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Abstract

The problem of bounded disturbance rejection for linear impul-
sive systems with polytopic uncertainties is considered in this
paper. By using the Lyapunov function and positively invariant
set method, a sufficient condition for robustly internal stabil-
ity and

���
-performance of the impulsive systems is obtained

in terms of linear matrix inequalities. A simple algebraic ap-
proach to the design of a linear state-feedback controller that
robustly stabilizes the system and achieves a desired level of
disturbance attenuation is proposed. Furthermore, since the
Lyapunov function matrix is decoupled from coefficient ma-
trices in the newly obtained sufficient criterion, it is convenient
to study the robustness problem for impulsive systems with re-
spect to polytopic uncertainty. A numerical example is worked
out to illustrate the efficiency of the proposed approach and less
conservatism of the newly obtained results.

1 Introduction

Impulsive systems arise in areas such as neural networks, com-
munication, rhythm in medicine and biology, optimal control
in economics and so on (see, e.g., [1]–[6] and the references
therein). Recently, the issue of analysis and stabilization of dis-
turbed impulsive systems has attracted much attention [4], [6].
The problem of persistent bounded disturbance rejection is of
considerable practical importance because it is concerned with
minimizing the maximum magnitude of the system error [7].
Particularly, this problem for linear systems without impulsive
effects has been extensively studied in recent years (see, e.g.,
[8, 9] and the references therein). However, there have been
few results concerning the same problem for uncertain impul-
sive systems (even for impulsive systems without uncertainty)
so far (see [10]). The aim of this work is to provide some fur-
ther results in this direction.

To be specific, we investigate the robust stability (with re-
spect to polytopic uncertainty) and performance of linear im-
pulsive systems subject to persistent bounded disturbances. By
using positively invariant set analysis and Lyapunov function
method, we establish a sufficient condition for existence of a
state-feedback controller that ensures the internal stability and

the desired level of bounded disturbance attenuation for im-
pulsive systems in terms of linear matrix inequalities (LMIs).
Furthermore, we obtain the new results (Theorems 3, 4) by de-
coupling Lyapunov matrix from all coefficient matrices of the
system. The obtained result does not require the existence of a
common positive definite matrix solution to all vertex systems.
Hence our proposed method is easy to use and has less conser-
vatism than that of general quadratic stability and performance.
Moreover, the present results on nonstrict proper case (for the
channel from disturbance to the regulated output) with poly-
topic uncertainty extend the results of [10]. Finally, we also
give a numerical example to illustrate the efficiency and less
conservatism of the theoretical results.

This paper is organized as follows. Some preliminaries and
supporting results are presented in the next section. The main
results on stability and performance are given in Section 3. A
numerical example illustrating the efficiency of the proposed
approach is given in Section 4. We provide the conclusions in
the last Section.

2 Preliminaries

In this paper, � is the set of all real numbers. ��� is the set of all� -tuples of real numbers, and ���
	�� the set of all real matrices
with � rows and � columns. 
�������������� ������� � ���  �!�"$#
denotes the closed unit ball in the space � � . Denote by %'&
and %
( � the transpose and the inverse of a matrix % (if it is
invertible), and by ) the unit matrix of appropriate dimensions.
Recall that Schur complement formula (see [12], [13] for more
details), namely* � + * �,� * �  * &�  *  - /.1032�4 ! 265
if and only if one of the following conditions holds.

1)
*  , 072 and

*8�,�:9;*8�  * ( � , * & �  032�4 ! 265 ;
2)
* �,� 072 and

*  , 9;* &�  * ( ��,� * �  032�4 ! 265 .
Consider the following impulsive system (denoted by < ):=>>? >>@BAC �D% C�EGFIH�EBJF �IKMLON�3LMPQ C 4 L 5 �DR C 4 LMP 5 ETSFIH KMLU�3LMPV �XW C�EGY �C 4 L[Z 5 � C 4\265 � 2 (1)



where C 4M] 5 � �_^ �1� , H 4M] 5 � �_^ �1� , � 4`]a5 � �_^� � and V 4`]a5 � � ^ � � are the state, the input, the ex-
ternal disturbance, and the regulated output vectors, respec-
tively. %bK F K JF K SF KcWOK Y KcR are known real constant ma-
trices of appropriate dimensions.

Q C 4 L 5 � C 4 LMdP 5 9 C 4 L (P 5 Ke�f�g�hji Zlk C 4 L P 9nm 5 � C 4 L (P 5 K e�f�gohji Zpk C 4 L P E m 5 � C 4 L`dP 5 .2q0 L � 0r]s]s]t0 L P 0 L P d � 0u]s]v] , and L P ^ w asx ^ w . Assume
e�f�g hji Z k C 4 L P 9Xm 5 � C 4 L (P 5 � C 4 L P 5 Kthat is, the solution C 4 L 5 of system (1) is right continuous at L P .

Also assume that the admissible disturbance set is y � �z�v� ��{^|
}���~K8� is measurable # , the
�:�

norm is defined by� � � � � �6�M����� � � 4 L 5 �  .
Recall that a set � is said to be positively invariant for a dy-
namical system, if C 4\265 ��� , then the trajectory C 4 L 5 of the
system remains in � for all Lo� 2 . Similarly, we can define
the robust positive invariant set for an uncertain system. The
origin-reachable set (

*
� 4\2�5 ) of a system is the set that the
state of the system can reach from the origin for all admissible
disturbances. It is the minimal robust closed positive invariant
set containing the origin. The induced

� �
norm of the system

is ��� < ��� � � � �-��������� Z,� � V � � .

For a given scalar ��� 2 , consider the uncontrolled system=>>? >>@ AC �D% C�E�JF �IKcL�N�nL PQ C 4 L 5 � C 4 L`dP 5 9 C 4 L (P 5 �DR C 4 L P 5 K�L��nL PV �XW C�E�Y �C 4 L[Z 5 � C 4�265 � 2 (2)

The system with initial state C 4\2�5 � 2 is said to have � -
performance if

� V � � ! � for all ����y�� Define the per-
formance set� 4 � 5 ��� C � � V � � � � W C}EGY � � � ! �cK����X��y # �
Thus, if

*8� 4�265:� � 4 � 5 , then the system has � -performance.

The main objective of this paper is to find for system (1) a
state-feedback controller H ��� C with �B�����I	~� a constant
matrix, such that the resulting closed-loop system=>>? >>@ AC � 4 % EGF � 5 C�E JF �IKUL'N��LMPQ C 4 L 5 � 4 R E SF � 5 C 4 L P 5 KULU�3L PV �DW C�E�Y �C 4 L Z 5 � C 4�265 � 2 (3)

satisfies the following conditions:

(i) The system is internally stable, namely, the system without
external disturbance (i.e., �X� 2 ) is asymptotically stable; and

(ii) For a given scalar ��� 2 , the system has � -performance.

In dealing with such a problem, we will make use of the con-
cept of robust attractor of a disturbed dynamical system. A set� is said to be a robust attractor of system (2) (or (3)) with
respect to (w.r.t.) �T� y , if all the state trajectories of the
system initiating from the exterior of � eventually enter and
remain in � for all �¡�¢y . Obviously, a robust attractor is
robustly positively invariant.

The following inequality will be useful in our discussion.

Lemma 1. ([11]) Let £�K JF be matrices of appropriate dimen-
sions, then for any scalar ¤�� 2 , it follows that¥ C & £ JF � ! "¤ C & £ JF JF & £ C�E ¤¦� & �I�
3 Main results

3.1 The case of systems without uncertainty

For a positive definite matrix £ , denote the ellipsoid ��§q�� C � C &�£ C !q"$# . We first consider the uncontrolled system
(2).

Theorem 1. For a given scalar �/� 2 , if there exist a positive
definite matrix £ and a scalar ¤�� 2 such that the following
conditions hold:+ £
% E %'&¦£ E ¤�£ £ JFJF &¦£ 9 ¤¦) . 072 K (4)+ 9 £ 4 ) E R 5 &¦££ 4 ) E R 5 9 £ . 0¨2 K (5)©ª ¤¦£ 2 W8&2 4 �  9 ¤ 5 ) Y &W Y )

«¬ � 2 � (6)

Then system (2) is internally stable and � § is a robust attractor
of it w.r.t. ����y . Moreover, � § � � 4 � 5 and hence system
(2) has � -performance.

Proof. To prove that � § is a robust attractor of system (2)
w.r.t. �­��y , we only need to show that the time derivative of® 4 C 5 � C &¦£ C along the solution of the system is negative for
any C N�;�¯§ (see [10] for more details, it is obtained by using
Lemma 1).

Next, we show that the system has � -performance. In fact, by
Schur complement formula, condition (6) is equivalent to+ ¤�£ 9 W8&°W 9 W8& Y9 Y &�W 4 �  9 ¤ 5 ) 9 Y & Y . � 2 K
which implies 2}0 ¤ 0 �  � This is equivalent to¤ C & £ C�E 4 �  9 ¤ 5 � & � 9 � W C�EGY � �  � 2 �
From this and 2�0 ¤ 0 �  K it is clear that if C &¦£ C !±" and�'&�� !­" , then

� W C�E¨Y � � 0 � , which implies � § � � 4 � 5 ,and hence
* � 4\2�5:� ��§ � � 4 � 5 . This completes the proof. ²

Remark 1. (see [10]) For a fixed ¤B� 2 , condition (4) in
Theorem 1 is an LMI in £ . Since % is stable, let ³ � �9 ¥ g�´$µ 4 Re ³ 4 % 5-5 (where Re ³ 4 % 5 denotes the real part of
eigenvalues of matrix % ), then there exists an ¤�� 4�2 Kl³ � 5 such



that % Ez¶  )�� � S% is stable. For a small ·'� 2 , let ¸F � �¹ ¶ JF ,SW��D·l) . Consider the system < � :º AC � S% C�E ¸FIH» � SW C �
By bounded real lemma (see, e.g., [12] [13]), that the ¼ � norm
of the transfer function ¼ 4�½j5 � SW 4¾½ ) 9 S% 5 ( � ¸F of system < �
is less than 1, i.e., ¼;¿ 4�½j5 ¼ 4�½j5 ! ) for Re ½�ÀX2 , is equivalent
to the existence of a positive definite matrix £ such that£
% E %�&�£ E "¤ £ JF¢JF &¦£ E ¤�£ E ·  )� £ S% EÁS%�&�£ E £ ¸F ¸F &¦£ E{SW8& SW0 2 �
This implies £
% E %'&¦£ E "¤ £ JF­JF &¦£ E ¤�£ 0�2 , which is

in turn equivalent to (4) by Schur complement. This provides a
frequency-domain explanation of condition (4).

We are now able to give the following result.

Theorem 2. For system (1) and a given performance level ���2 , if there exist a matrix ÂÃ�����
	�� , a positive definite matrixÄ K and a scalar ¤Å� 2 , satisfying the following conditions:+ % Ä E Ä %�& E ¤ Ä E�F Â E Â¢& F & JFJF & 9 ¤¦) .�072 K (7)+ 9 Ä 4 ) E R 5 Ä E SF ÂÄ 4 ) E R 5 & E Â¢& SF & 9 Ä .1032 K (8)©ª 9 ¤ Ä 2 Ä W8&2 9 4 �  9 ¤ 5 ) Y &W Ä Y 9 )
«¬ 032 K (9)

then the closed-loop system (3) is internally stable and ��Æ�Ç�È
is a robust attractor of system (3) w.r.t. �É��y , where the
state-feedback gain matrix�Ê�XÂ Ä ( � � (10)

Moreover, ��ÆUÇ�È � � 4 � 5 and hence the closed-loop system (3)
has � -performance.

Proof. Take
® 4 C 5 � C &�£ C with £Ë� Ä ( � . Let H �z� C �Â Ä ( � C in system (1). Substituting �Ã�ÌÂ¢£ into (7), (8)

and using congruent transformation, we get the conditions in
Theorem 1 for the closed-loop system, hence the desired result
follows. ²
3.2 Decoupling Lyapunov function matrix from system

coefficient matrices

In what follows, we will discuss the decoupling of Lyapunov
function matrix from system coefficient matrices.

Lemma 2. The following conditions are equivalent:

i) There exist
Ä � 2 and ÂÍ���1�I	~� such that (8) holds;

ii) There exist
Ä � 2 K�Îz���1�c	�� and ÂÏ���o�I	~� such that

the following inequality holds.+ 9 Ä 4 ) E R 5 Î ETSF ÂÎÐ& 4 ) E R 5 & E Â¢& SF & 9 Î 9 Î�& E Ä .1032 � (11)

Proof. i) Ñ ii) Obvious.

ii) Ñ i) Since the matrix Ò ) 4 ) E R 5ÔÓ is of full row rank, pre-
multiplying Ò ) 4 ) E R 5[Ó and postmultiplying its transpose on
both sides of (11), we obtain9 Ä E 4 ) E R 5 Â & SF & E SF Â 4 ) E R 5 & E 4 ) E R 5 Ä 4 ) E R 5 & 0¨2 �
This is equivalent to (8) by Schur complement. ²
Lemma 3. The following conditions are equivalent:

i) There exists
Ä � 2 such that (9) holds;

ii) There exist
Ä � 2 and ÎÕ��� �Ö	~� such that the following

inequality holds:©ª 9 ¤ 4 Î�& E Î 9 Ä 5 2 Î�&¦W8&2 9 4 �  9 ¤ 5 ) Y &WIÎ Y 9 )
«¬ 072 � (12)

Proof. Obviously, by using Schur complement formula and
congruent transformation, (9) is equivalent to©ª 9 Ä 2 Ä W8&2 9 ¤ 4 �  9 ¤ 5 ) ¤ Y &W Ä ¤ Y 9 ¤�)

«¬ 072 �
Furthermore, this inequality is equivalent to+ 9 Ä Ä W8& YY & W Ä 9 ¤:Ò 4 �  9 ¤ 5 ) E�Y & Y Ó . 032 �
Premultiplying and postmultiplying+ 2 "" 2 .
on both sides of the above inequality, we obtain+ 9 ¤×Ò 4 �  9 ¤ 5 ) EGY & Y Ó Y &°W ÄÄ W8& Y 9 Ä .1032 �
By similar arguments as in Lemma 2, this is equivalent to the
existence of Î¢���1�c	�� such that+ 9 ¤:Ò 4 �  9 ¤ 5 ) E�Y & Y Ó Y &�WIÎÎ�&¦W8& Y 9 Î�& 9 Î E Ä .1032 �
By similar analysis, we can obtain equivalently©ª 9 4 Î & E Î 9 Ä 5 2 Î & W &2 9 ¤ 4 �  9 ¤ 5 ) ¤ Y &WIÎ ¤ Y 9 ¤¦)

«¬ 032 �



This is equivalent to (12) by similar arguments. ²
Lemma 4. If there exist a positive definite matrix

Ä
and two

scalars ·Ð� 2 K�¤�� 2 K such that©ª 9 ·v( � Ä E ¤ Ä Ä E ·l% Ä JFÄ E · Ä %'& 9 · Ä 2JF & 2 9 ¤�)
«¬ 072 (13)

then ·l¤ 0 " and by Schur complement formula (13) is equiva-
lent toØ Æ�Ù ¶ 4 · 5 � � + % Ä E Ä %'& E ¤ Ä E ·l% Ä %'& JFJF & 9 ¤¦) . 032 �
Then,

Ø Æ�Ù ¶ 4 · 5:À Ø ÆUÙ ¶ for all such · , whereØ ÆUÙ ¶ � � + % Ä E Ä %'& E ¤ Ä JFJF & 9 ¤¦) . �
Moreover,

Ø ÆUÙ ¶ 4 · 5 is monotonical in · and
Ø Æ�Ù ¶ 4 · 5 ^ Ø Æ�Ù ¶

as ·×^ 2 �
Proof. Obviously, ·l¤ 0 " by (13) and

Ø ÆUÙ ¶ 4 · 5 is monotonical
in · . On the other hand, by the definitions of

Ø ÆUÙ ¶ 4 · 5 and
Ø ÆUÙ ¶ ,

clearly,
Ø Æ�Ù ¶ 4 · 5�À Ø Æ�Ù ¶ and

Ø Æ�Ù ¶ 4 · 5 ^ Ø Æ�Ù ¶ as ·:^ 2 � ²
Remark 2. Similar to Lemmas 3, 4, (13) is equivalent to the
existence of positive definite matrix

Ä
, matrix Î­�Ú���c	~� and

scalars ·Ð� 2 K�¤�� 2 KU·l¤ 0 " such that©ª 9 ·v( � Ä E ¤ Ä Î E ·,%8Î JFÎÐ& E ·ÛÎÐ&¦%�& 9 · 4 Î E Î�& 9 Ä 5 2JF & 2 9 ¤�)
«¬ 072 �

This implies (4) by Lemma 4.

Theorem 3. For a given scalar �/� 2 , if there exist a positive
definite matrix

Ä
, matrix ÎÕ�Å�1�Ö	~� and scalars ·b� 2 K'¤��2 K�·l¤ 0 " such that (12), (13) and the following condition

hold: + 9 Ä 4 ) E R 5 &°Î�&Î 4 ) E R 5 9 Î 9 ÎÐ& E Ä . 0¨2 K (14)

then system (2) is internally stable and � Æ Ç�È is a robust attrac-
tor of it w.r.t. �Ü��y . Moreover, � Æ Ç�È � � 4 � 5 and hence
system (2) has � -performance.

Proof. By Lemmas 2, 3, 4 and Remark 2, the proof can be
completed along a similar line of arguments as in the proof of
Theorem 1. ²
Theorem 4. For a given scalar �D� 2 , if there exist a posi-
tive definite matrix

Ä
, matrices ÎÝ�Å� �c	�� , Â_�Å� �
	�� and

scalars ·�� 2 K�¤Õ� 2 K�·,¤ 0 " such that (11), (12) and the

following condition hold:©ª 9 ·v( � Ä E ¤ Ä Î E ·l%8Î E · F Â JFÎÐ& E ·ÛÎÐ&¦%�& E ·pÂ¢& F & 9 · 4 Î E Î�& 9 Ä 5 2JF & 2 9 ¤�)
«¬ 032 K
(15)

then the controller H ��� C with gain matrix�Ü�DÂ Î ( � (16)

can internally stabilized the controlled system (1) and � Æ Ç�È is
a robust attractor of it w.r.t. � �Úy . Moreover, � Æ Ç�È � � 4 � 5and hence system (1) has � -performance.

Proof. By Lemmas 2, 3, 4, Remark 2 and Theorem 3, the
proof can be completed by similar arguments as in the proof of
Theorem 2. ²
3.3 The case of systems with polytopic uncertainties

As shown above, the Lyapunov function matrix
Ä

can be de-
coupled from the system matrices in stability and performance
conditions. This merit allows for further study of the related ro-
bustness issues for the system with uncertain coefficients spec-
ified by convex polytopic matrix set as below:Ò %bK F K JF K,R�K SF K,WOK Y Ó �ÚÞX� � �ßÒ %bK F K JF K,R�K SF K,WOK Y Ó�DàDá��â �Öã � Ò % � K F � K JF � K,R � K SF � K,W � K Y � Ó K ã � À72 Kpàná��â ��ã � � "ä# �
That is, Þ is a convex polytope with å verticesÒ % � K F � K JF � K-R � K SF � K,WOK Y � Ó K�æ�� " K ]s]v] KMå'�
Theorem 5. For a given scalar �X� 2 , if there exist a posi-
tive definite matrix

Ä � KOæ'� " K ¥ K ]s]s] K�å , matrix Î��7�1�c	~�
and scalars ·�� 2 K�¤Õ� 2 K�·,¤ 0 " such that the following
conditions hold for æ�� " K ¥ K ]s]s] K�å ,©ª 9 ·s( � Ä � E ¤ Ä � Î E ·l% � Î JF �Î & E ·ÛÎ & % � & 9 · 4 Î E Î & 9 Ä � 5 2JF &� 2 9 ¤¦)

«¬ 032 K
(17)+ 9 Ä � 4 ) E R � 5 &°ÎÐ&Î 4 ) E R � 5 9 Î 9 Î�& E Ä �}.�072 K (18)©ª 9 ¤ 4 Î�& E Î 9 Ä � 5 2 Î�&¦W8&�2 9 4 �  9 ¤ 5 ) Y &�W � Î Y � 9 )

«¬ 032 K (19)

then system (2) is robustly internally stable w.r.t. uncertaintyÞ , and � Æ Ç�È is a robust attractor of it w.r.t. �Ü��y and Þ ,

where
Ä 4 ã 5 � à á��â � ã � Ä � . Moreover, � Æ Ç�È � � 4 � 5 and

hence system (2) has robust � -performance w.r.t. uncertaintyÞ .

Proof. The result can be easily proved by Theorem 3
and the parameter dependent Lyapunov function

® 4 C 4 L 5M5 �C & 4 L 5 Ä 4 ã 5 C 4 L 5 , where
Ä 4 ã 5 � à á��â � ã � Ä � , and ã are the same

as in Þ . ²



Similarly, considering system (1) with the uncertainty Þ , we
can establish the result for designing a full state-feedback con-
troller as follows.

Theorem 6. For a given scalar �o� 2 , if there exist positive def-
inite matrices

Ä � K�æ�� " K ¥ K ]v]s] K�å , matrix ÎX���1�c	~� , matrixÂç�Ú�o�I	~� and scalars ·O� 2 Kè¤7� 2 Kè·l¤ 0 " such that (19)
and the following conditions hold for æ°� " K ¥ K ]v]s] K�å ,+ 9 Ä � 4 ) E R � 5 Î E SF � Âé 9 Î 9 Î�& E Ä � .o032 K (20)©ª 9 ·v( � Ä � E ¤ Ä � Î E ·l% � Î E · F � Â JF �é 9 · 4 Î E Î�& 9 Ä � 5 2é é 9 ¤�)

«¬ 032 K
(21)

where é denotes the block symmetrical matrix, then system
(1) is robustly internally stabilized by state-feedback controllerH �D� C w.r.t. uncertainty Þ , and � Æ�Ç�È is a robust attractor of
it w.r.t. �Ë��y and Þ , where the gain matrix � is described
by (16) and

Ä 4 ã 5 � à á��â � ã � Ä � . Moreover, �¯Æ Ç�È � � 4 � 5 and
hence the closed-loop system of system (1) with H ��� C has
robust � -performance w.r.t. uncertainty Þ . ²
Remark 3. Notice that the above results don’t require theå vertex systems to have a common Lyapunov function for
obtaining robust stability of the polytopic uncertain systems,
hence are less conservative than those based on common Lya-
punov functions. This advantage will be further demonstrated
with a numerical example in the next section. Moreover, Theo-
rems 5 and 6 can be easily extended to multilinear uncertainty
case, that is, the uncertainty can be described by the following
polytope with ê3ë�ìíë1îzë1åDëoïÕë;ð­ëoñ vertices.ÞD� � � Ò %bK F K JF K,R�K SF K,WOK Y Ó �à¨ò��â � ¤ � àXóô â ��õ ô à�öP â ��÷ PUà�áø â ��ù ø à�ú� â ��û �] à­üý â ��þ ý à3ÿ � â ��� � Ò % � K F ô K JF P K-R ø K SF � KlW ý K Y � Ó �¤ � K õ ô K ÷ PßK ù ø K û � K þ ý K � � À32 K à ò ��â � ¤ � � " Kà óô â � õ ô � " K à ö P â �Ö÷ P � " K à áø â ��ù ø � " Kà ú� â � û � � " K à üý â ��þ ý � " K à ÿ � â ��� � � "$# �
4 Numerical example

Now consider the following impulsive system with polytopic
uncertainty, =>>? >>@¡AC �D% � C�E�F � H�EBJF � �bKUL�N�nL PQ C �nR � C 4 L P 5 E SF � H K�L��nL PV �XW � C�EGY � �C 4�265 � 2 (22)

i.e., the vertex system with coefficient matrices as follows.

% � � ©ª 9 " 2 � � 22 9 " 22 � " 2 9 "
«¬

� %  � ©ª 9 ¥ 2 � � 22 � " 9 ¥ 22 � " 2 9 "
«¬

�

F � � ©ª 2 � " 2 � "9 2 � ¥ 22 � � 2 � " ¥
«¬

� F  � ©ª 2 2 � �2 ��� 2 � "9 2 � " 2 � ¥
«¬

�

W � � ©ª 2 � " 2 22 2 � " 22 � " 2 � " ¥ 2 � �
«¬

� W  � ©ª 2 � ¥ 2 29 2 � " 2 � " 22 2 2 � " ¥
«¬

�

Y � � ©ª 2 2 � " 29 2 � ¥ 2 2 � "2 2 9 2 ���
«¬

� Y  � ©ª 2 � " 2 � ¥ 22 � � 2 � " 22 2 2 � �
«¬

�

R � � ©ª " 2 � ¥ 22 2 2 � "2 � " 2 � ¥ 2 � 2 "
«¬

� R  � ©ª 2 � ¥ 2 29 2 � � 2 � " 22 � " 2 2 � ¥
«¬

�

SF � � ©ª 2 � ¥ 22 2 � "2 2 � �
«¬

� SF  � ©ª 2 � " 22 2 � "2 � ¥ 2 � " ¥
«¬

�

JF � � ©ª 2 � " 9 2 � � 22 2 � " 22 � " 2 2 � ¥
«¬

� JF  � ©ª 2 � � 2 � " 22 2 � " 2 � "2 � ¥ 2 9 2 � "
«¬ �

Solving inequalities (19)–(21) for ¤¨� 2 � ¥ and �1� " , by tak-
ing ·:� 2 � " , we obtainÄ � � ©ª ¥ � " ¥ " � 2 � ¥	� ��
 " � � ��
 �2 � ¥�� ��
 2 � " ��
 2 2 � 
 
�
	�" � � ��
 � 2 � 
 
	
�� ¥ � 2 � �	�

«¬ K
Ä  � ©ª " � � ¥ � ¥ 2 � 2 ����� 2 � � � � 22 � 2 �	��� 2 � � 262 
 2 � ��� ¥ �2 � � � � 2 2 � ��� ¥ � ¥ � ¥ ��� ¥

«¬ �
Î�� ©ª " � 
�
 �	� 9 2 � " 
 
 � 2 � ��� ¥�
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Let �É��Â Ä ( � , then by Theorem 6, the closed-loop system
is robustly internally stable and has � -performance. For any¤7� 2 and �o� " , by the well-known results (for example, see
[13]) on quadratic stability, there dose not exist a common pos-
itive definite matrix solution to these matrix inequalities. Par-
ticularly, the closed-loop system of the midpoint system (i.e.,
taking ã � � 2 � ��Koæ1� " K ¥ ) with H �¡� C is robustly inter-
nally stable and has � -performance. Now consider an exter-
nal disturbance of the form �Ê� �¹ ��� ��� d  � d ��� ��� Ò " � 
 � f�� 4 � L E" 5 ¥ � f�� 4 ¥ � L E " 5 " � � � f�� 4 � L E " 5[Ó & and take the impulsive
time step as one second. The numerical simulation of the state
response of the impulsive system affected by the disturbances
is shown in Fig.1; the corresponding state response of the sys-
tem without disturbances is shown in Fig. 2.

Remark 4. In this example, the vertex systems do not have a
common Lyapunov function for quadratic stability, but the sys-
tem with polytopic uncertainty is indeed robustly stable. Hence
the proposed approach has less conservatism.
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Fig 1. The state response for the closed-loop system with the
specified external disturbance �
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Fig 2. The state response for the closed-loop system without
external disturbance �

5 Conclusions

We have discussed the problems of persistent bounded distur-
bance rejection for impulsive systems with polytopic uncer-
tainty by using positive invariant set analysis and Lyapunov
function method. Some sufficient conditions that ensure inter-
nal stability and the desired performance level of bounded dis-
turbances for the impulsive systems have been derived in terms
of linear matrix inequalities. Based on these results, a simple
approach to the design of a linear state-feedback controller has
been presented to achieve both robust internal stability and a
desired level of disturbance rejection performance for a dis-
turbed impulsive system. Since the obtained Lyapunov func-
tion matrix is independent of all coefficient matrices in these
results, we do not need to require the existence of a common
positive definite solution for vertex systems when dealing with
robust stability of uncertain polytopic systems. A numerical
example shows the efficiency and less conservatism of the pro-
posed method.
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