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Abstract

The paper considers a class of control systems, described by a
finite set of linear systems with the transition between them de-
termined by a homogeneous Markov chain. Every state of this
chain correspond to some mode of the system. When the mode
is fixed, the plant state evolves according to the correspond-
ing individual dynamic. At the moment of discontinuous mode
change the plant state vector can be changed by jump. The nec-
essary and sufficient conditions of stabilizability in the mean
square via static output feedback control are formulated. These
conditions are generalized to the case of the mode change pa-
rameters uncertainty. The sufficient conditions which guaran-
tee, that the static output feedback control stabilizes the system
for plant parameters uncertainty are obtained. Some heuristic
algorithms for computing of the gain matrix of robust stabiliz-
ing control are also developed.

1 Introduction

In control practice we can find a lot of dynamical systems with
random jumping changes of their structure or parameters, such
as aerospace systems, manufacturing systems, economic sys-
tems, etc., see, for example [11, 13, 14, 17] and the references
therein. Systems with random jumps are hybrid ones with
many operating modes. Every mode corresponds to an indi-
vidual deterministic or stochastic dynamics. The system mode
switching is governed by a Markov process with a finite set
of statesN = {1, 2, . . . , ν} (Markov chain). When the mode
i ∈ N is fixed, the plant state evolves according to the corre-
sponding individual dynamic. The state space of these systems
is naturally hybrid: to the usual plant state inRn we append a
discrete variable taking values in the setN.

The stability and control theory for the systems with random
jumps began to develop since the pioneering works of Kats and
Krasovskii [12], Krasovskii and Lidskii [16] correspondingly.
The stochastic moment approach to the stability problem was
introduced by Mil’stein [18]. The linear quadratic control prob-
lem was solved by Sworder [23] using stochastic maximum
principle for state feedback in finite horizon case. Wonham
[26] obtained the same results using dynamic programming for

both finite and infinite horizon cases. He also obtained a set of
sufficient conditions for the existence of a finite solution. Kaza-
kov and Artem’ev [14] have developed a general theory of ran-
dom structure systems based on Fokker-Planck-Kolmogorov
type equation approach. Now, due the large number of appli-
cations several results for this class of systems can be found in
the current literature, regarding stability, optimal control, sta-
bilization, controllability and observability problems, see for
instance [3, 11, 13, 17] and the references therein.

Robust control offers the advantage to design a controller
which enables us to cope with the uncertainties which appear
in the more realistic models. The series of papers dealing with
the robustness of the class of systems with random jumps have
been published. The stability, stabilization,H2, H∞, mixed
H2/H∞ problems and their robustness have been investigated.
Without any intention of being exhaustive here, we quote the
papers [1, 2, 4–7, 9, 10, 19–22] and the references therein.

One of the most important open questions in control theory is
the static output feedback problem [24]. In the case of jumping
systems we have especially weak development of the analytical
and computational methods of solution of this problem [17]. In
this connection the purpose of this paper is to obtain stabiliz-
ability and robust stabilizability conditions of jumping systems
via static output feedback.

In this paper we study the robust static output feedback con-
trol problem in two cases. First, we consider the system with
mode change parameters uncertainty. In this case we suppose
that the matrix of transition intensities is an affine functions
of uncertain vector parameter. Second we consider the system
with plant parameter uncertainty and sector bounded Lur’e type
nonlinearities. In both the cases at the moment of mode change
the plant state vector can be changed by jump.

The paper is organized as follows. In Section 2 we give the
mathematical description of the considered system. In sec-
tion 3 necessary and sufficient conditions of stabilizability in
the mean square via static output feedback are formulated.
In section 4 we obtain necessary and sufficient conditions for
static output feedback control to be robust control against mode
change parameters uncertainty. In section 5 we obtain the suf-
ficient conditions for the mean square stabilizing control to be
robust control against both the plant parameters uncertainty and
the uncertain sector bounded nonlinearity. In conclusion some
heuristic LMI-based [8] algorithms for computing of the gain



matrix of robust stabilizing control are developed and computa-
tional aspects of the considered problems are shortly discussed.

2 System description

Consider a control system described by the family of differen-
tial equations

ẋ(t) = A[r(t)]x(t) + B[r(t)]u(t), (1)

y(t) = C[r(t)]x(t),

wherex(t) is then-dimensional plant state vector;u(t) is the
k-dimensional control vector;y(t) is the s-dimensional out-
put vector;r(t) is homogeneous discrete state Markov process
(Markov chain) representing a mode (or regime) of system and
taking values in a finite setN = {1, . . . , ν} with a matrix of
transition probabilitiesP(∆) = [pij(∆)]ν1 , from modei to
modej during the time interval[t, t + ∆] given byP(∆) =
exp(Π∆), pij(τ) = Prob{r(t + ∆) = j | r(t) = i} (i, j ∈
N), Π = [πij ]ν1 , πij ≥ 0 (i 6= j), πii = −

∑ν
j 6=i πij ;

A(i) = Ai,B(i) = Bi,C(i) = Ci (i ∈ N) are known matri-
ces of appropriate dimensions.

Let τ > t0 be the moment of discontinuous mode change, i.e.
the moment of transition fromr(τ − 0) = i to r(τ) = j 6= i. It
is supposed that at the momentτ the plant state vectorx can be
changed discontinuously too and its value after jump is linearly
dependent on the same value before the jump:

x(τ) = Φijx(τ − 0), (2)

whereΦij , (i, j ∈ N) aren × n constant matrices, such that
(Φii = I) .

Note that as a rule the case of continuous change of the plant
state vector is considered(Φij = I), but in many real systems
the situation, when some plant state variables are changed by
jump is more typical. This situation is natural for mechanical
systems with sudden change of mass or moment of inertia; in
this case the linear or angular velocity will be changed by jump,
see [13] for more detail.

For everyi ∈ N the plant state space of the system (1) can be
presented in the form of the following partition

Rn = Im(CT (i))⊕Ker(C(i)), (3)

where Im(CT (i)) and Ker(C(i)) are orthogonal subspaces.
For anyx ∈ Rn we can write

x = xI + xK,

wherexI ∈ Im(CT (i)) andxK ∈ Ker(C(i)). Define the
matrices

EI(i) = C+
i Ci, (4)

EK(i) = I−EI(i), (5)

whereC+
i is the Moore-Penrose inverse ofCi. According to

the partition (3) the matrices (4), (5) are projection matrices on
Im(CT (i)) and onKer(C(i)) correspondingly. These matri-
ces are symmetric and unique.

3 Mean square stabilization via static output
feedback

Consider a linear control with the static output feedback in the
following form

u(t) = −K(i)y(t) if r(t) = i. (6)

Definition 1 The system (1) is said to be mean square stabiliz-
able via static output feedback if there exists a control law in
the form of (6) such that the system (1) is exponentially stable in
the mean square, i.e. for anyx0 = x ∈ Rn, r0 = i ∈ N, t ≥ 0
and for someα > 0, β > 0 the following inequality is true
[15]:

E [‖ x(t) ‖2| x0 = x, r0 = i] ≤
β ‖ x ‖2 exp(−α(t− t0)), t ≥ t0,

whereE is the expectation operator.

In this section we generalize the result by Trofino-Neto and
Kučera [25] and obtain some necessary and sufficient condi-
tions of stabilizability via static output feedback of the system
(1).

Lemma 1 Let x, y, z ∈ Rn, z = x + y, xT y = 0, x ∈
Im(BT ), y ∈ Ker(B), xT Ax ≤ xT BT Bx, yT Ay < 0,
whereA = AT and B are some matrices of corresponding
dimensions. Then

zT Az ≤ zT (BT B + βI)z,

whereβ = 2 ‖ A ‖ .

Proof. Taking into account that

Bz = Bx + By,

we have

zT Az = xT Ax + 2xT Ay + yT Ay ≤ xT BT Bx +
2xT Ay = zT BT Bz + 2xT Ay.

According to the Schwartz inequality

xT Ay ≤‖ x ‖‖ Ay ‖≤
‖ x ‖‖ A ‖‖ y ‖≤‖ x ‖‖ A ‖‖ y ‖=‖ A ‖ zT z.

Now from the previous inequality we have the result of the
lemma.

Theorem 1 The system (1) is stabilizable via static output
feedback if and only if there exist matricesQi, Ri > 0 and
Li of compatible dimensions such that the system of algebraic
equations and inequalities

AT
i Hi + HiAi −EI(i)[HiBi +

LT
i ]R−1

i [BT
i Hi + Li]EI(i) + Qi +

ν∑
j=1

ΦT
ijHjΦijπij = 0, (7)

HiBiR−1
i BT

i Hi − ST
i R−1

i Si + Qi > 0, i ∈ N, (8)



whereSi = LiEI(i)−BT
i HiEK(i) has positive definite solu-

tion Hi, i ∈ N. The stabilizing control has the form of (6) with
the gain matrix given by the formula

Ki = R−1
i (BT

i Hi + Li)C+
i , i ∈ N. (9)

Proof. Necessity.Let the system (1) is mean square stabilizable
via static output feedback. Then without loss the generality we
may suppose that there exists a matrixGi = KiCiEI(i) =
ΘiEI(i) and a positive definite matrixHi (i ∈ N) such that
for all x ∈ Rn the following system of the coupled matrix
inequalities holds

xT [(Ai −BiGi)T Hi + Hi(Ai −BiGi) +
Pi]x < 0, i ∈ N, (10)

whereΘi is some matrix of suitable dimension and

Pi =
ν∑

j=1

ΦT
ijH(j)Φijπij .

If x ∈ KerGi, then from (10) we have

xT [AT
i Hi + HiAi + Pi]x < 0, i ∈ N. (11)

Define for everyi ∈ N the scalarsα∗i as follows

α∗i = max
x∈Im(GT

i )

xT [AT
i Hi + HiAi + Pi]x

xT GT
i Gix

. (12)

From (11) and (12) we obtain

xT [AT
i Hi + HiAi + Pi]x ≤

αixT EI(i)ΘT
i ΘiEI(i)x + βixT x, x ∈ Rn, i ∈ N,

whereαi > max(0, α∗i ) andβi is defined as in Lemma 1. Thus
for any symmetric matrixRi > αiI, we have

xT [AT
i Hi + HiAi + Pi]x <

xT EI(i)ΘT
i RiΘiEI(i)x + βixT x, x ∈ Rn, i ∈ N.

This inequality implies the existence of a symmetric matrix
Qi (i ∈ N), satisfying the system of matrix equations

AT
i Hi + HiAi −EI(i)ΘT

i RiΘiEI(i) +
Pi + Qi = 0, i ∈ N. (13)

Let us defineLi = RiΘi − BT
i Hi, then the equation (13)

can be rearranged as in (7), moreoverGi = R−1
i (Li +

BT
i Hi)EI(i) andKi is given by (9). Rewrite (7) in the fol-

lowing equivalent form

(Ai −BiKiCi)T Hi + Hi(Ai −BiKiCi) +
Pi + HiBiR−1

i BT
i Hi − ST

i R−1
i Si + Qi = 0; i ∈ N. (14)

Taking into account (10) it is easy to see from (14) that the
inequalities (8) hold.

Sufficiency. Let (7), (8) are valid andKi is given by (9).
Rewriting (7) in the form of (14) and taking into account (8) we
obtain that the system of inequalities (10) is true. This means
that the control law (6) with the gain matrixKi given by (9) is
the mean square stabilizing control.�.

4 Robust control against mode change param-
eters uncertainty

Suppose that the matrixΠ = Π(δ) is an affine function of
the vector parameterδ. That is, suppose that there exist real
matricesΠ0, . . . ,ΠN all of the same dimension asΠ such
that

Π(δ(t)) = Π0 + δ1Π1 + . . . + δNΠN

for all δ ∈ ∆. Let the uncertain parametersδj , j = 1, . . . , N
take values in an interval[δj , δ̄j ] i.e.

δj ∈ [δj , δ̄j ].

This means that the uncertainty of each independent parameter
is assumed to be bounded between two extremal values. Define
the set of corners of the uncertainty region as

∆0 = {δ = (δ1, . . . , δN ) : δj ∈ {δj , δ̄j}, j = 1, . . . , N}.

Definition 2 The system (1) withu(t) ≡ 0 is said to be
stochastically quadratically stable for perturbations∆ if there
exist matricesHi = HT

i > 0, i ∈ N, such that

AT
i Hi + HiAi + Pi(δ) < 0, i ∈ N, δ ∈ ∆, (15)

where

Pi(δ) =
ν∑

j=1

πij(δ)ΦT
ijHjΦij .

Definition 3 The system (1) is said to be stochastically
quadratically stabilizable via static output feedback if there ex-
ists a control law in the form of (6) such that the closed loop
system (1) is stochastically quadratically stable i.e. there exists
a positive definite solutionHi = HT

i of the system of inequal-
ities

(Ai −BiKiCi)THi + Hi(Ai −
BiKiCi) + Pi(δ) < 0, i ∈ N, δ ∈ ∆.

Lemma 2 The system (1) is stochastically quadratically stabi-
lizable if and only is there exist matricesHi = HT

i > 0 and
Ki (i ∈ N), such that

(Ai −BiKiCi)THi + Hi(Ai −
BiKiCi) + Pi(δ) < 0, i ∈ N, δ ∈ ∆0. (16)

The proof is based on the well known results from the convex
analysis and it is omitted. Based on this lemma and on the the
previous theorem we obtain the following result.

Theorem 2 The system (1) is stochastically quadratically sta-
bilizable via static output feedback if and only if there exist
matricesQi(δ), δ ∈ ∆0, Ri > 0 andLi of compatible dimen-
sions such that the system of algebraic equations and inequal-
ities

AT
i Hi + HiAi −EI(i)[HiBi +



LT
i ]R−1

i [BT
i Hi + Li]EI(i) +

Pi(δ) + Qi(δ) = 0, (17)

HiBiR−1
i BT

i Hi − ST
i R−1

i Si +
Qi(δ) > 0, i ∈ N, δ ∈ ∆0, (18)

whereSi = LiEI(i)−BT
i HiEK(i) has positive definite solu-

tion Hi, i ∈ N. The stabilizing control has the form of (6) with
the gain matrixKi given by formula (9).

5 Robust control against the plant parameters
uncertainty

Consider the system (1) with the plant uncertainty

ẋ(t) = [A(r(t)) + F(r(t))Ω(t, r(t))E(r(t))]x(t) +
B(r(t))u(t) + D(r(t))ϕ(t, z(t)), (19)

y(t) = C(r(t))x(t), z(t) = Λ(r(t))x(t), (20)

x(τ) = Φijx(τ − 0), (21)

wherez(t) is m- dimensional output vector;Ω(t, r(t)) is a ma-
trix of uncertain parameters, satisfying for everyt andr(t) the
following inequality

I−ΩT (t, r(t))Ω(t, r(t)) ≥ 0; (22)

ϕ(t, z) is a nonlinearm-dimensional vector function, whose
components have form

ϕl(t, z) = ϕl(t, zl), ϕl(t, 0) = 0 (l = 1, ...,m) (23)

and satisfy constraints

0 ≤ ϕl(t, zl)zl ≤ κl(i)z2
l , if rt = i (24)

(l = 1, . . . ,m, i ∈ N);

Λi,Di,Ei,Fi (i ∈ N are known matrices of appropriate di-
mensions. For simplicity but without loss of generality we as-
sume thatκl(i) = 1 (l = 1, . . . ,m, i ∈ N). Then we can
write

ϕ(t, z)Γ[ϕ(t, z)− z] ≤ 0, (25)

whereΓ = diag[γl]m1 (γl > 0, l = 1, . . . ,m).

Suppose that both output vectory(t) and mode change process
r(t) are available for controller. Let the control law has the
form of static linear output feedback (6) In this section we ob-
tain an additional conditions which guarantee that the control
law (6) stabilizes the original system (19) in the sense of ex-
ponential stability in the mean square for all plant parameters
uncertainty, satisfying inequality (22), and all the nonlineari-
ties, satisfying (23), (24). We say that such a control is robust
stabilizing control.

Theorem 3 Let for some positive scalarsγ, γl(l = 1, . . . ,m)
and matricesMi ≥ 0, Ni > 0 there exists a positive definite
solutionXi (i ∈ N), of the system of coupled matrix quadratic

inequalities

XiAc(i) + AT
c (i)Xi −XiBiN−1

i BT
i Xi + γET

i Ei +

Mi + γ−1XiFiFT
i Xi + (XiDi +

1
2
ΛT

i Γ)Γ−1(XiDi +

1
2
ΛT

i Γ)T +
ν∑

j 6=i

[ΦT
ijX(j)Φij −Xi]πij < 0. (26)

Then the output feedback control (6) is robust stabilizing con-
trol. The functionV (x, i) = xT Xix (i ∈ N) is stochastic
Lyapunov function which guarantees robust stability of the sys-
tem (19).

The proof is based on the results of [20] and it is omitted. The
inequalities (26) are easily transformed into LMI’s by introduc-
ing variablesYi = X−1

i and rewriting (26) as

Yi(Ac(i) +
1
2
DiΛi)T + (Ac(i) +

1
2
DiΛi)Yi −

BiN−1
i BT

i + γ−1FiFT
i + DiΓ−1Di +

ν∑
j 6=i

πijYiΦT
ijY

−1
j ΦijYi + Yiπii +

Yi(Mi + γET
i Ei +

1
4
ΛiΓΛi)Yi < 0,

Yi > 0, i ∈ N.

These inequalities can be expressed by the following LMI’s[
Ai Ri

RT
i Di

]
≤ 0,Yi > 0, i ∈ N, (27)

where

Ai = Yi(Ac(i) +
1
2
DiΛi)T + (Ac +

1
2
DiΛi)Yi −

BiN−1
i BT

i + γ−1FiFT
i + DiΓ−1Di + Yiπii,

Ri = [Yi

√
Mi + γET

i Ei +
1
4
ΛiΓΛi

√
πi1Φi1Yi . . .

√
πi(i−1)Φi(i−1)Yi

√
πi(i+1)Φi(i+1)Yi . . .

√
πiνΦiνYi],

Di = diag[−I −Y1 . . .−Yi−1 −Yi+1 . . .−Yν ].

6 Concluding remarks

The obtained results give helpful relationship with the linear
quadratic regulator theory for discrete-time jumping systems.
Consider the cost functional

J = E
∫ ∞

0

[xT (t)Q(r(t))x(t) + 2xT (t)ST (r(t))u(t) +

uT (t)R(r(t))u(t)]dt.

The state feedback gain which minimizes this functional along
the trajectories of the system (7) is [13]:

G0i = R−1
i [BT

i Hi + Si],



whereHi (i ∈ N) is positive definite solution of the following
system of coupled matrix quadratic equations

AT
i Hi + HiAi − [HiBi +

ST
i ]R−1

i [BT
i HiAi + Si]) + Qi +

ν∑
j=1

πijΦT
ijHjΦij = 0, i ∈ N. (28)

It is easy to see that the system of equations (7) is the special
case of (28), satisfying the linear constraints

Si = LiEI(i)−BT
i HiEK(i), i ∈ N. (29)

This relationship with the linear quadratic regulator and some
ideas of [1, 8, 10] allow to propose some heuristic algorithm
to calculate the stabilizing output feedback gain in the form
of (9). To find this gain it is necessary to solve the system of
nonstandard matrix quadratic equations (7) and inequalities (8).
Moreover it is necessary to select by some way the matrices
Q(i), R(i) > 0 andL(i).

The system of inequalities (8) is true if[
Qi ST

i

Si Ri

]
≥ 0,

whereSi is given by (29)

Then we can propose the following heuristic LME/LMI-based
algorithm

Step1.

Find Hi, Li i = 1, . . . , ν, to satisfy:
OBJ: trace[H1 + . . . + Hν ] → max,

LME1: Hi = HT
i , i = 1, . . . , ν,

LME2: Si = LiEI(i)−BT
i HiEK(i), i = 1, . . . , ν,

LMI1: Hi > 0, i = 1, . . . , ν,

LMI2:

[
Qi ST

i

Si Ri

]
≥ 0,

LMI3:

[
Mi N T

i

Ni Ri

]
≥ 0, i = 1, . . . , ν,

where

Mi = AT
i Hi + HiAi + Qi +

ν∑
j=1

πijΦT
ijHjΦij ,

Ni = BT
i HiAi + Si, i = 1, . . . , ν.

Step 2.

Find the gain matrixKi (i = 1, . . . , ν) by the formula (9).

We have proved based on result of [1, 10] that in particular case
C(i) = I (i ∈ N) this algorithm converges to the solution
of (7). This property was not true in the numerical examples

we have considered using toolbox LMISOLVER from SCILAB
software ifC(i) 6= I (i ∈ N), but the obtained control law (6)
was stabilizing in all the cases. From this point of view it is
interesting to study the property of this algorithm.

In the case of mode change uncertainty we can use the same
algorithm with replacingQ by Q(δ) (δ ∈ ∆0).

Finally in the case of the plant parameters uncertainty it is pos-
sible to propose the following algorithm.

Step 1.Find the gain matrixKi (i = 1, . . . , ν) by the previous
algorithm.

Step 2.Solve the LMI problem (27). If this problem is feasible,
thenKi (i = 1, . . . , ν) is robust stabilizing gain matrix, else
correct the matrixQi (i = 1, . . . , ν) and go to step1.

The convergence of these algorithms remains to be proved.
Nevertheless the relationship of the robust output feedback reg-
ulator with the linear quadratic regulator established by this pa-
per is helpful and important result.
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