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Abstract

This paper addresses the problem of robust matrix root-
clustering analysis. The considered matrices are complex
and subject to both polytopic and parameter-dependent norm-
bounded uncertainties. The clustering regions are unions of
convex and possibly disjoint and nonsymmetric subregions of
the complex plane. The proposed clustering conditions are for-
mulated through an approach based upon Linear Matrix In-
equalities. These numerical tools enable to easiliy compute
Lyapunov matrices (possibly parameter-dependent) that ensure
the clustering property.

1 Introduction

Linear state-space model is a very usual way to describe the be-
haviour of a plant around a setting point. It particularly makes
a suitable control law easier to determine. While designing this
control law, it matters to reach some desired performances for
the closed-loop systems or at least to check them a posteriori.
For this reason, it is important to define criteria that allow to
evaluate the performances especially the transient ones. These
ones are strongly influenced by the location of the state matrix
spectrum in the complex plane, in terms of settling time, damp-
ing ratio... Hence it can be useful to check if the closed-loop
eigenvalues lie inside a region�. � must be discerningly spec-
ified to guarantee satisfactory transient behaviour. Such a prop-
erty is referred to as “‘matrix�-stability”. In the present paper,
����-regions (�xtended � llipsoidal �atrix �nequality) are
considered [1, 2]. This class of regions enable to hande unions
of several possible disjoint and non symmetric subregions. If�
is an open region (i.e. not including its boundary), this concept
encompasses those of Hurwitz and Schur stabilities.
Many authors proposed interesting necessary and sufficient
conditions for matrix �-stability, obviously depending on the
chosen description of � [5, 11]. These conditions are very
tractable from a computational point of view as far as nomi-
nal matrix �-stability is concerned. However, a higher chal-
lenge consists in obtaining sufficient conditions for robust ma-
trix �-stability that are not too pessimistic (i.e. as close as
possible to a necessary condition). Indeed, in practice, state
matrices are not precisely known. Some model uncertainties
exist, due, for example, to neglected dynamics, approximation
in the linearization step, physical parameter deflections (para-

metric/structured uncertainty)... These uncertainties can gen-
erate unexpected pole migration in the complex plane. When
stability is concerned, a solution to analyze robust stability is
to find a bound on an additive uncertainty (on the 2-norm of a
matrix for an unstructured uncertainty or on the modulus of the
parameter variations for the structured uncertainty) such that
stability is ensured. Such a bound is called a robust stability
bound and is conservative most of the time. The first work is
probably the one of [16], starting from the Lyapunov equation
and later improved in [14, 21, 25, 26]. This approach will be
referred to, in the sequel, as Lyapunov approach. For extension
to �-stability, see [3, 7, 18, 24].
In the present paper, the considered uncertainty is both
polytopic and parameter-dependent norm-bounded. Condi-
tions for robust �-stability are expressed in terms of ���
(�inear �atrix �nequality) involving parameter-dependent
“Lyapunov matrices” (PDLM), therefore reducing the con-
servatism induced by quadratic �-stability (non dependent-
Lyapunov matrices proving�-stability over the uncertainty do-
main).
The paper is organized as follows: after this introduction, the
second section is dedicated to the problem introducing the de-
scriptions of the clustering regions, of the uncertainties and
proposing some vocabulary helping comprehension. In the
third one, a robust �-stability bound is computed thanks to
��� conditions implicitly involving PDLM. A numerical il-
lustration is proposed in the fourth section before concluding
in the fifth one.

Notations : We denote by � �, the transpose conjugate of � ,
by ���� the Hermitian expression � �� �. The Kronecker
product is denoted by �. ��� ��� is the 2-norm of matrix � in-
duced by the Euclidean vector-norm, i.e. the maximal singular
value of � . II � is the identity matrix of order �, � is a null
matrix of suitable dimension and l1 ��� is a matrix of dimension
�	 � whose all entries equal �. Matrix inequalities are consid-
ered in the sense of Löewner i.e. “
 �” (“� �”) means nega-
tive (semi-)definite and ”� �” (“ �”) positive (semi-)definite.
HPD stands for Hermitian Positive Definite. Small letters are
used for scalar numbers and vectors while capital letters de-
note matrices or sets. Matrix ����

�
��� denotes ��� ��� ���. At

last, � denotes the imaginary unit and Re��� is the real part of
complex number �.

2 Problem Statement

In this section, the problem is stated. First, the uncertain ma-
trix is presented. Then, the description for clustering regions



is given with associated conditions for nominal matrix root-
clustering. At last, the precise goal is formulated.

2.1 The uncertain matrix

Consider a complex uncertain matrix � � lC ��� defined by:

� � � � � with � � �	
 (1)

Matrices � and � are both uncertain. � is an additve uncer-
tainty in which 	 � lC ��� is unknown. 	 is assumed to be-
long to ����, the ball of �� 	 � complex matrices checking
��	��� � �. Define matrix � by:
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Matrix � is assumed to belong to a polytope of matrices �
defined by:
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where 	 is the set of all barycentric coordinates:
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Extreme matrices �
, � � �� ���� � are the vertices of � and
read:
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(5)

It is well known that this formulation encompasses the case
where � linearly depends on some parameter deflections
around a nominal value. In that case, � is actually an “or-
thotope of matrices”. If no polytopic dependence is assumed
(only one vertex for �) then � is only subject to a classical
norm-bounded uncertainty [19].

2.2 Clustering regions and nominal �-stability

In this part, the reader is reminded of the definition of ����-
regions. The corresponding condition for nominal matrix root-
clustering is also recalled.

2.2.1 �� -stability

Definition 1 [1] : Let � be a set of � Hermitian matrices ��

defined by:
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(6)

The set of points�� defined by:
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where each subregion ��� is an ���-region (� llipsoidal
�atrix �nequality) [17, 18] of degree �� i.e., �� � ��� ������:
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is called an open ����-region.

Remark 1 : In the sequel, it is assumed that �� � �, �� �
��� ������ which is not restrictive [1].

An ����-region, generically denoted by �� , is then a
nonconnected region that results from the union of possibly
complex and disjoint ���-regions. Such a ���-region is
convex. For a real �, this formulation is equivalent to the one
of ��� regions (see [5, 18] for more details). Here, we allow
� to be complex, i.e. �� to be nonsymmetric. �� can be, for
instance, a shifted and nonsymmetric half plane, a classical or
hyperbolic sector, a vertical or horizontal strip, a disc or the
inside of an ellipse the center of which is not necessarily on the
real axis... A matrix is said �� -stable when all its eigenvalues
belong to�� . Some necessary and sufficient condition for this
property to hold is now recalled:

Theorem 1 [1, 2] : Let �� be an ����-region as intro-
duced in definition 1. A matrix � � lC ��� is �� -stable if and
only if there exists a set � of � HPD matrices �� � lC ���,
� � �� �����, such that:

������ � ����� ���� ���� 
 � (9)

with:
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and
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II ��

l1��� � II � ��

�
(11)

The complete proof is proposed in [1] following original argu-
ments borrowed from [4, 5, 11].

2.3 The precise purpose

The aim of this work is to compute a bound on ��	��� such
that, once the ����-region �� is specified, �� -stability of
matrix � defined in (1) is ensured. In other words, it is aimed
to determine, owing to ��� tools, a bound ��, as great as
possible, such that for any radius � � �� of the ball ����,
�� -stability of � is guaranteed, for any � � 	 and for any
	 � ����. �� is a robust �� -stability bound taking both
unstructured and parametric uncertainty into account and using
a parameter-dependent approach. This is what next section
deals with.

3 Parameter-dependent �� -stability analysis

In this section, it is assumed that � is somewhere in the poly-
tope � and it matters to take parameter deflections into ac-
count. This is why a proposed ��� condition leading to a
robust �� -stability bound ��, will implicitly involve PDLM.
The first paragraph tackles the computation of �� while the
second one emphasizes the interest of �� in both closed-loop
robustness and fragility analysis.

3.1 Parameter-dependent robust �� -stability bound ��

Theorem 2 Let � � lC ��� be a matrix as defined in (1) and
�� be an ����-region as formulated in definition 1. Matrix
� is robustly �� -stable with respect to ���� and � if there
exist � sets �
, each one made up by � HPD matrices ��� ,
� � �� �����, as well as a matrix �� � lC �����������������

such that:
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where:
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Proof: For any vector of barycentric coordinates � � 	, con-
sider the convex combination
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where the set ���� is made up by � HPD matrices ����� de-
fined by:
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Since every �
 is positive, it comes:
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 � (16)

Define matrix ������� 	� by:
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Left and right mutliply (16) respectively by � ������� 	� and
������� 	� yields
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By virtue of Schur’s lemma and taking the expression of � into
account, it is equivalent to:

��������� 
 II � � �
�	�	
� � ��II � � �
�
�

Since 	 belongs to ����, it comes 	 �	 � ��II � and the right
member of the previous inequality is negative semi-definite.
Hence, the left member is negative definite.�

The previous condition can be easily tested from a numerical
point of view owing to ��� softwares. Moreover, the value
of � can be minimized leading to a maximum value of �,
denoted by ��, which is a robust �� -stability bound.
Note that the Lyapunov matrices are parameter-dependent. For
each instance � � 	, matrices ����� is a convex combination
of the Lyapunov matrices ��� associated with each vertex.
Each ����� therefore describes a polytope of matrices when �
describes 	. Such a dependence is enabled by the addition of
�� . Rather than keeping � constant over the whole polytope
�, it is better to keep�� constant and to allow the set ���� to
vary in a polytopic way which can be proved less pessimistic.
This is an idea that was originally proposed in [10]. It must be



noted that the use of parameter-dependent Lyapunov functions
of matrices was exploited in many works and the reader is
invited to see [6] for example.

Remark 2 It could be shown that the satisfaction of (12) for
some full �� and some �
 is equivalent to the satisfaction of
(12) for some �� � � ��� � �� and the same �
 with �� �

lC ����������������� and ��� � lC �����������.

Remark 3 If no polytopic uncertainty is considered, i.e. � is
a known and constant matrix (i.e. � � �), (12) is then suf-
ficient for quadratic �� -stability against ����, proved by the
existence of a single set of Lyapunov matrices � .
Moreover, the special case where � � � makes the condi-
tion also necessary. Furtheremore, if � � �, it is, on the
one hand, equivalent to the condition of the Bounded Real
Lemma that enables to compute the��-norm of transfer func-
tion 
��II ������ , and on the other hand, an application
of the well known Kalman-Yakubovich-Popov Lemma. In that
case, the bound is known to be the complex �-stability radius
[13, 15].

3.2 Application to closed-loop robustness and fragility
analysis

In this paragraph, a state-space model describing a system be-
haviour and associated with the triple of matrices � 
������ is
considered. This triple of matrices is actually subject to para-
metric uncertainties so that it can be assumed to belong to a
polytope of matrices such as the one defined in (2) and (4). A
static output feedback control law is applied on this system. It
is associated with the feedback matrix �. Because it is im-
possible in pratice to precisely implement this control law, it
is reasonnable to assume that the feedback matrix is actually
uncertain and reads ���� where � is the nominal term and
�� the uncertain one. Thus, the closed-loop uncertain state
matrix is given by:

� � 
� � ��� � ���� (18)

Now assume that either � or � is precisely known and that
it matters to attest robust �� -stability of � for a specified
����-region �� . This problem is the same as the one han-
dled above. It suffices to compute �� by solving ��� system
(12) with � � 
� � ���, � � � and 
 � � (considering
that 	 � ��). If this condition holds for some �
 and for
some �� , then, the closed-loop matrix � is �� -stable and ��

can be seen as the maximal acceptable deviation (in terms of
2-norm) while implementing �. It is then a fragility criterion.

The case where both � and � are subject to parametric
uncertainties is a bit harder to tackle. It requires another
formulation of uncertainty (with several polytopes) and might
lead to more pessimistic results.

4 Numerical illustration

The numerical illustration is build around a model inspired
from an example proposed in [8]. The computations are
performed with MATLAB 6.1 and its LMITOOLBOX [9] on a
PC Pentium 1700 Mhz.

A satellite is modelled by two masses connected by a spring
with torque  and viscous damping Æ. State and input matrices
are:
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The torque is assumed to read  � ���� and the viscous damp-
ing Æ is assumed to read Æ �  ! with ! �

�
"��. Function

 equals  � � � where the nominal term is  � � ���� and
where � is unknown. Thus, it comes:

Æ �  ! � � � �� �! �  �! �� ! � Æ� ��Æ (20)

A static state feedback control law associated with matrix

� �
�
������� ������� ������� �������

�
(21)

assigns an arbitrary spectrum to nominal closed-loop state
matrix � � 
��Æ�� ��� inducing a damping ratio # � ���.

It is assumed that the feedback matrix � is subject to an addi-
tive uncertainty�� because of practical problems encountered
while implementing the control law. The closed-loop state ma-
trix reads:

� � ���Æ�� ��� �

�
��

� � � �
� ��� � ��
� � � �
� � � ��

�
���Æ

� �� 	
�

� �

����	 �����	 II ����	
� � �

(22)

Is is assumed that �� � � ���� what makes � describe a poly-
tope of matrices. Besides, it is expected to estimate �� such
that �� -stability of � is guaranteed for any �� such that the
damping ratio remains in about ����� ����. To achieve such an
analysis, a clustering region �� is specified. It is the union
of two discs, ���

and ���
, respectively centred on �� � ��

and �� � �� and both of radius � and the vertical half plane,



���
, defined by Re��� $ ��. �� is then symmetric with

respect to the real axis. The three subregions are disjoint and
the �� -stability of � actually clusters the damping ratio in
�������� �������. Applying theorems 2 gives:

�� � ����	 ����

This computation was performed in ����. On figures 1 and 1,
the uncertain matrix roots are plotted for ���� random values
of �� such that ��� � � ��. Such a plot is a way to appreciate
the shape of the spectral value set [12] that was also studied
under the name of pseudospectrum in [22, 23]. The figure 1
corresponds to the practical case where �Æ is real. The figure 2
corresponds to an unrealistic case where �Æ is complex. Such
figures enable to appreciate the conservatism induced by the
approach.
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Figure 1: Pole migration with ���� ��� � ��: �� � IR��	
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Figure 2: Pole migration with ���� ��� � ��: �� � lC ��	

5 Conclusion

The problem of robust matrix root-clustering was tackled.
The uncertainty is both parametric and norm-bounded and the
clustering regions denoted by �� are referred to as ����-
regions, i.e. unions of possibly non symmetric and disjoint
���-subregions. This is an original point of the paper. A
��� technique to compute robust �� -stability bounds was
presented. This method is part of the so-called “Lyapunov

framework”. It induces a weak conservatism so that the bound
might often be very close to the complex �� -stability radius.
When parametric uncertainties are handled, the Lyapunov ma-
trices implicitly involved in the ��� systems are parameter
dependent in order to reduce the pessimism of quadratic �� -
stability.
Some further investigations could concern extensions to the
case where the uncertainty is real that is to the research of a
good lower bound for the real �� -stability radius, maybe us-
ing the work of [20]. Another challenge is the discerning use of
these robust transient performance criteria in a design context.
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