (Z,R

q
, B) is uniquely identified by its behavior

B, in the sequel we will refer directly to B instead of Σ.

Autonomy and controllability notions are well-known [4]. We
just remind here a few equivalent conditions. A behavior B =
ker(R(σ)), with R(ξ) ∈ R[ξ]p×q, is autonomous if and only
if R is of full column rank q. If so, B can be described as
the kernel of a nonsingular square matrix, which is uniquely
determined up to a left unimodular factor. So, if R is square,
det R (which is, of course, independent of the specific square
representation, except for a multiplicative nonzero monomial)
is the characteristic L-polynomial of B [4].

An autonomous behavior B is said to be asymptotically stable
if for every w ∈ B we have limt→+∞ w(t) = 0. This happens
if and only if the characteristic L-polynomial of B is Schur,
namely all its zeroes1 are included in the open unit disk {ξ ∈
C \ {0} : |ξ| < 1}.
Controllability represents the possibility of steering any past
behavior trajectory into any future behavior trajectory, pro-
vided that one leaves time enough for adjustments. A behavior
B is controllable if and only if it can be described as the ker-
nel of a left prime L-polynomial matrix. Moreover, a control-
lable behavior B admits an image description. This amounts
to saying that there exist m ∈ N and an L-polynomial ma-
trix M ∈ R[ξ, ξ−1]q×m such that w ∈ B if and only if
w = M(σ)u, for some u ∈ (Rm)Z. The set of discrete-time
trajectories thus obtained is denoted by im(M(σ)).

As a final result, we quote the decomposition theorem (see
[4], Theorem 5.2.14, for the continuous time case) stating that
every AR behavior B can always be expressed as the direct
sum of its controllable part Bc (the largest controllable be-
havior included in B) and of some (not unique) autonomous

1Notice that we consider only zeroes which are different from 0, since we
are dealing with L-polynomials.

behavior Ba:
B = Ba ⊕ Bc. (1)

As a result, every behavior trajectory w can always be de-
scribed as the sum w = wa +wc of two trajectories wa ∈ Ba

and wc ∈ Bc. Both trajectories, however, depend on the spe-
cific choice of Ba and are uniquely determined only once the
autonomous behavior Ba involved in the behavior decomposi-
tion is specified.

Despite the non-uniqueness of Ba, there are some common
features among the different autonomous behaviors involved in
the direct sum decompositions. Indeed, if R(ξ) ∈ R

p×q[ξ] is a
full row rank matrix involved in the kernel description of B, it
can always factorize as R(ξ) = ∆(ξ)R̄(ξ), for suitable (Lau-
rent) polynomial matrices ∆(ξ) ∈ R

p×p[ξ] nonsingular and
R̄(ξ) ∈ R

p×q[ξ] left prime as a polynomial matrix. Moreover,
Bc = ker(R̄(σ)).

Due to the left primeness of R̄(ξ), a unimodular matrix V (ξ) ∈
R

q×q[ξ] can be found such that R̄(σ)V (σ) = [ Ip | 0 ].
It entails no loss of generality partitioning V as V (ξ) :=
[L(ξ)|M(ξ)], with L(ξ) ∈ R

q×p[ξ] and M(ξ) ∈ R
q×(q−p)[ξ].

But then every trajectory w of the behavior B can be equiva-
lently rewritten as

w(t) = (L(σ)va)(t) + (M(σ)vc)(t), (2)

where va belongs to the autonomous behavior ker(∆(σ)),
meanwhile vc is arbitrary in (R(q−p))Z. Both trajectories are
uniquely determined once w is. It is easily seen that va can be
immediately obtained as va = R̄(σ)w.

The following simple lemma states that, independently of the
specific autonomous/controllable decomposition adopted for
B, by constraining the variable va = R̄(σ)w we constrain the
autonomous part of any trajectory w such that va = R̄(σ)w.

LEMMA 2.1 [3] Let w1 and w2 be two arbitrary trajectories
of B and let Ba be any autonomous behavior such that B =
Ba ⊕ Bc. Assume, then, that w1 and w2 decompose as wi =
wai +wci, with wai ∈ Ba and wci ∈ Bc, i = 1, 2. Condition
R̄(σ)w1 = R̄(σ)w2 ensures wa1 = wa2.

Notice that in the factorization R(ξ) = ∆(ξ)R̄(ξ), with R̄ left
prime and ∆ nonsingular square, we can also assume that ∆ is
a diagonal matrix. In fact, by resorting to the Smith form, we
can factorize ∆ as

∆(ξ) = U(ξ) · diag{δ1(ξ), δ2(ξ), . . . , δp(ξ)} · V (ξ),

where U and V are unimodular L-polynomial matrices and
the monic L-polynomials δi’s (which can always be assumed
as elements of R[ξ] and endowed with a nonzero constant
term) are mutually related by the divisibility chain condition
δp(ξ) | . . . | δ1(ξ). Of course,

ker(R(σ))=ker
(
diag{δ1(σ), δ2(σ), . . . , δp(σ)}·V (σ)R̄(σ)

)
,

and V R̄ is left prime, too, as a polynomial matrix. So, we can
replace ∆ with its Smith form and R̄ with V R̄.



The diagonal structure of ∆ better enlightens the complexity
of the autonomous behavior ker(∆(σ)). Indeed, once the ith
entry vai of a trajectory va ∈ ker(∆(σ)) is known over the
discrete time interval [0, deg δi − 1], it is uniquely identified.
In other terms, once we constrain a trajectory va ∈ ker(∆(σ))
to satisfy a set of conditions

vai(t) = bi(t),
t = 0, 1, . . . ,deg δi − 1
i = 1, 2, . . . , p,

for arbitrary choices of {bi(t)} t=0,1,...,deg δi−1
i=1,2,...,p

, the trajectory va

is uniquely determined.

So, once we constrain a trajectory w ∈ B to satisfy the set of
conditions

[(R̄(σ)w)(t)]i:=eT
i (R̄(σ)w)(t)=bi(t),

t = 0, 1, ..,deg δi−1
i = 1, 2, .., p,

ei the ith canonical vector and {bi(t)} t=0,1,...,deg δi−1
i=1,2,...,p

arbitrar-

ily chosen, we uniquely identify the trajectory va := R̄(σ)w
and hence the autonomous part wa of w (depending on the
autonomous/controllable decomposition assumed for B). We
will make use of this type of constraints in order to state the
linear quadratic optimization problem in a behavioral setting.

A behavior B is said to be stabilizable if for every trajec-
tory w ∈ B and for every t̄ ∈ Z there exists some tra-
jectory w′ ∈ B such that w′(t) = w(t), ∀ t ≤ t̄, and
limt→+∞ w′(t) = 0. We have that B = ker(R(σ)) is sta-
bilizable if and only if rank(R(λ)) = p, ∀λ ∈ C, |λ| ≥ 1,
or, equivalently, if and only if det ∆ is Schur or if and only
if in every autonomous/controllable decomposition (1) the au-
tonomous behavior Ba is asymptotically stable.

3 Problem statement and comparisons with the
standard LQ control

As discussed in the Introduction, the linear quadratic optimal
control problem has received several different statements and
solutions within the behavioral framework [1, 2, 5, 6]. In this
paper we choose a problem statement which is close to the one
adopted in [1]. However, we introduce a different type of “ini-
tial conditions”. As underlined in the Introduction, we aimed
at finding a statement which provides a generalization of the
LQ problem, as it is traditionally stated for classic state-space
models, and at obtaining a set of optimal solutions, each of
them corresponding to a given set of initial conditions, which
is an autonomous behavior.

Problem Statement: Given two polynomial matrices R2(ξ) ∈
R

p2×q[ξ] and R(ξ) ∈ R
p×q[ξ], with R factorizing as in (2)

with ∆ := diag{δ1(ξ), δ2(ξ), . . . , δp(ξ)} ∈ R[ξ]p×p, δi(0) �=
0 ∀ i, and R̄(ξ) left prime as a polynomial matrix, and a set of
initial conditions {bi(t)} t=0,1,...,deg δi−1

i=1,2,...,p
, find the set of trajec-

tories w ∈ (Rq)Z which minimize the cost function

J =
+∞∑
t=0

‖(R2(σ)w)(t)‖2 (3)

subject to the following constraints:

R(σ)w = 0 (4)

vai(t) := [(R̄(σ)w)(t)]i = bi(t), i = 1, . . . , p, (5)

t = 0, . . . ,deg δi − 1.

According to the comments at the end of the previous section,
the trajectory

va := R̄(σ)w (6)

belongs to the autonomous behavior ker(∆(σ)), is uniquely
determined by the “initial conditions” (5) and uniquely de-
termines, once a specific autonomous/controllable decompo-
sition of B is chosen, the autonomous part of any trajec-
tory w ∈ B = ker(R(σ)) satisfying (6). This ensures
that every w ∈ ker(R(σ)), in particular each optimal solu-
tion w∗ ∈ ker(R(σ)), can be expressed, according to (2),
as w = L(σ)va + M(σ)vc, with va a fixed trajectory in
ker(∆(σ)). Since va is the same one involved in the expres-
sion of the optimal trajectory w∗ and the optimization problem
is independent of it, in the following we will denote it by v∗

a.

One may wonder in which sense the above problem statement
provides a generalization of the standard LQ problem for state-
space models:

min
u

+∞∑
t=0

[xT (t)Qx(t) + uT (t)Ru(t)]

s.t. x(t + 1) = Fx(t) + Gu(t), t ∈ Z+,

x(0) = x0,

where x represents the state sequence, u the input sequence,
Q and R are symmetric positive semidefinite matrices (R, in
particular, is supposed to be positive definite). Indeed, if we
define as system variable w := [x u ]T , then the quadratic
index J may be rewritten as

J =
+∞∑
t=0

∥∥∥∥
[

Q1/2 0
0 R1/2

] [
x(t)
u(t)

]∥∥∥∥
2

,

where we have denoted by Q1/2 (by R1/2) any matrix such that
Q = (Q1/2)T Q1/2 (R = (R1/2)T R1/2, respectively). Thus J
can be represented as in (3) upon setting

R2(ξ) :=
[

Q1/2 0
0 R1/2

]
.

On the other hand, the state-space equation can also be formal-
ized as follows:

[ F − σI G ]
[
x
u

]
= 0,

and hence (4) holds for R(ξ) := [F − ξI G ] . Moreover,
it is well-known that the optimal solution is obtained by re-
sorting to a state feedback and hence leads to an autonomous
state-space model (as a matter of fact, the optimal solution is
obtained by resorting to a time varying state feedback matrix,



but our comparison is with the time invariant asymptotic so-
lution of the standard LQ problem). Indeed, the (sub)optimal

(time-invariant) solution

[
x∗

u∗

]
satisfies

[
F − σI G
−K∗ I

] [
x∗

u∗

]
= 0,

(for a suitable K∗ and starting from the assigned initial condi-
tion x0) and hence the set of optimal solutions (corresponding
to all possible choices of the initial condition) represents an au-
tonomous behavior. This motivated our choice of imposing to
our set of solutions the structure of an autonomous behavior.

Also, under the stabilizability assumption on the pair (F, G)
(equivalently, on the corresponding behavior B), the matrix
K∗ (obtained by solving a suitable algebraic Riccati equation)
makes the matrix F + GK∗ asymptotically stable (makes the
optimal behavior autonomous and asymptotically stable) if and
only if the pair (F, Q1/2) is detectable.

Finally, we want to comment on our choice of the initial
conditions (5). In the standard state-space setting, the ini-
tial conditions are given by specifying the initial state at
time 0, i.e. x(0) = x0. Once the initial state is given,
the free state evolution is uniquely determined and we have
to select the input sequence and, consequently, the forced
evolution, in order to minimize the given index. Since the
free/forced evolution decomposition is naturally replaced by
the autonomous/controllable decomposition in the behavioral
setting, the choice of constraining the autonomous part of the
optimal behavior trajectories seemed to be the most natural ex-
tension of the classical initial condition.

From a purely mathematical point of view, we want to show
how, by constraining the autonomous part of the behavior
ker([ F − σI G ]), we actually impose a constraint not on the
whole initial condition x(0) but just on that portion of x(0)
which corresponds to the uncontrollable part of the dynamical
system. Therefore the constraint on the autonomous part we
have introduced here is weaker with respect to the one tradi-
tionally imposed in the state-space setting. If we suppose that
the state-space model is in Kalman reachability form:

F =
[

F11 F12

0 F22

]
G =

[
G1

0

]
, (F11, G1) a reachable pair,

then the behavior B of the state-space model can be described
as

ker
([

F11 − σI F12 G1

0 F22 − σI 0

])
,

where we have assumed that the system trajectories
are partitioned into three (vector) components: w =
[xT

1 xT
2 uT ]T , x1 the state component corresponding to

the reachable subsystem, x2 the state component correspond-
ing to the unreachable subsystem, u the input sequence. Also,
it is not hard to see that the “controllable part” of B is

Bc=ker
([

F11−σI F12 G1

0 I 0

])
=ker

([
F11 − σI 0 G1

0 I 0

])
,

while a possible choice of an autonomous behavior Ba such
that B = Ba ⊕ Bc is

Ba = ker





 I 0 0

0 F22 − σI 0
0 0 I





 F11 − σI F12 G1

0 I 0
−K1 0 I





 ,

where K1 is any real matrix such that F11 + G1K1 is nilpotent
(i.e., det(F11 +G1K1− ξI) = c · ξh for some c ∈ R\{0} and
some h ∈ N), thus ensuring that F11 + G1K1 − ξI and hence

 F11 − ξI F12 G1

0 I 0
−K1 0 I




are both unimodular L-polynomial matrices. The trajectories
in Bc can be expressed as

wc =


x1

0
u


 , with

[
x1

u

]
∈ ker ([F11 − σI G1 ]) ,

while the trajectories in Ba can be expressed as

wa =


x1

x2

u


 , with

x2 ∈ ker (F22 − σI) ,
(F11 + G1K1 − σI)x1 = −F12x2,

u = K1x1.

Notice that x2 belongs to an autonomous behavior meanwhile,
due to the unimodularity of F11 + G1K1 − ξI , the reachable
component x1 (and hence u) is uniquely determined from x2.
This shows that, with respect to this specific direct sum de-
composition, constraining x2(0) is equivalent to constraining
x2(t), t ∈ Z, and hence the whole wa ∈ Ba in any trajectory
w = wa +wc of B. If we constrain the whole initial condition
x(0), namely both x1(0) and x2(0), we introduce a stronger
constraint, since we both identify the autonomous part of the
trajectory and give some info on the controllable part.

4 Problem solution

We are, now, in a position to derive a kernel description of
the set of all optimal trajectories of our optimization prob-
lem, as the initial conditions vary over the set of all possible∑p

i=1 deg δi-tuples of real numbers. Let v∗
a be the (uniquely

determined) trajectory in ker(∆(σ)) which satisfies the initial
conditions (5). Then, by making use of the arguments previ-
ously adopted, we get that a trajectory w∗ ∈ B is optimal if
and only if the following conditions holds:



w∗ = L(σ)v∗
a + M(σ)v∗

c , ∃ v∗
c ∈ (Rq−p)Z,

∑+∞
t=0‖(R2(σ)(w∗+M(σ)vc))(t)‖2≥∑+∞

t=0‖(R2(σ)w∗)(t)‖2

∀ vc ∈ (Rq−p)Z.

By the linearity of the operator R2(σ), the last equation holds
true if and only if [6]


∑+∞

t=0 <(R2(σ)M(σ)vc)(t),(R2(σ)w∗)(t)>=0,

∑+∞
t=0 ‖(R2(σ)M(σ)vc)(t)‖2 ≥ 0,

∀vc∈(Rq−p)Z



where < t1, t2 > denotes the internal product of the vectors t1

and t2 (in R
p2). The second relation is obviously satisfied for

every choice of vc, meanwhile the first one is satisfied iff

w∗ ∈ ker
(
MT (σ−1)RT

2 (σ−1)R2(σ)
)
. (7)

So, it turns out that the optimal trajectories (as the initial con-
ditions (5) vary in the set of all possible

∑p
i=1 deg δi-tuples)

are those and those only which satisfy both R(σ)w∗ = 0 and
MT (σ−1)RT

2 (σ−1)R2(σ)w∗ = 0. This ensures that the set of
optimal trajectories is a behavior, denoted in the sequel by the
symbol B

∗, that we can identify with

B
∗ = ker

([
R(σ)

MT (σ−1)RT
2 (σ−1)R2(σ)

])
.

If we set

R∗(ξ) :=
[

R(ξ)
MT (ξ−1)RT

2 (ξ−1)R2(ξ)

]
∈ R[ξ, ξ−1]q×q,

then B
∗ = ker(R∗(σ)). Moreover, B

∗ is autonomous if and
only if R∗ is of full column rank and hence, being square, non-
singular.

Of course, the above description of B
∗ is not the most suit-

able one in order to obtain the specific optimal trajectory (or
trajectories) corresponding to the assigned set of initial con-
ditions. To this end, we may observe that if v∗

a is the trajec-
tory in ker(∆(σ)), uniquely determined by the initial condi-
tions (5), then, by resorting to the previous identities, and the
fact that an optimal solution w∗ can be expressed as w∗ =
L(σ)v∗

a + M(σ)v∗
c , we get




∆(σ)v∗
a = 0,

MT (σ−1)RT
2 (σ−1)R2(σ)L(σ)v∗

a+

+MT (σ−1)RT
2 (σ−1)R2(σ)M(σ)v∗

c = 0.

(8)

The previous relations can be used in order to obtain all possi-
ble trajectories v∗

c which lead, together with v∗
a, to an optimal

trajectory w∗. Also, (8) can be thought as the set of behavioral
equations of a new linear time invariant system which is just

B
∗
a,c:=

{[
v∗

a

v∗
c

]
: (8) holds

}
(9)

=ker
([

∆(σ) 0
MT(σ−1)RT

2(σ
−1)R2(σ)L(σ) MT(σ−1)RT

2(σ
−1)R2(σ)M(σ)

])

Obviously, B
∗ and B

∗
a,c are bijectively related by B

∗ =
[ L(σ) M(σ) ]B∗

a,c, and, due to the unimodularity of
[ L(ξ) M(ξ) ], the internal properties of the two behaviors are
just the same. In particular, B

∗ is autonomous if and only if
B

∗
a,c is and this is equivalent to saying that the square matrix

MT (ξ−1)RT
2 (ξ−1)R2(ξ)M(ξ) is nonsingular.

By resorting to B
∗
a,c and to (8), it is now immediate to evaluate

the cost function along an optimal trajectory w∗ = L(σ)v∗
a +

M(σ)v∗
c ∈ B

∗. We get, in fact,

J∗ =
+∞∑
t=0

‖(R2(σ)L(σ)v∗
a)(t)‖2+

+∞∑
t=0

‖(R2(σ)M(σ)v∗
c )(t)‖2

+ 2
+∞∑
t=0

< (R2(σ)M(σ)v∗
c )(t), (R2(σ)L(σ)v∗

a)(t)>

=
+∞∑
t=0

‖(R2(σ)L(σ)v∗
a)(t)‖2−

+∞∑
t=0

‖(R2(σ)M(σ)v∗
c )(t)‖2.

Obviously, two distinct optimal trajectories corresponding to
the same set of initial conditions (5) lead to the same value of
J∗, as is immediately apparent from (9). Therefore J∗ is just a
function of v∗

a, and hence of the initial conditions (5), and it is
independent of v∗

c .

5 Asymptotic stability of the optimal behavior

Since we aimed at obtaining as the set B
∗ of all optimal

trajectories an autonomous behavior, from now on we will
steadily assume that MT (ξ−1)RT

2 (ξ−1)R2(ξ)M(ξ) is nonsin-
gular square. We want now to determine under what conditions
the optimal behavior B

∗ is asymptotically stable. To this end
it will be useful to resort, again, to the behavior B

∗
a,c. Indeed,

it is immediately seen that B
∗ is asymptotically stable if and

only if B
∗
a,c is. As a consequence, once we resort to the kernel

description of B
∗
a,c given in (9), we get that the optimal behav-

ior B
∗ is autonomous and asymptotically stable if and only if

the following two conditions hold:

• det ∆ is Schur;

• MT (ξ−1)RT
2 (ξ−1)R2(ξ)M(ξ) is nonsingular square and its

determinant is Schur.

The former condition amounts to assuming that B is stabiliz-
able, meanwhile the latter condition is satisfied if and only if
MT (ξ−1)RT

2 (ξ−1) R2(ξ)M(ξ) is unimodular, since when λ is

a zero of det
(
MT (ξ−1)RT

2 (ξ−1)R2(ξ) M(ξ)
)

, then also λ−1

is. On the other hand, it is not hard to see that the unimodularity
of such a matrix corresponds to the right primeness condition
on R2(ξ)M(ξ). Since Bc = ker(R̄(σ)) = im(M(σ)) [4], the
following result immediately holds.

PROPOSITION 5.1 The optimal behavior B
∗ is asymptotically

stable and autonomous if and only if

• B is stabilizable and

• ker(R2(σ)) ∩ Bc = {0}.

Notice that, due to the previous proposition, when B
∗ is

asymptotically stable then the optimal solution correspond-
ing to an assigned set of initial conditions (5) is necessarily
unique. Indeed, corresponding to every v∗

a ∈ ker(∆(σ))
we can determine, by means of (8), a unique trajectory v∗

c

such that

[
v∗

a

v∗
c

]
∈ B

∗
a,c and hence a unique trajectory w∗ =

L(σ)v∗
a + M(σ)v∗

c ∈ B
∗ such v∗

a = R̄(σ)w∗.



Asymptotic stability is a very useful property. However, we can
obtain good system performances (and, in particular, finite val-
ues of the optimal cost index J∗ for every choice of the initial
conditions (5)) under quite weaker conditions. Indeed, we can
be simply interested in obtaining, for every choice of the ini-
tial conditions (5), at least one optimal solution w∗ which fits
the initial conditions constraint and asymptotically converges
to zero. The following proposition addresses and solves just
this problem.

PROPOSITION 5.2 Suppose that the optimal behavior B
∗ is

autonomous, namely MT (ξ−1) RT
2 (ξ−1)R2(ξ)M(ξ) is non-

singular square. The following facts are equivalent:

i) for every set of initial conditions (5) and hence for every
assigned v∗

a ∈ ker(∆(σ)), there exists w∗ ∈ B
∗ which satis-

fies v∗
a = R̄(σ)w∗ and converges to 0, as t → +∞;

ii) B is stabilizable, i.e. det ∆ is Schur.

Proof. i) ⇒ ii) Let w∗ be an arbitrary trajectory in B
∗ so that

w∗(t) =
(
L(σ)v∗

a +M(σ)v∗
c

)
(t) for a suitable (and uniquely

determined)

[
v∗

a

v∗
c

]
∈ B

∗
a,c. w∗(t) converges to zero (as t goes

to +∞) if and only if both v∗
a(t) and v∗

c (t) do, namely B
∗
a,c

is asymptotically stable. By (9), the sequence v∗
a belongs to

ker(∆(σ)), thus v∗
a converges to zero for every choice of the

initial conditions (if and) only if det ∆(ξ) is a Schur polyno-
mial. Therefore, a necessary condition for the asymptotic sta-
bility of B

∗ is that det∆(ξ) is Schur.

ii) ⇒ i) Assume, now, that ker(∆(σ)) is an asymptotically
stable autonomous behavior. Once v∗

a ∈ ker(∆(σ)) (and hence
converging to zero) has been assigned, the set of all v∗

c such

that

[
v∗

a

v∗
c

]
∈B

∗
a,c are determined by solving the equation

MT(σ−1)RT
2(σ

−1)R2(σ)L(σ)v∗
a=

= −MT(σ−1)RT
2(σ

−1)R2(σ)M(σ)v∗
c (10)

and hence all such v∗
c differ in an element of

ker(MT (σ−1)RT
2 (σ−1)R2(σ)M(σ)). It entails no loss

of generality assuming that MT (ξ−1)RT
2 (ξ−1)R2(ξ)M(ξ) is

in Hermite form. This allows us to reduce our multivariable
problem to a family of scalar problems. Indeed, once we set

(
MT (σ−1)RT

2 (σ−1)R2(σ)L(σ)v∗
a

)
(t) =:




b1(t)
b2(t)

...
bq−p(t)


 ,

−MT(ξ−1)RT
2(ξ

−1)R2(ξ)M(ξ)=:



a1,1(ξ) . . . a1,q−p(ξ)

. . .
...

aq−p,q−p(ξ)


 ,

equation (10) becomes


b1(t)
b2(t)

...
bq−p(t)


=







a1,1(σ) a1,2(σ) . . . a1,q−p(σ)
a2,2(σ) . . . a2,q−p(σ)

. . .
...

aq−p,q−p(σ)


v∗

c


(t).

Since v∗
a is a suitable linear combination of asymptotically

stable exponential functions tkλt
i, with |λi| < 1, each bj(t)

is, in turn, a combination of asymptotically stable exponential
functions. So, if we assume that bq−p(t) is expressed, for in-
stance, as vq−p(t) =

∑r
i=1

∑mi−1
k=0 ciktkλt

i, then, by resorting
to the theory of standard difference equations,we can immedi-
ately state that there exists an exponentially stable trajectory
v∗

c,q−p(t) s.t.

bq−p(t) = (aq−p,q−p(σ)v∗
c,q−p)(t).

Indeed such a solution v∗
c,q−p(t) can be explicitly computed

starting from the expression of bq−p(t) and it involves only ex-
ponential modes corresponding to the same λi’s:

v∗
c,q−p(t) =

r∑
i=1

mi−1∑
k=0

Aiktk+riλt
i,

where ri is a nonnegative integer which represents the multi-
plicity (possibly 0) of λi as a zero of aq−p,q−p(ξ). But then,
the same argument applies to the difference equation

bq−p−1(t) − (aq−p−1,q−p(σ)v∗
c,q−p)(t) =

= (aq−p−1,q−p−1(σ)v∗
c,q−p−1)(t)

where, now, bq−p−1(t) − (aq−p−1,q−p(σ)v∗
c,q−p)(t) is a com-

bination of asymptotically stable exponential functions and
v∗

c,q−p−1 is the solution, which can always be chosen expo-
nentially stable. By recursively applying this argument, we can
obtain the desired converging v∗

c and hence a converging opti-
mal solution w∗ satisfying the assigned initial conditions.
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