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Abstract

This paper shows that, in the SISO case, optimal mixed-
sensitivity 2-norm controllers are also solutions to the optimal
robust disturbance attenuation problem (ORDAP). That is, they
deliver robust sensitivity reduction despite unstructured uncer-
tainty at the optimal level. We explicitely identify one set of
ORDAP weights for which such a controller is ORDAP opti-
mal. Functional analysis duality theory is used to establish our
conclusions.

1 Introduction

Let us begin by stating briefly the control problems with which
this paper deals.

1.1 Problem Statement

Consider the standard setup shown below in Figure 1.

Figure 1
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In the figure, signals entering a summer should be taken with
a positive sign unless indicated otherwise. All system blocks
are single-input single-output (SISO). The dependence on the
Laplace transform variables or on angular frequencyω will
generally be suppressed in our notation. The plant model, the
nominal plant, isG, and the actual plant is

G∆ = (1 +W2∆)G

Here, W2∆ represents the (unstructured) uncertainty in the
plant model. SoG is G∆ with ∆ = 0. The value of the
transfer function∆(jω) which corresponds to the actual phys-
ical system is unknown, but it is internally stable and obeys

|∆(jω)| ≤ 1 at all frequenciesω. In other words,∆ belongs to
the unit ball inH∞, i.e.∆ ∈ BH∞. The transfer functionW2

is a stable and minimum phase weighting, which describes how
the “size” of the plant uncertainty varies withω. The controller
isH. The sensitivity and complementary sensitivity functions
are, respectively,

S∆ =
1

1 +G∆H
, T∆ =

G∆H

1 +G∆H

These functions depend on∆ (and also ons, of course). The
nominal sensitivity function and nominal complementary sen-
sitivity function will be denoted byS andT respectively, so
that

S =
1

1 +GH
, T =

GH

1 +GH
These transfer functions are, respectively,S∆ andT∆ evaluated
at∆ = 0.

This paper inter-relates two mixed-sensitivity frequency-
domain optimal synthesis problem. We deal with the SISO case
only. We consider the standard 2-norm optimization problem

λ2 = inf
Q∈H∞

∫ +∞

−∞
|V1S(jω)|2 + |V2T (jω)|2dω (1)

with weightsV1 andV2, and the so-called optimal robust dis-
turbance attenuation problem

λR = inf
Q∈H∞

‖ |W1S(jω)|+ |W2T (jω)| ‖∞ (2)

with weightsW1 andW2. The motivation for the latter is the
fact that

‖W1S∆‖∞ ≤ 1 ∀∆ ∈ BH∞ (3)

⇔ ‖ |W1S(jω)|+ |W2T (jω)| ‖∞≤ 1

Note that one needs the constraint‖ W2T ‖∞< 1 for robust
stability. This is perhaps the “simplest”µ-synthesis problem
after the solvedH∞ control problem. There is a literature on
this problem, including [1,26,7, 8,11,14,16].

1.2 Main Result

We show that a solution of the former problem (eqn. (1)) is
necessarily a solution of the latter problem (eqn. (2)), and we
identify one pair of weights for which it is optimal. Thus, start-
ing with a plantG and weightsV1 andV2, consider obtaining
the optimal 2-norm controller (for eqn. (1)). We show that this
controller is also ORDAP optimal (for eqn. (2)) for the weights

W1 = λR
V 2

1 [So]op
Z2

, W2 = λR
V 2

2 [To]op
Z2

(4)



whereZ is defined by the spectral factorization

Z∗Z = V ∗1 V1S
∗
oSo + V ∗2 V2T

∗
o To (5)

and whereSo andTo are the 2-norm optimal sensitivities. Here,
[. . .]op denotes the outer part of a transfer function. The param-
eterλR is simply a scaling of the weights, and can be dropped
if desired. The author’s idea of using 2-norm theory to tackle
another synthesis problem owes something to [12].

1.3 Assumptions

Next, we state our assumptions.

The assumptions on the plant are as follows.

[A1] The nominal plantG is SISO, real-rational and has no
hidden unstable poles (i.e. is stabilizable and detectable).

The weight selection rules are as follows.

[A2] V1 andV2 are real-rational and have no open right half
plane poles or zeros. They have no finite imaginary axis
zeros. They have no finite imainary axis poles (except as
in A3). Their relative degrees are such thatδr(V1S) = 1
andδr(V2T ) = 1 (with any biproper controller) whereδr
denotes relative degree.

Care is needed in dealing with any finite imaginary axis poles
and zeros of the plant.

[A3] The finite imaginary axis poles ofV1 are exactly those
of G and with the same multiplicity. The finite imaginary
axis poles ofV2 are exactly those ofG−1 and with the
same multiplicity.

These poles will be cancelled in the productsV1S andV2T .
From eqn. (4),W1 andW2 will obey A3. (Imaginary axis poles
and zeros are put into the outer factor here.) Also, the ORDAP
weights will obey A2, but withδr(V1S) = 0 = δr(V2T ). A2
and A3 involve no loss of generality in the following sense. It
can be shown that if a controller is 2-norm optimal for any real-
rational weights, then it is also optimal for weights obeying A2
and A3 [9,10].

Section 2 gives some background material which will be
needed. It describes the Youla parameterization, which will be
used to formulate both problems as approximation problems in
certain Banach spaces. It also outlines some standard duality
theory for approximation problems on vector spaces. This the-
ory is used to identify the maximization problem which is the
dual of these minimization problems. Section 3 is devoted to
the proof. It works by comparing the two sets of (alignment)
conditions for optimality. Section 4 contains a textbook exam-
ple. Section 5 contains our concluding remarks. This duality
theory has been applied to optimal controller synthesis prob-
lems before, for instance [3,4,6, 7,8,11,14,15,16].

2 Background

We begin with some necessary background.

2.1 Notation

The notation to be used is as follows. The parameters, the
Laplace transform variable, will generally be dropped in our
notation. The subscript “o” denotes the optimal value of that
transfer function or vector. IfA(s) is a transfer function matrix,

thenA∗(s) denotesA(−s)
T

, i.e. the complex conjugate trans-
pose ofA(−s). Hence, for real-rational scalarA(s),A∗(jω) is
the complex conjugate ofA(jω). Vector spaces and their sub-
spaces will be denoted by upper case script letters. The prefix
B then means the unit ball of that space. The inner and outer
factors of a transfer functionA will be denoted by[A]ip and
[A]op respectively.

2.2 Youla Parameterization

First, we apply the Youla Parameterization [5]. We state the
result for the SISO case as an excuse to specify our notation.

Theorem 1 (The Youla Parameterization) Consider the
problem of the stabilization of the plantG obeying A1 by the
feedback controllerH, (as in Figure 1 with∆ = 0). Suppose
thatN ,D, U andV are all stable transfer functions such that

G = ND−1, 1 = NU +DV (6)

Then, asQ ranges overH∞, all LTI controllers which yield a
stable closed loop system are given by

H =
−QD + U

QN + V
(7)

Simple algebra using the above then shows that

S = D(QN + V ), T = N(−QD + U) (8)

LetBp andBz denote the Blaschke products corresponding to
all the ORHP poles and zeros of the plant, respectively. Define
X andY by N = BzX andD = BpY . We use the fact that
Blaschke products have unit magnitude on the imaginary axis.
Hence, the ORDAP problem is to minimize over all stabilizing
controllers (i.e. overQ ∈ H∞)

λR =‖ |W1S|+ |W2T | ‖∞

=‖ |B−1
z B−1

p W1S|+ |B−1
z B−1

p W2T | ‖∞

=‖ |W1DV +W1DNQ|+ |W2NU −W2DNQ| ‖∞

=‖ |W1Y V B
−1
z +W1XYQ|+ |W2XUB

−1
p −W2XYQ| ‖∞

2.3 The 2-Norm Problem as a Vector Space Problem

The 2-norm problem of eqn. (1) can be cast as a vector space
problem. The space needed isL2×L2 equipped with the norm

‖ (a, b) ‖2×2 =
∥∥∥√|a|2 + |b|2

∥∥∥
2
, (a, b) ∈ L2 × L2 (9)



This is a Hilbert space. So the problem is equivalent to the
following

λ2 = inf
Q∈H∞

‖ (V1XYQ,−V2XYQ) + . . .

+(V1Y V B
−1
z , V2XUB

−1
p ) ‖2×2

Now the set of vectors inL2 × L2 which are of the form
(V1XYQ,−V2XYQ) for someQ ∈ H∞ constitutes a vec-
tor space,M0 say, which is a linear subspace ofL2 × L2,

M0 = {(a, b) ∈ L2 × L2| a = V1XYQ, . . .

b = −V2XYQ, Q ∈ H∞}

So the optimal ORDAP synthesis problem is that of determin-
ing the (or a) vector in a subspace which best approximates
some fixed given vector. There is a well developed theory for
handling such point/subspace approximation problems [13].

2.4 ORDAP as a Vector Space Problem

The ORDAP problem can also be cast as a vector space prob-
lem. The space needed isL∞ × L∞ equipped with the norm

‖ (a, b) ‖∞×∞ = ‖ |a|+ |b| ‖∞, (a, b) ∈ L∞ × L∞ (10)

So the problem is equivalent to

λR = inf
Q∈H∞

‖ (W1XYQ,−W2XYQ) + . . .

+(W1Y V B
−1
z ,W2XUB

−1
p ) ‖∞×∞

Now the set of vectors inL∞ × L∞ which are of the form
(W1XYQ,−W2XYQ) for someQ ∈ H∞ constitutes a vec-
tor space,N0 say, which is a linear subspace ofL∞ × L∞,

N0 = {(a, b) ∈ L∞ × L∞| a = W1XYQ, . . .

b = −W2XYQ, someQ ∈ H∞}

So the problem is again in the form of finding a vector
(W1XYQ,−W2XYQ) in the subspaceN0 that best approxi-
mates a given vector−(W1Y V B

−1
z ,W2UXB

−1
p ).

2.5 Duality Theory

Vector space duality theory provides a powerful methodology
for tackling many optimization problems. The following two
theorems treat point/subspace optimal approximation problems
[13].

Theorem 2 Suppose thatX is a normed vector space with sub-
spaceM, that its dual space isX d, and thatx ∈ X . Then

(a)
inf
m∈M

‖ x−m ‖= max
md∈BM⊥

| < x,md > | (11)

and the maximum on the right is attained for somemd ∈
BM⊥, say bymd

o.

(b) A sufficient condition formo ∈ M to attain the minimum
on the left is that there existmo ∈ BM⊥ which is aligned
with x−mo.

Theorem 3 Suppose thatX is a normed vector space with sub-
spaceM, that its dual space isX d, and thatxd ∈ X d. Then

(a)

min
md∈M⊥

‖ xd −md ‖= sup
m∈BM

| < m,xd > | (12)

and the minimum on the left is attained for somemd ∈
M⊥, say bymd

o.

(b) A sufficient condition formd
o ∈M⊥ to attain the minimum

on the left is that there existmo ∈ BM which is aligned
with xd −md

o.

For the proofs, see [13]. They involve a straightforward appli-
cation of the Hahn-Banach Theorem.

To apply the above duality theory, we need to identify the vari-
ous subspaces required.

2.6 2-Norm Duality

Being a Hilbert space,L2 × L2 is its own dual, and with the
same norm.

Theorem 4 Assume that A1-A3 are obeyed. Consider the sub-
space ofL2 × L2 given by

M = {(a, b) ∈ L2 × L2| a2 =
V ∗2 l2 + V1h

∗
2

ΛV
, . . .

b2 =
V ∗1 l2 − V2h

∗
2

ΛV
, l2 ∈ L2, h2 ∈ H2}

ThenM⊥ = {(x, y) ∈ L2 × L2|x = V1XYQ, . . .

y = −V2XYQ,Q ∈ H∞} =M0

whereΛV comes from the spectral factorization

Λ∗V ΛV = V ∗1 V1 + V ∗2 V2

2.7 ORDAP Duality

The norm of interest onL∞ × L∞ is that of eqn. (10). Define

‖ (a, b) ‖1×1=
∫

max{|a|, |b|}dω

which is a norm on the spaceL1 × L1. These two normed
spaces are related as follows.

Theorem 5 The spaceL∞×L∞ with norm‖ (x, y) ‖∞×∞ is
the dual of the spaceL1 × L1 with norm‖ (a, b) ‖1×1



Theorem 6 Assume that A1-A3 are obeyed. Consider the sub-
space ofL1 × L1 given by

N = {(a, b) ∈ L1 × L1| a = (W ∗2 l +W1h
∗)/ΛW , . . .

b = (W ∗1 l −W2h
∗)/ΛW , l ∈ L1, h ∈ H1}

whereΛW comes from the spectral factorization

Λ∗WΛW = W ∗1W1 +W ∗2W2

ThenN⊥ = {(x, y) ∈ L∞ × L∞|x = W1XYQ, . . .

−W2XYQ), Q ∈ H∞} = N0

The proofs of the previous three theorems are straightforward,
see [13,11].

Note that if the plant has finite imaginary axis poles or zeros,
then the weights have finite imaginary axis poles. However,
the multiplicity of such poles inW ∗1W1 andW ∗2W2 will be
even, so they present no difficulties when doing the spectral
factorization. Such poles will then be poles ofΛW also.

3 Proof

In this section, we establish the main result in a number of
steps. The characterization of optimality by the alignment con-
dition is investigated for both synthesis problems. Then, these
two sets of alignment conditions are compared.

3.1 2-Norm Alignment Conditions

Under our assumptions, we know how to explicitely com-
pute the minimizingQo and the maximizing(a2o, b2o) ∈
BM. Hence, they exist. Then, let(x2o, y2o) =
(B−1

z B−1
p V1So, B

−1
z B−1

p V2To), and(x2o, y2o) is aligned with
(a2o, b2o). The details are as follows.

λ2 = | < (x2o, y2o), (a2o, b2o) > |

≤ ‖ (x2o, y2o) ‖2×2 ‖ (a2o, b2o) ‖2×2

The alignment condition (i.e. the condition for equality above)
is easy in the 2-norm case. Equality holds

⇔ λ2(a2o, b2o) = (x2o, y2o)

⇔ λ2a2o = V1Y V B
−1
z + V1XYQ, and

λ2b2o = −V2XYQ+ V2XUB
−1
p

⇔ λ2a2o = B−1
z B−1

p V1So, and λ2b2o = B−1
z B−1

p V2To

⇔ λ2
V ∗2 l2o + V1h

∗
2o

ΛV
= B−1

z B−1
p V1So and

λ2
V ∗1 l2o − V2h

∗
2o

ΛV
= B−1

z B−1
p V2To

Solving forh∗2o and givesl2o,

⇔ λ2h
∗
2o = B−1

z B−1
p

(
V ∗1 V1So − V ∗2 V2To

Λ∗V

)
(13)

and

⇔ λ2l2o = B−1
z B−1

p

(
V1V2

Λ∗V

)
(14)

Under our assumptions, there is a unique choice ofQ which
makes the right hand side of eqn. (13) anti-stable and strictly
proper, and this is the optimalQ. Thenh2o andl2o are easily
constructed to yield alignment. So this condition is necessary
and sufficient for 2-norm optimality.

3.2 ORDAP Alignment Conditions

Our treatment here is modeled after [11]. The analysis is little
more than the conditions for equality in Holder’s inequalities.

Let xo = W1XYQo +W1Y V B
−1
z

and yo = −W2XYQo +W2XUB
−1
p )

so (xo, yo) = (WSoB
−1
z B−1

p ,W2ToB
−1
z B−1

p )
whereQo attains the minimum in Theorem (3). Existence is
assurred. Suppose that(a1o, b1o) ∈ L1 × L1 attains the supre-
mum in Theorem (3). Here, existence is not guaranteed in gen-
eral. Normalize(a1o, b1o) w.l.o.g. so that

‖ (a1o, b1o) ‖1×1= 1

Then
λR =‖ |W1So|+ |W2To| ‖∞
= | < (a1o, b1o), (xo, yo) > |

=
∣∣∣∣∫ ∞
−∞

(xoa∗1o + yob
∗
1o)dω

∣∣∣∣
≤
∫ ∞
−∞
|xoa∗1o + yob

∗
1o|dω

with equality holding when either (i)∠(xoa∗1o + yob
∗
1o) = 0,

or (ii) xoa∗1o + yob
∗
1o = 0, a.e.

≤
∫ ∞
−∞

(|xoa1o|+ |yob1o|)dω

with equality holding when either (iii)∠xoa∗1o = ∠yob∗1o, or
(iv) xoa∗1o = 0, or (v) yob∗1o = 0, a.e.

≤
∫ ∞
−∞

max{|a1o|, |b1o|}(|xo|+ |yo|)dω

with equality holding when either (vi)|a1o| = |b1o|, or (vii)
|a1o| > |b1o| andyo = 0, or (viii) |b1o| > |a1o| andxo = 0,
a.e.

≤‖ |xo|+ |yo| ‖∞
∫ ∞
−∞

max{|a1o|, |b1o|}dω

with equality holding when either (ix)λR = |xo|+ |yo|, or (x)
max{|a1o|, |b1o|} = 0, a.e.

=‖ |W1So|+ |W2To| ‖∞= λR

since the norm of(a1o, b1o) has been normalized to one.

Since the above expressions are of the form “λR ≤ . . . ≤ λR”,
we conclude that the alignment condition implies that each of
the inequalities must, in fact, be an equality.



It is clear that sufficient conditions for alignment are then (i),
(iii), (vi) and (ix). These may be written as

∠W1SoB
−1
z B−1

p a∗1o = 0 (15)

∠W2ToB
−1
z B−1

p b∗1o = 0 (16)

|a1o| = |b1o| (17)

|W1So|+ |W2To| = λR (18)

3.3 Comparing the 2-norm and ORDAP Alignment Con-
ditions

Given the weightsV1 andV2, suppose that we have found the
solution of the 2-norm problem of eqn. (1). We claim that this
solution of eqn (1)(So, To) is then the solution of a certain OR-
DAP problem, namely that of eqn. (2) with weights(W1,W2)
as defined in eqn. (4). This is established by using the 2-norm
solution to construct vectorsa1o and b1o which achieve OR-
DAP alignment, so that part (b) of Theorem 3 then establishes
ORDAP optimality.

Define the Blaschke productsB1 andB2 by

B1Bp = [So]ip, B2Bz = [To]ip

SoB1 andB2 are the Blaschke products for the ORHP poles
and zeros of the controller respectively. Let

a1o =
V ∗1 V1SoB

−1
z B−1

p

W ∗1
b1o =

V ∗2 V2ToB
−1
z B−1

p

W ∗2
(19)

Formally, two things must be established. First, we show
that this vector(a1o, b1o) has the required structure, viz.
(a1o, b1o) ∈ N . Secondly, we show that this(a1o, b1o)
achieves alignment. ORDAP optimality then follows from part
(b) of Theorem 3.

Solving

a1o =
W ∗2 l1o +W1h

∗
1o

ΛW
, and b1o =

W ∗1 l1o −W2h
∗
1o

ΛW

for h∗1o andl1o gives

l1o =
W2a1o +W1b1o

Λ∗W
, and h∗1o =

W ∗1 a1o −W ∗2 b1o
Λ∗W

Using eqn. (19) then gives

h∗1o =

(
B−1
z B−1

p

Λ∗W

)
(V ∗1 V1So − V ∗2 V2To)

and

l1o =

(
B−1
z B−1

p W1W2

Λ∗W

)(
V ∗1 V1So
W ∗1W1

+
V ∗2 V2To
W ∗2W2

)

It is easily checked that A1-A3 ensure thath∗1o and l1o
are strictly proper, and have no finite imaginary axis poles.

Eqn. (13) shows thath∗1o is anti-stable, and so is inH1. Hence
(a1o, b1o) ∈ N as required.

Eqn. (19) gives

W1B
−1
z B−1

p Soa
∗
1o = V ∗1 V1S

∗
oSo

and
W2B

−1
z B−1

p Tob
∗
1o = V ∗2 V2T

∗
o To

showing that eqn. (15) and eqn. (16) are obeyed. Using
eqns. (19) and (4) shows that

a∗1oa1o =
(V ∗1 V1V

∗
2 V2)2

A∗A
= b∗1ob1o

establishing eqn. (17). Using eqn. (4) to substitute forW1 and
W2 in

|W1So(jω)|+ |W2To(jω)|

and then using eqn. (5) establishes eqn. (18). This shows that
the conditions for alignment are obeyed.

Part (b) of Theorem 3 now establishes that thisQo is an optimal
solution of the ORDAP problem of eqn. (2).

4 Example

Suppose that the plant isG = 1/s. Solving eqn. (6),

N =
1

s+ 1
, D =

s

s+ 1
, U = 1, D = 1

Suppose that the 2-norm weights (obeying A2 and A3) are
V1 = 2/s andV2 = 1. Then, a spectral factorization gives
ΛV = (s + 2)/s. Finally,Qo must be such that the right hand
side of eqn. (13) is anti-stable. It is

B−1
z B−1

p

(
V ∗1 V1So − V ∗2 V2To

Λ∗V

)
Simple algebra confirms that it may be written as

= B−1
z B−1

p

(
QoNDΛV +

V ∗1 V1DV − V ∗1 V1NU

ΛV

)
The only unknown in the above is nowQo, so inserting the
other terms,

= Qo
(s+ 2)
(s+ 1)2

− (s+ 4)
(s+ 1)(s− 2)

Compute the partial fraction expansion of the term on the right.
This quantity must be anti-stable. It is easily checked that the
(unique) optimalQo must be

Qo = − (s+ 1)2

(s+ 2)
1

s+ 1
= − (s+ 1)

(s+ 2)

Using eqn. (8) gives

So =
s

s+ 2
, To =

2
s+ 2



and the optimal controller isH = 2. Then eqn. (4) gives (with
λR = 1)

W1 =
(s+ 2)

2s
, W2 =

(s+ 2)
4

We may then conclude that (from eqn. (3))∣∣∣∣ (s+ 2)
2s

S∆(s)
∣∣∣∣ ≤ 1 ∀ s = jω, ∀∆ ∈ BH∞

or

|S∆(jω)| ≤
∣∣∣∣ 2jω
(jω + 2)

∣∣∣∣ ∀ ω, ∀∆ ∈ BH∞

Of course, the above fact is easily checked separately. The
non-trivial point is that no other controller can do better, in the
above ORDAP sense.

5 Conclusion and Discussion

The following has been established.

Theorem 7 Suppose that the plantG(s) obeys A1 and that the
2-norm weights(V1, V2) obey A2 and A3. Let(So, To) denote
the optimal solution of the 2-norm problem of eqn. (1). Then,
this(So, To) is also the optimal solution of the ORDAP problem
of eqn. (2) with weights(W1,W2) given by eqn. (4).

It should now be possible to design ORDAP optimal controllers
for the SISO case. However, one would have to rely on iterative
trial and error to find how(V1, V2) should be chosen to obtain
the desired(W1,W2).

Of course, the real motivation for this line of research is to solve
the ORDAP problem by reversing the above analysis. Thus,
we should like to begin with the ORDAP weights, and then
identify the 2-norm weights for which the same controller is
optimal. Research along these lines is at an advanced stage.
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