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static output feedback, robust stabilization. sufficient conditions for the existence of a finite solution. Kaza-
kov and Artem’ev [14] have developed a general theory of ran-
Abstract dom structure systems based on Fokker-Planck-Kolmogorov

type equation approach. Now, due the large number of appli-
The paper considers a class of control systems, described i®a#ons several results for this class of systems can be found in
finite set of linear systems with the transition between them dée current literature, regarding stability, optimal control, sta-
termined by a homogeneous Markov chain. Every state of tiigization, controllability and observability problems, see for
chain correspond to some mode of the system. When the métiance [3, 11, 13, 17] and the references therein.

?S fi_xeo_l,_the plant state evolves according to th_e COITeSPORELy, \ot control offers the advantage to design a controller

mhg mdwﬁualldynamm. Atthe mongenthof dlsgobnu.nuousTmhodﬁhich enables us to cope with the uncertainties which appear
change the plant state vector can be changed by Jump. The figGre more realistic models. The series of papers dealing with

essary and sufficient conditions of stabilizability in the mean \,hustness of the class of systems with random jumps have
square via static output feedback control are formulated. Th%%een published. The stability, stabilizatioHy, H.., mixed

B?]Hoo problems and their robustness have been investigated.

rameters uncertainty. The sufficient conditions which guaraizisnout any intention of being exhaustive here, we quote the

tee, that the static output feed_back control_stab|I|zes the sys_iggcbers [1,2,4-7,9,10, 19-22] and the references therein.
for plant parameters uncertainty are obtained. Some heuristi

algorithms for computing of the gain matrix of robust stabilizOne of the most important open questions in control theory is
ing control are also developed. the static output feedback problem [24]. In the case of jumping
systems we have especially weak development of the analytical
and computational methods of solution of this problem [17]. In
this connection the purpose of this paper is to obtain stabiliz-

In control practice we can find a lot of dynamical systems wifpility and robust stabilizability conditions of jumping systems
random jumping changes of their structure or parameters, siyéhstatic output feedback.

as aerospace systems, manufacturing systems, economic gygis paper we study the robust static output feedback con-
tems, etc., see, for example [11,13, 14, 17] and the referenggs hroblem in two cases. First, we consider the system with
therein. Systems with random jumps are hybrid ones Withoqe change parameters uncertainty. In this case we suppose
many operating modes. Every mode corresponds to an inia¢ the matrix of transition intensities is an affine functions
vidual deterministic or stochastic dynamics. The system mogeyncertain vector parameter. Second we consider the system
switching is governed by a Markov process with a finite S@fith plant parameter uncertainty and sector bounded Lur'e type

of statesN = {1,2,..., v} (Markov chain). When the mode snlinearities. In both the cases at the moment of mode change
i € Nis fixed, the plant state evolves according to the corrge plant state vector can be changed by jump.

sponding individual dynamic. The state space of these systems

is naturally hybrid: to the usual plant statel% we append a The paper is organized as follows. In Section 2 we give the
discrete Variab'e tak|ng Va'ues in the Bet mathematical deSCI’iption of the considered System. In sec-

N ) tion 3 necessary and sufficient conditions of stabilizability in
The stability and control theory for the systems with randofpe mean square via static output feedback are formulated.

jumps began to develop since the pioneering works of Kats apdsection 4 we obtain necessary and sufficient conditions for
Krasovskii [12], Krasovskii and Lidskii [16] correspondingly.static output feedback control to be robust control against mode
The stochastic moment approach to the stability problem Wagange parameters uncertainty. In section 5 we obtain the suf-
introduced by Mil'stein [18]. The linear quadratic control probicient conditions for the mean square stabilizing control to be

lem was solved by Sworder [23] using stochastic maximupgpst control against both the plant parameters uncertainty and
principle for state feedback in finite horizon case. WonhafHe yncertain sector bounded nonlinearity. In conclusion some
[26] obtained the same results using dynamic programming {Q&yristic LMI-based [8] algorithms for computing of the gain

1 Introduction



matrix of robust stabilizing control are developed and computd- Mean square stabilization via static output
tional aspects of the considered problems are shortly discussed. feedback

Consider a linear control with the static output feedback in the

2 System description following form

Consider a control system described by the family of differen- u(t) = —K@)y(@#) if r(t) =1. (6)
tial equations
o Definition 1 The system (1) is said to be mean square stabiliz-
t) = Alr(t t Blr(t t 1
x(?) [r(#)x(t) + Blr(t)]u(t), @ able via static output feedback if there exists a control law in
y(t) = Clr(t)x(1), the form of (6) such that the system (1) is exponentially stable in

wherex(t) is then-dimensional plant state vectau|t) is the the meansquare,i.e. foramy =z € R", 7o =i €N, >0
k-dimensional control vectory(t) is the s-dimensional out- and for somex > 0, 5 > 0 the following inequality is true
put vector;r(t) is homogeneous discrete state Markov proce[é's5]3

(Markov chain) representing a mode (or regime) of system and Ell x(t) 2] xo = @, 70 = i] <

taking values in a finite séff = {1,...,v} with a matrix of 9 N

transition probabilitesP(A) = [p;;(A)]%, from modei to Bl " exp(—alt —to), t > to,

mode; during the time intervalt,t + A] given byP(A) = where€ is the expectation operator.

exp(ITA), p;j(1) = Prob{r(t + A) = j | r(t) = i} (4,5 €

N), II = [m;]Y, mj; >0 (@ # j), my = —Z]”#i m;ij; In this section we generalize the result by Trofino-Neto and

A(i) = A;,B(i) = B;,C(i) = C; (i« € N) are known matri- KucCera [25] and obtain some necessary and sufficient condi-
ces of appropriate dimensions. tions of stabilizability via static output feedback of the system

Let 7 > tg be the moment of discontinuous mode change, i.g.)'
the moment of transition from(r — 0) = itor(r) = j # 4. It

is supposed that at the momerthe plant state vectot can be o
changed discontinuously too and its value after jump is Iinea(l}%I
dependent on the same value before the jump:

Lemmal Letx, y, z € R",z =x+y, x'y =0, x €
(BT), y € Ker(B), xI'Ax < xIBTBx, y'Ay < 0,
ereA = AT and B are some matrices of corresponding
dimensions. Then

x(7) = @i;x(T = 0), @ 2"Az < 2" (BTB + )z,
where®;;, (i, € N) aren x n constant matrices, such tha%hereﬁ =2|A|.
(®;=1).
Note that as a rule the case of continuous change of the pI§FROf. Taking into account that
state vector is consideré@;; = I), but in many real systems Bz = Bx + By,

the situation, when some plant state variables are changed by
jump is more typical. This situation is natural for mechanicaye have
systems with lsudden change of mass or moment of inertia; DTAZ — xTAx + 2xT Ay + yTAy < xTBTBx +
this case the linear or angular velocity will be changed by jump,

- 2xTAy = z"BTBz + 2xT Ay
see [13] for more detail. )

For everyi € N the plant state space of the system (1) can gé:cording to the Schwartz inequality

presented in the form of the following partition xTAy <|| x ||| Ay ||<
R — Im(C” (i) & Ker(C(3)), @  IxllAlly <<l Allyl=]A ]|z
whereIm(C7 (7)) and Ker(C(i)) are orthogonal subspacesNOW from the previous inequality we have the result of the
For anyx € R™ we can write lemma.
X = X[ + XK, Theorem 1 The system (1) is stabilizable via static output

feedback if and only if there exist matric€s, R; > 0 and

wherex; € Im(C*(i)) andxx € Ker(C(7)). Define the L; of compatible dimensions such that the system of algebraic

matrices equations and inequalities

Bili) = C/Ci “) ATH, + H;A; — E((i)[H;B, +

Ex(i) = I-Ei0), ®) LT|R;[BTH; + LiJE1(i) + Q; +
whereCzr is the Moore-Penrose inverse @f;. According to v .
the partition (3) the matrices (4), (5) are projection matrices on Z @ H;®ijmi; =0, )
Im(C7 (i)) and onKer(C(i)) correspondingly. These matri- J=1

ces are symmetric and unique. H,B,R;'B/H, - SR; 'S, + Q; >0, i € N, (8)



whereS; = L;E;(i) — B/ H;Ex (i) has positive definite solu-4  Robust control against mode change param-
tionH;, : € N. The stabilizing control has the form of (6) with  eters uncertainty

the gain matrix given by the formula

o L Suppose that the matrid = TI(§) is an affine function of
Ki=R; (B;H; +L;))C/, i e N. ) the vector parameteY. That is, suppose that there exist real

matricesIIy, ..., IIy all of the same dimension d9 such
Proof. NecessityL et the system (1) is mean square stabilizabjg 5
via static output feedback. Then without loss the generality we T(5(t) = Ty + 6,10y + ... + 6y TIy
may suppose that there exists a matgx = K;C,;E;(:) = . ]
©,E(i) and a positive definite matril; (i € N) such that foralld € A. Let the uncertain parametefs j = 1,..., N

for all x € R” the following system of the coupled matrixt@ke values in an intervad ;, ;] i.e.
inequalities holds <
5j € [éj, 5]]

x'[(A; - B,G,)"H, + H;(A; - B,G,;) +

Px<0,icN (10) This means that the uncertainty of each independent parameter
ux » ’ is assumed to be bounded between two extremal values. Define
where®, is some matrix of suitable dimension and the set of corners of the uncertainty region as
- . Ao=1{6=(01,...,0n): 6;€{8., 8}, j=1,...,Nh
P, =Y @ H(j)®,m,. 0o={0= (b N): 65 €45, 05}, }
j=1

Definition 2 The system (1) withu(¢) = 0 is said to be

If x € KerG,, then from (10) we have stochastically quadratically stable for perturbationsif there
xT[ATH, + H;A, + P,Jx < 0, i € N, (11) existmatricedH; = H! >0, i € N, such that
Define for everyi € N the scalars:} as follows AH, + H;A; +P;(0) <0,ieN,de A, (15)
of —  max x"[ATH; + HiA; + Pi]x. (12) where
' xeIm(GT) xTGIG;x

From (11) and (12) we obtain j=1

T T
. . X" [A; HiT+ H;A; + Pilx < Definition 3 The system (1) is said to be stochastically
a;ix” Ei()®; ©;E1(i)x + 8ix" x, x e R", i € N, quadratically stabilizable via static output feedback if there ex-
wherea; > max(0, «) andg; is defined as in Lemma 1. Thus'Sts @ contrpl law in the form of (6)'such that the closed Iopp
for any symmetric matriR; > o, 1, we have system_ Q) is _stpchastlc_ally quadr?tlcally stablei.e. there exists
a positive definite solutiobl; = H; of the system of inequal-
xT[ATH; + H;A; + P]x < ities
T . T . T n o -
Ei(1)®; R;0;E + 0 , eR"™ ¢€N.
x E(i)®; 1(0)x + Bix' x, x i (A, — B;K,C))"H, + Hi(A, —
This inequality implies the existence of a symmetric matrix B,K,C;) +P;(5) <0, i €N, § € A.
Q; (i € N), satisfying the system of matrix equations

ATH, + HA; — E(1)®IR;0,E(i) + Lemma 2 The system (1) is stochastically quadratically stabi-
P, +Q;=0,icN. (13) lizable if and only is there exist matricés; = H > 0 and
- K; (i € N), such that

Let us defineL; = R;0; — B/ H;, then the equation (13) (A; — B;K,C,)"H; + H;(A; —
can be rearranged as in (7), moreow®s = R;'(L; + oo T e
BTH,)E; (i) andK; is given by (9). Rewrite (7) in the fol- BiKiC;) +P;(0) <0, 1€ N, d € Ao. (16)

lowing equivalent form
T The proof is based on the well known results from the convex
(Ai = B;K;C;)" H; + Hi(A; - BiK,C;) + analysis and it is omitted. Based on this lemma and on the the
P, +H,B,R;'B/H, - SR, 'S, + Q, =0; i € N. (14) previous theorem we obtain the following result.

Taking into account (10) it is easy to see from (14) that the ) . )
inequalities (8) hold. Theorem 2 The system (1) is stochastically quadratically sta-

o ) o bilizable via static output feedback if and only if there exist
Sufficiency. Let (7), (8) are valid andK; is given by (9). matricesQ;(5), § € Ao, R; > 0 andL; of compatible dimen-
Rewriting (7) in the form of (14) and taking into account (8) Wgjons such that the system of algebraic equations and inequal-
obtain that the system of inequalities (10) is true. This meaggg

that the control law (6) with the gain matrlK; given by (9) is
the mean square stabilizing contral. ATH;, + H,A;, — E;(i))[H;B; +



L] R; '[B/H; + L;JE; (i) + inequalities

P;(0) + Q;(6) =0, 17 . . _
H‘B_RleTH(_ )_ Sf:’RQS_ N an XA (i) + AT ()X; - X;B;N;'B!X; + vE]E; +
12N, 7 1 7 7 T _ 1 _
Qi(0) >0, i €N, 6 € Ao, (18) M+~ 'X,FF{ X; + (X;D; + 5A;fr)r YXD; +
whereS; = L;E; (i) — BT H;Ex (i) has positive definite solu- lAiTI‘)T + Z[%X(j)% — X;]mi; < 0. (26)
tion H;, i € N. The stabilizing control has the form of (6) with 2 i

the gain matrixiK; given by formula (9).

Then the output feedback control (6) is robust stabilizing con-

_ trol. The functionV (x,i) = x?X;x (i € N) is stochastic

5 RObUSt_Contml against the plant parameters | ,,,nov function which guarantees robust stability of the sys-
uncertainty tem (19).

Consider the system (1) with the plant uncertainty
The proof is based on the results of [20] and it is omitted. The

x(t) = [A(r(t)) + F(r(t))2t, r()E(r())]x(t) + inequalities (26) are easily transformed into LMI’s by introduc-

t )
B(r(t))u(t) + D(r(t))p(t,z(t), (19) ing variablesy; = X;l and rewriting (26) as
t) = C(r(t))x(t), =z(t)=A(r(t))x(t), (20
YO . o0 =AU C L oy,

_ _ _ _ B,N;'Bf + 77 'F,F! + D, 'D; +
wherez(t) is m- dimensional output vectof2 (¢, r(t)) is a ma-

trix of uncertain parameters, satisfying for evergndr(t) the Z Wini‘ﬁg;Yflfbini Y+
following inequality o /
1
I-Q7(t,7(1)Q(t, r(t) > 0; (22) Y;(M; +1E{E; + TATA)Y; <0,
Y, >0,¢€N.

©(t,z) is a nonlinearm-dimensional vector function, whose

components have form These inequalities can be expressed by the following LMI’'s

oi(t,z) = @i(t, z1), ¢1(t,0) =0 (I=1,...,m) (23) ) )
{é} g’l<0,Y,~>0,ieN, 27)
and satisfy constraints ! ’
where
0<it,zi)z < /{l(i)z?, if rp=1 (24)
. 1 1
(Il=1,...,m, i e N); Ai =Y (A1) + §DiAi)T + (A + iDiAi)Yi —
A;,D;,E;,F; (i € N are known matrices of appropriate di- B;N;'B} + v 'F,F] + D,T'D; + Y;m;,

mensions. For simplicity but without loss of generality we as- . 1
sume thats;(i) = 1 (I = 1,...,m, i € N). Thenwe can Ri= [Yi\/Mi +IE B + JATA Vra ®a Y.

write
V-0 Pii-nYi T i+ Yi - VT ®i Y,
gp(tv Z)F[¢(t7 Z) - Z] S Oa (25) .
Di = dlag[—I - Y1 e T Yi,1 - Yi+1 e Yu]
wherel’ = diag[v]7* (vv>0,1=1,...,m).

Suppose that both output vectpft) and mode change proces® Concluding remarks

r(t) are available for controller. Let the control law has the ] ) ] S )
form of static linear output feedback (6) In this section we o-N€ obtained results give helpful relationship with the linear
tain an additional conditions which guarantee that the cont@fadratic regulator theory for discrete-time jumping systems.
law (6) stabilizes the original system (19) in the sense of gkOnsider the cost functional

ponential stability in the mean square for all plant parameters oo

uncertainty, satisfying inequality (22), and all the nonlinearil = & [ [x" (£)Q(r(t))x(t) + 2x" (t)S” (r(t))u(t) +

ties, satisfying (23), (24). We say that such a control is robust 0 .

stabilizing control. u” ()R(r(t))u(t)]dt.

The state feedback gain which minimizes this functional along
Theorem 3 Let for some positive scalarg v;(I = 1,...,m) the trajectories of the system (7) is [13]:
and matricedM; > 0, IN; > 0 there exists a positive definite
solutionX; (i € N), of the system of coupled matrix quadratic Go; = R;l[BiTH,- +Si],



whereH; (: € N) is positive definite solution of the following we have considered using toolbox LMISOLVER from SCILAB

system of coupled matrix quadratic equations software ifC(i) # I (i € N), but the obtained control law (6)
. was stabilizing in all the cases. From this point of view it is
A H; + H;A; — [H;B; + interesting to study the property of this algorithm.

T —1 TYT. A . . ) .
Si Ry '[Bi HiA; +Si]) + Qi + In the case of mode change uncertainty we can use the same

Z?Tij'i’g;Hj‘I’ij _0,ieN. (28) algorithm with replacingd by Q(9) (§ € Ay).

j=1 Finally in the case of the plant parameters uncertainty it is pos-

] . . sible to propose the following algorithm.
It is easy to see that the system of equations (7) is the special

case of (28), satisfying the linear constraints Step 1Find the gain matriX; (i = 1,...,v) by the previous
algorithm.

(29) Step 2.Solve the LMI problem (27). If this problem is feasible,
nqéenKi (i = 1,...,v) is robust stabilizing gain matrix, else
gorrect the matrdQ; (i =1,...,v) and go to stepl.

S, = L;E;(i) —- BIH,;Ex (i), i € N.

This relationship with the linear quadratic regulator and so
ideas of [1,8,10] allow to propose some heuristic algorith
to calculate the stabilizing output feedback gain in the formhe convergence of these algorithms remains to be proved.
of (9). To find this gain it is necessary to solve the system Nievertheless the relationship of the robust output feedback reg-
nonstandard matrix quadratic equations (7) and inequalities (@gtor with the linear quadratic regulator established by this pa-
Moreover it is necessary to select by some way the matrigssr is helpful and important resuilt.

Q(i), R(¢) > 0 andL(3).

The system of inequalities (8) is true if Acknowledgments
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