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Abstract

A novel robust predictive control algorithm is presented
for input-saturated uncertain discrete-time linear systems de-
scribed by structured norm-bounded uncertainties. The solu-
tion is based on the minimization, at each time instant, of an
LMI convex optimization problem obtained by a recursive use
of the S-procedure. Stability and feasibility are proved and
comparisons with robust multi-model (polytopic) MPC algo-
rithms are reported.

1 Introduction

Model predictive control (MPC) has become an attractive feed-
back strategy for systems subject to input and state/output in-
equality constraints [1]. More recently, a notable amount of
research has been devoted to extending the basic nominal MPC
strategies to uncertain linear systems. Traditionally, research
on robust minmax MPC control has mainly focused on poly-
topic or multi-model uncertain linear systems [2, 3]. The rea-
son is that the uncertain polytopic paradigm is well suited to
be used within predictive control strategies because the propa-
gation of the effects of the uncertainty over the control horizon
is not usually conservative, especially if formulated in closed-
loop fashion [4, 1], and tight convex sets of state predictions
can easily be formulated via LMI constraints [2]. However,
their large computational burdens still prevent their use in prac-
tical problems. Efforts at removing or ameliorating this situa-
tion have been recently undertaken e.g. in [5], where the idea
was to move as much computational burden as possible off-
line.In this paper, instead, we propose a general N free moves
robust MPC strategy for uncertain norm-bounded (NB) linear
systems [6]. On this subject, fewer contributions have appeared
in the MPC literature. Kothare et al. [2] gave the first construc-
tive solution for the case N = 0. More recently, in [7] a ro-
bustness analysis tool for optimization-based control strategies
has been proposed, postulating the existence of robust MPC
schemes for NB uncertainty. The proposed method is based
on the minimization, at each time step, of an upper bound of
the worst-case infinite horizon quadratic cost under LMI con-
straints derived off-line by a recursive use of the S-procedure
[8]. Unlike the polytopic uncertain description, it is found here
that the number of LMIs grows only linearly with the control
horizon N. A similar approach has been developed by the au-

thors in [9] but the novelty here is twofold: first, the conditions
over the upper bound to the quadratic cost and the input con-
straints are derived in a more compact form; then, by means of
the Choleski factorization, numerical pitfalls are avoided. For
the sake of completeness, in order to cover a lack in the nu-
merical simulations of [9], extensive statistical tests have been
performed in the final example in terms of both control perfor-
mance and computational burdens.

2 Problem Formulation

Consider the following discrete-time linear system with uncer-
tainties or perturbations appearing in the feedback loop


x(t + 1) = Φx(t)+Gu(t)+Bp p(t)
y(t) = Cx(t)
q(t) = Cq x(t)+Dq u(t)
p(t) = (∆q)(t)

(1)

with x ∈ IRnx denoting the state, u ∈ IRnu the control input, y ∈
IRnu the output, p,q ∈ IRnp additional variables accounting for
the uncertainty. For a more extensive discussion about this type
of uncertainty see Boyd et al. [6]. It is further assumed that the
plant input is subject to the following ellipsoidal constraint

u(t) ∈Ωu, Ωu � {u ∈ IRnu : uT Quu≤ ū2}, (2)

with Qu = QT
u > 0 and ū > 0. The aim is to find a state-feedback

regulation, u(t) = g(x(t)), which possibly asymptotically sta-
bilizes (1) subject to (2). We recall now some properties on
quadratic stabilizability which are relevant for our subsequent
developments. The family of systems (1) is said to be ro-
bust quadratically stabilizable if there exists a constant state-
feedback control law u = K x such that all the closed loop tra-
jectories asymptotically converge to zero. In [6] it has been
shown that a linear state-feedback law is able to quadratically
stabilize an uncertain system of the form (1) if there exists a
matrix P = PT > 0 and a scalar λ > 0 such that the following
linear matrix inequality is satisfied

[
ΦT

K PΦK −P+KT Ru K +Rx +λCT
K CK ΦT

K PBp

BT
p PΦK BT

p PBp−λ Inx

]
≤ 0 (3)

where ΦK � Φ+GK, CK � Cq +Dq K and λ ∈ IR, and Rx ≥ 0,
Ru > 0 are given symmetric matrices used in (4). Accordingly,

the following sets St �
{

p | ‖p‖2
2 ≤ ‖CK x(t)‖2

2

}
, representing

the plant uncertainty domains at each time instant t can be de-
termined and a bound on the following quadratic performance
index

J(x(0), u(·)) � max
p(k)∈Sk

∞

∑
k=0

{
‖x(k)‖2

Rx
+‖Kx(k)‖2

Ru

}
, (4)



results to be given by J(x(0), K x(·))≤ x(0)T Px(0). Moreover,
the following ellipsoidal set

C(P,ρ) �
{

x ∈ IRn |xT Px≤ ρ
}

(5)

can be proved to be a robustly positive invariant region for the
state evolution of the closed-loop system, viz. x(0) ∈ C(P,ρ)
implies that Φt

Kx(0) ∈ C(P,ρ) for all t. When N = 0, given the
input constraint (2), the problem can be attacked as in Kothare
et al. [2] by solving the following LMI optimization problem
in the unknowns ρ,Q,Y and λ:

min
Q,Y,ρ,λ

ρ (6)

subject to [
1 x(t)T

x(t) Q

]
≥ 0 , (7)




Q (∗)T (∗)T (∗)T (∗)T

R1/2
u Y ρ Inu 0 0 0

R1/2
x Q 0 ρ Inx 0 0

Cq Q+DquY 0 0 λ Inx 0
ΦQ+GY 0 0 0 Q−λBp BT

p


≥ 0 , (8)

λ > 0 , (9)[
ū2I Q

1
2
u Y

Y T Q
1
2 T
u Q

]
≥ 0 , Q

1
2 T
u Q

1
2
u = Qu P = ρQ−1

K = Y Q−1

(10)
In order to improve the usually modest control performance
pertaining to the above receding horizon quadratically stabi-
lizing controllers, in [3] it has been proposed to introduce N
additional input free moves over which the optimization takes
place. A further idea for improving performance was recently
proposed [9] and consists of adopting during predictions the
following family of virtual commands

û(·|t) =
{

K x̂(t + k|t)+ c(t + k|t), k = 0,1, . . . ,N−1,
K x̂(t + k|t) k ≥ N,

(11)
where c(·|t) denotes N free perturbations over the action of an
admissible controller K and

x̂(t + k|t) �
(

k

∏
0

ΦK

)
x(t)+

k−1

∑
i=0

(
k−1−i

∏
0

ΦK

)
(Gc(t + i|t)+Bp p(t + i|t))

(12)

represents set-valued state predictions, computed under the
condition

p(t +k|t)∈ St+k|t � {p : ‖p‖2
2≤‖CKx̂(t +k|t)+Dqc(t +k|t)‖2

2},

k = 0,1, ...,N−1,

with St+k|t characterizing all admissible perturbations along the
system trajectories corresponding to the virtual command se-
quences (11). The free perturbations c(·|t) are computed by
minimizing the following minmax quadratic index

V (x(t),P,c(·|t)) �
N−1

∑
k=0

(
max

p(k|t)∈St+k|t
‖x̂(t + k|t)‖2

Rx +‖c(t + k|t)‖2
Ru

)
+

max
p(t+N|t)∈St+N|t

‖x̂(t +N|t)‖2
P, (13)

Rx ≥ 0, Ru ≥ 0 are symmetric state and input weighting matri-
ces and P ≥ 0. Specifically, at each time instant t the problem
to be solved on-line consists of computing

c∗(·|t) � argminc(·|t)V (x(t),P,c(·|t)) (14)

subject to

Kx̂(t + k|t)+ c(t + k|t) ∈Ωu, k = 0,1, ...,N−1 (15)

x̂(t +N|t) ∈C(P,ρ)⊂Ωu (16)

where C(P,ρ) is a robust invariant set under K � YQ−1 with
(P,Q,ρ) solution of the LMI conditions (7)-(10). In (14), the
constraints (15) are used to enforce input constraints during
prediction whereas the constraint (16), hereafter referred to as
terminal constrain, is used to ensure closed-loop stability.

3 LMI formulation of cost upper-bounds, input
and terminal constraints

In this section we determine a suitable upper-bound to the
quadratic cost in terms of LMI conditions. A convenient upper-
bound to the cost (13) can be achieved by introducing non-
negative reals J0, ....,JN−1 such that, for arbitrary P, K and
ck � c(t + k|t), pk � p(t + k|t), k = 0, ..,N− 1, the following
inequalities hold true

max
p0∈S0

x̂T
1 Rx x̂1 + cT

0 Ru c0 ≤ J0 (17)

max
pi∈Si

i=0,....,k

x̂T
k+1 Rx x̂k+1 + cT

k Ru ck ≤ Jk, k = 1, . . . ,N−2(18)

max
pi∈Si

i=0,....,N−1

x̂T
N Px̂N + cT

N−1 Ru cN−1 ≤ JN−1 (19)

Then, it results that

V (x(t),P,c(·|t))≤ xT
0 Rx x0 +

N−1

∑
k=0

Jk (20)

In particular, we are interested in determining LMI condi-
tions relating any arbitrary triplet (x0,ck,K), k = 0, ..,N − 1
to the class of all J0, ..,JN−1 that satisfy (17)-(19). This will
be accomplished by directly exploiting standard S -procedure
arguments [8]. Let’s consider first (17) for a generic triplet
(x0,c0,J0). By recalling that

x̂1 = ΦKx0 +Gc0 +Bpp0, ∀p0 ∈ S0 (21)

one has that (17) is satisfied provided that

(ΦKx0 +Gc0 +Bpp0)
T Rx (ΦKx0 +Gc0 +Bpp0)+cT

0 Ruc0≤ J0

(22)
for all p0 such that

pT
0 p0 ≤ (CKx0 +Dqc0)

T (CKx0 +Dqc0) . (23)

Conditions (22) and (23) can be rearranged respectively as

−pT
0 BT

p RxBp p0−2[xT
0 cT

0 ]DT
0 p0 +J0− [xT

0 cT
0 ]E0

[
x0
c0

]
≥ 0(24)

−pT
0 p0 +[xT

0 cT
0 ]F0

[
x0
c0

]
≥ 0 (25)



where DT
0 , E0 = ET

0 ≥ 0 and F0 = FT
0 ≥ 0 are matrices of ap-

propriate dimensions defined by

DT
0 �

[
ΦT

K
GT

]
RxBp, E0 �

[
ΦT

KRxΦK ΦT
KRxG

∗ GT RxG+Ru

]
,

F0 �
[

CT
K

DT
q

]
[CK Dq] .

(26)
Then, the implication:

(22) holds true for all p0 satisfying (23) (27)

can be shown, via the S -procedure [8], to be true iff there exists
a scalar coefficient τ0 ≥ 0 such that the following matrix

−BT

pRxBp + τ0I −D0

[
x0

c0

]

∗ J0− [xT
0 cT

0 ] (E0 + τ0F0)
[

x0

c0

]

≥ 0

(28)
is semidefinite positive for the triplet (x0,c0,J0). By Schur
complements, semidefinitedness of (28) is equivalent to both

−BT
p RxBp + τ0I > 0 (29)

J0− [xT
0 cT

0 ] (E0 + τ0F0)
[

x0

c0

]
−

[xT
0 cT

0 ]DT
0

(−BT
pRxBp + τ0I

)−1
D0

[
x0

c0

]
≥ 0 (30)

be true. Condition (29) can be satisfied independently by
the triplet (x0,c0,J0) by selecting a sufficiently large τ0. Un-
der (29), (30) characterizes the class of all admissible triplets
(x0,c0,J0) for a given τ0. In order to enlarge this class, a con-
venient choice is

τ̂0 � argminτ0≥0 λ̄
(

E0 + τ0F0 +DT
0

(−BT
p RxBp + τ0I

)−1
D0

)
subject to (31)

−BT
p RxBp + τ0I > 0

where λ̄ denotes the largest eigenvalues. Finally, by performing
a Cholesky factorization

LT
0 L0 = E0 + τ̂F0 +DT

0

(−BT
pRxBp + τ0I

)−1
D0 (32)

(see [10] if the matrix is only semi-definite positive), one can
equivalently rearrange condition (28) as the following LMI
condition

Σ0 �
[

J0 −[xT
0 cT

0 ]LT
0

∗ I

]
≥ 0 (33)

which is linear in the terms x0, c0 and J0. Then, for a given x0,
the LMI condition Σ0 ≥ 0 can be used to characterize all J0 that
satisfy the implication (27) for any c0, Moreover, one can min-
imize the upper-bound to the cost by selecting the minimum J 0

which satisfies Σ0 ≥ 0. The same procedures can be repeated
for conditions (18) and (19). Specifically, consider (18) for the
generic k = 1, ....,N−2. Define vectors

ck � [cT
0 cT

1 · · · cT
k ]T ∈ IR(k+1)nu , p

k
� [pT

0 pT
1 · · · pT

k ]T ∈ IR(k+1)np

(34)

and matrices

Φ̄k � Φk
K ∈ IRnx×nx , Φ̃k � [Φk

K Φk−1
K · · ·ΦK I] ∈ IRnx×(k+1)nx .

(35)
Then, the set of all k-steps ahead state predictions can be refor-
mulated as

x̂k+1 = Φ̄kx0 + Φ̃kGck + Φ̃kBpp
k
, ∀pi ∈ Si, i = 0, ...,k (36)

and the condition (18) rearranged as

x̂T
k+1R̂xx̂k+1 + cT

k Ruck ≤ Jk (37)

for all pi, i = 0, ...,k such that

pT
i pi ≤ (CKx̂i +Dqci)

T (CKx̂i +Dqci) . (38)

Again, the above two conditions (37) and (38) can be rewritten
respectively as

−pT
k

BT
p Φ̄T

k RxΦ̄kBp p
k
−2[xT

0 cT
k ]DT

k p
k
+ Jk− [xT

0 cT
k ]Ek

[
x0
ck

]
≥ 0 (39)

−pT
k

G̃i pk
+2[xT

0 cT
k ]H̃T

i p
k
+[xT

0 cT
k ]F̃i

[
x0
ck

]
≥ 0, i = 0, ...,k (40)

where DT
k , Ek = ET

k ≥ 0 are matrices of appropriate dimensions
defined by

DT
k �

[
Φ̄T

k
GT Φ̃T

k

]
RxΦ̃T

k Bp,

Ek �

 Φ̄T

k RxΦ̄k Φ̄T
k RxΦ̃kG

∗ GT Φ̃T
k RxΦ̃kG+

[
0 0
0 Ru

]  (41)

where the square matrix Ru is added to the last nu rows and
columns of the sub-matrix GT Φ̃T

k RxΦ̃kG of Ek, while H̃i, G̃i =
G̃T

i and F̃i = F̃T
i ≥ 0 are given by

H̃T
i �

[
HT

i 0
0 0

]
, G̃i �

[
Gi 0
∗ 0

]
, F̃i �

[
Fi 0
∗ 0

]
(42)

with

HT
0 � 0(nx+nu)×np ,G0 �−Inp and F0 as in (26) (43)

and for i = 1, ...k

HT
i �


 Φ̄T

i−1C
T
K

GT Φ̃T
i−1C

T
K

DT
q


 [CKΦ̃i−1 0] ,

Gi �
[

BT
p Φ̃T

i−1C
T
KCKΦ̃i−1Bp 0
∗ −I

]
,(44)

Fi �


 Φ̄T

i−1
GT Φ̃T

i−1
BT

p Φ̃T
i−1


CT

KCK [Φ̄i−1 Φ̃i−1G Φ̃i−1Bp]. (45)

The rationale for introducing the matrices H̃T
i , G̃i and F̃i is that

of expressing conditions (18) for i = 0, ...,N − 1 all in terms
of the same vectors ck and p

k
, which is instrumental for the

application of the S-procedure, while the exact dependence is



maintaining. In fact, observe that

[xT
0 cT

k ]H̃T
i p

k
= [xT

0 cT
i−1 cT

i ]HT
i


 x0

ci−1
ci


 ,

pT
k
G̃T

i p
k
= [pT

i−1
pT

i ]Hi

[
p

i−1
pi

]
(46)

[xT
0 cT

k ]F̃i

[
x0

ck

]
= [xT

0 cT
i−1 cT

i ]Fi


 x0

ci−1
ci


 . (47)

Again, via the S-procedure it can be shown that the implication

(37) holds true for all p0, ...., pk satisfying (38) (48)

is satisfied if there exist k + 1 reals τk
0 ≥ 0, ....,τk

k ≥ 0 such that
the following matrix

−BT

p Φ̃T
k RxΦ̃kBp−∑k

i=0 τk
i G̃i −(Dk +∑k

i=0 τk
i H̃i
)[ x0

ck

]

∗ Jk− [xT
0 cT

k ]
(
Ek +∑k

i=0 τk
i F̃i
)[ x0

ck

]



(49)

is semidefinite positive for the triplet (x0,ck,Jk). By using the
same arguments used to derive (33) one arrives to

Σk �
[

Jk −[xT
0 cT

k ]LT
k

∗ I

]
≥ 0 (50)

where

LT
k Lk =

(
Ek +∑k

i=0 τ̂k
i F̃i
)
+(

Dk +∑k
i=0 τ̂k

i H̃i
)T (−BT

p Φ̃T
k RxΦ̃kBp−∑k

i=0 τ̂k
i G̃i
)−1 (

Dk +∑k
i=0 τ̂k

i H̃i
)
(51)

and τ̂k
i , i = 0, ...,k are given by

[τ̂k
0, ..., τ̂

k
k] � argminτk

i≥0 λ̄
(
LT

k Lk
)

subject to (52)(−BT
pΦ̃T

k RxΦ̃kBp−∑k
i=0 τk

i G̃i
)

> 0.

Finally, the following LMI condition

ΣN−1 �
[

JN−1 −[xT
0 cT

N−1]L
T
N−1

∗ I

]
≥ 0 (53)

results a sufficient condition for (19) to hold true where the
matrix LN−1 factorizes

LT
N−1LN−1 =

(
EN−1 +∑N−1

i=0 τ̂N−1
i F̃i

)
+(

DN−1 +∑k
i=0 τ̂N−1

i H̃i

)T (−BT
p Φ̃T

N−1PΦ̃N−1Bp−∑N−1
i=0 τ̂N−1

i G̃i

)−1

(
DN−1 +∑N−1

i=0 τ̂k
i H̃i

)
(54)

with DT
N−1, EN−1 = ET

N−1 ≥ 0 matrices defined by

DT
N−1 �

[
Φ̄T

N−1
GT Φ̃T

N−1

]
PΦ̃T

N−1Bp,

EN−1 �

 Φ̄T

N−1PΦ̄N−1 Φ̄T
N−1PΦ̃N−1G

∗ GT Φ̃T
N−1PΦ̃N−1G+

[
0 0
0 Ru

]  (55)

and

[τ̂N−1
0 , ..., τ̂N−1

N−1] � argminτN−1
i ≥0 λ̄

(
LT

N−1LN−1
)

subject to (56)(−BT
pΦ̃T

N−1PΦ̃N−1Bp−∑N−1
i=0 τN−1

i G̃i
)

> 0.

All the above discussion can be summarized in the following
result.

Lemma 1 - Let the initial state x0, the stabilizing control law K
and the input increments ci be given for i = 0, ..,N− 1. Then,
the set of all non-negative variables J0, ...,JN−1 which satisfy
the following N− 1 LMI conditions, Σ i ≥ 0, i = 0, ...,N− 1,
provide an upper-bound to the cost as indicated in (20).
Notice that, for the specific structure of the matrices
Gi, i = 0, ...,N − 1, problems (31), (52) and (56) have
always solution by taking their arguments sufficiently large.
Proof - By collecting all the above discussion. �

Next step is to find LMI conditions that allows us to en-
force the quadratic input constraints (2) along the predictions
for k = 0, ...,N−1. This consists of imposing that

(Kx0 + c0)
T Qu (Kx0 + c0) ≤ ū2 (57)

(Kx̂k + ck)
T Qu (Kx̂k + ck) ≤ ū2, ∀pi ∈ Si, i = 0, ...,k−1(58)

with x̂k given by (36). Condition (57) directly translates into
the following LMI feasibility condition

ϒ0 �
[

ū2 −(Kx0 + c0)T

∗ Q−1
u

]
≥ 0 (59)

where, for each k, condition (58) can be satisfied by determin-
ing a suitable LMI ϒk ≥ 0. One way is to use the arguments
used in determining Σk by eliminating the universally quanti-
fied variables pk. A more direct, though possibly conservative
strategy is to consider that an outer approximation to the set of
predictions x̂k is provided by the ellipsoidal set

Zk �
{

x ∈ IRnx : xT Rx x+ cT
k−1 Ru ck−1 ≤ Jk−1

}
(60)

where Jk−1 is the variable involved in the cost upper-bound
(20). Then, for each k = 1, ...N − 1, condition (47) can be
rewritten as

(Kx+ ck)
T Qu (Kx+ ck)≤ ū2, ∀x ∈ Zk. (61)

Via the S -procedure it can be shown that (61) holds true iff
there exists a non-negative real θk ≥ 0 such that the following
matrix[ −KT QuK +θkRx −KT Quck

∗ ū2−cT
k Quck−θk

(
Jk−1−cT

k−1Ruck−1
) ]

(62)
is positive semidefinite which, in turn, is equivalent to verify
that both

−KT QuK +θkRx > 0 (63)

ū2− cT
k Quck−θk

(
Jk−1− cT

k−1Ruck−1
)

−cT
k QuK

(−KT QuK +θkRx
)−1

KT Quck ≥ 0 (64)



hold true. Then, by selecting

θ̂k � arg min
θk≥0

θ subject to
(−KT QuK + θkRx

)
> 0 (65)

factorizing

V T
k Vk = Qu +QuK

(−KT QuK + θ̂kRx
)−1

KT Qu (66)

and observing that

(64) ≥ 0 for ck = 0⇒ (64) ≥ 0 ∀ck (67)

one can rewrite (64) as the following LMI condition

ϒk �
[

ū2− θ̂kJk−1 −cT
k V T

k
∗ I

]
≥ 0 (68)

LMIs (67) and (68), if satisfied, define sufficient conditions on
Jk and ck that give rise to admissible state predictions.

Lemma 2 - Let the initial state x0 and the stabilizing control
law K be given. Then, all vectors ck that along with Jk, k =
0, ...,N−1 satisfy the LMI conditions ϒk ≥ 0, k = 0, ...,N−1,
generate set-valued state predictions that, along with the corre-
sponding ck, fulfil the input constraint (2) for k = 0, ..,N− 1.
Notice that, problems (66) have always solution by taking their
arguments sufficiently large.

Proof - By collecting all the above discussion. �

It remains to impose that: x̂N ∈C(P,ρ)⊂Ωu i.e.

x̂T
NPx̂N ≤ ρ (69)

where x̂N = ΦKx̂N−1 + Gc1 + BppN−1, ∀pN−1 ∈ SN−1. The
constraint (69) can be arranged as follows

(ΦKx̂N−1 +GcN−1 +Bp pN−1)T P(ΦKx̂N−1 +GcN−1 +Bp pN−1)≤ ρ (70)

subject to

(ΦKx̂N−1 +GcN−1 +Bp pN−1)T P(ΦKx̂N−1 +GcN−1 +Bp pN−1)

+cT
N−1RucN−1 ≤ JN−1 (71)

∀x̂N−1 s.t. x̂T
N−1Px̂N−1 + cT

N−2Ru cN−2 ≤ JN−2 (72)

∀pN−1 s.t. pT
N−1 pN−1 ≤ (CKx̂N−1 +DqcN−1)T (CKx̂N−1 +DqcN−1). (73)

The above conditions (70)-(73) can be rewritten respectively as

ρ− [ x̂T
N−1 pT

N−1

]
EN

[
x̂N−1
pN−1

]
−

2
[

x̂T
N−1 pT

N−1

]
DN

[
cN−1
cN−2

]
− [ cT

N−1 cT
N−2

]
FN

[
cN−1
cN−2

]
≥ 0.(74)

JN−1−
[

x̂T
N−1 pT

N−1

]
EN

[
x̂N−1
pN−1

]
−

2
[

x̂T
N−1 pT

N−1

]
DN

[
cN−1
cN−2

]
− [ cT

N−1 cT
N−2

]
FN1

[
cN−1
cN−2

]
≥ 0.(75)

JN−2−
[

x̂T
N−1 pT

N−1

]
EN0

[
x̂N−1
pN−1

]
−[ cT

N−1 cT
N−2

]
DN0

[
cN−1
cN−2

]
≥ 0. (76)

[
x̂T
N−1 pT

N−1

]
ENpN−1

[
x̂N−1
pN−1

]
+2

[
x̂T
N−1 pT

N−1

]
DNpN−1

[
cN−1
cN−2

]
+

[
cT
N−1 cT

N−2

]
FNpN−1

[
cN−1
cN−2

]
≥ 0. (77)

where

• EN =

[
ΦT

K PΦK ΦT
K PBp

∗ BT
p PBp

]
, FN =

[
GT PG 0

0 0

]
, DN =

[
ΦT

KP

BT
p P

]
[G 0]

• FN1
=
[

GT PG+Ru 0
0 0

]
, EN0

=
[

P 0
0 0

]
, DN0

=
[

0 0
0 Ru

]

• ENpN−1
=
[

CT
KCK 0

0 −I

]
, FNpN−1

=

[
DT

q Dq 0
0 0

]
, DNpN−1

=
[

CT
K
0

]
[Dq 0].

Then the implication
(70) holds true for all x̂N−1 satisfying (70)-(72)

and for all pN−1 satisfying (73)

can be shown via S-procedure to be true if there exist scalars
τN

1 ≥ 0, τN
2 ≥ 0, τN

3 ≥ 0 such that the following matrix




−EN + τN
1 EN + τN

2 EN0
− τN

3 ENpN−1
(DN + τN

1 DN − τN
3 DNpN−1

)
[

cN−1
cN−2

]

∗
ρ− τN

1 JN−1 − τN
2 JN−2−

−
[

cT
N−1 cT

N−2

]
FN+

+τN
1 FN1

+ τN
2 DN0

− τN
3 FNpN−1

[
cN−1
cN−2

]




(78)

is semidefinite positive for (cN−1, cN−2, JN−1, JN−2). By the
same arguments used in the section, one obtains

ΣN �
[

ρ− τN
1 JN−1− τN

2 JN−2
[

cT
N−1 cT

N−2

]
LT

N
∗ I

]
(79)

where

LT
N LN = FF +

(
DN + τN

1 DN − τN
3 DNpN−1

)T

(
−EN + τN

1 EN + τN
2 EN0 − τN

3 ENpN−1

)−1(
DN + τN

1 DN − τN
3 DNpN−1

)
(80)

where τN
i , i = 1,2,3, are given by

[τN
1 ,τN

2 ,τN
3 ] � argminτN

i ≥0 λ̄
(
LT

NLN
)

subject to (81)(
−EN + τN

1 EN + τN
2 EN0 − τN

3 ENpN−1

)
> 0.

3.1 Algorithm NB-Frozen

An implementable algorithm which uses the previous result un-
der the assumption that P and K are held constant to their values
computed in the initialization phase is as follows:

1. At time t = 0 given x(0), find

[Yopt, Qopt] � arg min
Q,Y,ρ,λ

ρ (82)

subject to the constraints (7), (8), (9), (10).

Let K← Yopt Q
−1
opt, P← ρopt Q

−1
opt.

2. Compute the scalars: τ0 by solving (31); τk
i , k = 1, . . . ,N−2,

i = 0, . . . ,k by solving (52); τN−1
i , i = 0, . . . ,N−1 by solving

(56); θk, by solving (65); τN
i , i = 1,2,3 by solving (81);

3. At each time t ≥ 0, find ĉopt(t|t), ĉopt(t +1|t), . . . , ĉopt(t +N−
1|t), the minimizer of

min
Ji,ĉ(t+i|t) i=0...N−1

J̄ (83)

subject to Σi ≥ 0, i = 0, . . . ,N, ϒi ≥ 0, i = 0, . . . ,N−1;

4. feed the plant by ûopt(t|t)→ K x(t)+ ĉopt(t|t);



5. t← t +1 and go to step 3.

The following result solves feasibility and closed loop stability
questions:

Proposition 1 Let the NB-Frozen scheme have solution at time
t = 0. Then, it has solution at each future time instant t, satisfies
the input constraints and yields an asymptotically (quadrati-
cally) stable closed-loop system.

Proof: See [3].

4 A numerical experiment

Consider the same two-carts/spring system of [2, 9]. In all sim-
ulations we have used Ru = 1, Rx = H ′Ry H, with Ry = 1 and
input constraints ū = 0.1. Fig. 1 reports the output and in-
put for the proposed NB-Frozen algorithm and the Polytopic-
Frozen MPC scheme of [3] for N = 2, respectively. As there
clearly results, an identical control performance has been ob-
tained by using the two different descriptions for the uncer-
tain system. However, as reported in Table 1 the NB-Frozen
algorithm shows a remarkable reduction of the computational
complexity, measured in Flops per step, as the control hori-
zon increases. In order to give a statistical measure of how
the Algorithm NB-Frozen performs w.r.t. the Polytopic-Frozen
Algorithm, a series of 200 randomly chosen plants (Φm,Gm),
m = 1, . . . ,200, belonging to the uncertainty structure given
by the plant (see [9]), have been generated. For each couple
(Φm,Gm), m = 1, . . . ,200, a 100-time step MPC nominal sim-
ulation have been run and an estimate of the optimal quadratic
cost computed. These results have been compared with the up-
per bound to the optimal cost after 100-time step for the MPC-
Polytopic and the MPC-NB frozen algorithms. The relative
error has been finally computed and in the Tables 2, 3 an esti-
mate of the relative error mean and the standard deviation are
given.

5 Conclusions

We have presented a novel robust predictive control strategy robustly
which asymptotically stabilizes an input constrained uncertain linear
system with norm-bounded uncertainties. The numerical procedure is
based on the minimization, at each time instant, of an upper bound of
a minmax quadratic index, under the constraint that all future states
are robustly steered within N-steps into a feasible positively invariant
set. The S -procedure plays a crucial role in determining the convex
constraints of such an optimization problem. A significant reduction
of the computational burden and no control performance loss with re-
spect to the polytopic paradigm has been observed from the numerical
experiments.
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Figure 1: Regulated plant output and input
Table 1: Comparison of numerical complexity per step

N=1 N=2 N=3
Polytopic-Frozen 3686 9586 27946

Nb-Frozen 2119 4505 7835

Table 2: Nb-Frozen vs. Exact

N=1 N=2 N=3
Mean 0.3011 0.2838 0.2636

Standard Deviation 0.0113 0.0145 0.0101

Table 3: Polytopic-Frozen vs. Exact

N=1 N=2 N=3
Mean 0.2935 0.2261 0.1581

Standard Deviation 0.0156 0.0198 0.0156
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