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Abstract

Stability in presence of bounded uncertain time-varying time
delays in the feedback loop of a system is studied. The
stability problem is treated in the Integral Quadratic Constraint
(IQC) framework. The stability criterion is formulated as
frequency dependent linear matrix inequalities. The criterion
can be equivalently formulated as a Semi-Definite Program
(SDP) using Kalman-Yakubovich-Popov lemma. Therefore,
checking the criterion can be done efficiently by using various
SDP solvers.

1 Introduction

Time delay often occurs in engineering systems. Since the
existence of time delay usually causes instability of the sys-
tem, the study on the time-delay systems has received consid-
erable attentions, and time-delay robustness has been a large
research topic. Many stability criteria for time-delay systems
can be found in the literature. Stability criteria for time-delay
systems tend to fall into one of the two categories: delay-
independent and delay-dependent. As the name implies, delay-
independent criteria provide conditions which guarantee stabil-
ity for any length of the time delay. On the other hand, delay-
dependent criteria exploit a priori knowledge of upper-bounds
on the amount of time-delay. These criteria are generally less
conservative than delay-independent criteria since more infor-
mation about the time-delay is assumed to be known.

Let us consider the following linear time delay system

����� � ����� ������� ����� (1)

where ���� is a unknown time-varying parameter which satis-
fies

� � ���� � �� � �� ���� � �� �� � �� (2)

� � �� is the state, � and �� � ���� are constant matrices.
We assume that the state ���� � � for all � � �. In this paper,
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we shall develop delay-dependent conditions for robust stabil-
ity of time-delay system (1). More specifically, given a pair of
scalars ��� ��, our objective is to derive conditions under which
the delay system (1) is robustly stabile for all ���� that satisfies
condition (2).

If the delay parameter � is unknown but constant, then the en-
ergy of ��� � �� is the same as the energy of ����. Hence,
a simple but conservative delay-independent stability criterion
for the system,

���
�
����	� �������� 
 	�

immediately follows the small gain theorem. The exact con-
dition for delay-independent stability was derived in [2] using
structured singular value. Many of the recent research works
focus on delay-dependent stability. Some of them were de-
rived using frequency-domain analysis (by � or IQC analysis)
[14, 5, 17, 7], while others use time-domain analysis (by var-
ious Lyapunov-Krasovskii functions) [16, 11, 13, 4]. See also
[10] and [15] for the recent development on stability analysis
of time delay systems.

When the delay parameter is time-varying, stability analysis is
more involved. One of the difficulties, for instance, is that the
delay operator is no longer energy-preserving. In fact, if there
is no restriction on the speed of variation; i.e., no bound on
�� ���, then the delay operator is not even a bounded operator on
the �� space no matter how small the length of the delay is. To
see this, let ���� and ���� be

���� �

�
	 � � ��

� otherwise
���� �

�
� � � 
�� ���

� otherwise
� (3)

Then ��������� is equal to 	 for � � 
�� 
� and � otherwise. The
energy of ��� � ����� is equal to � while the energy of of ����
is equal to �, which implies that the gain of the delay operator
is infinite. Hence, intuitively, systems with time-varying delays
are more unstable than those with constant time delays, and it is
not obvious that stability criteria for system with constant time
delays can be easily generalized for time-varying delay sys-
tems. Over the past few years, researchers have been working
on stability analysis of linear systems with time-varying delays
[12, 6, 1, 9, 3, 8]. All of these results are developed in the time-
domain, based on Lyapunov’s second method using different
Lyapunov-Krasovskii functionals.

In this paper, we consider the stability problem where the
delays in a closed-loop continuous-time system are bounded



but time-varying. We adapt the frequency-domain approach.
Specifically, the stability problem is treated in the Integral
Quadratic Constraint (IQC) framework [14]. The stability
criterion is formulated as frequency dependent linear matrix
inequalities. The criterion can be equivalently formulated as
a Semi-Definite Program (SDP) using Kalman-Yakubovich-
Popov lemma. Therefore, the criterion can be verified
efficiently using various SDP solvers.

Notation: Symbol 	� is used to denote �-dimensional identity
matrix. Given a matrix � , the transposition and the conju-
gate transposition are denoted by� � and��, respectively. A
matrix� is called positive definite if� belongs to� ��� and
���� � � for all � � ��� � �� �. The notations� � � is used
to denote positive definiteness. The positive semi-definiteness,
negative definiteness, and negative semi-definiteness have sim-
ilar definitions except that the “�“ is replaced by “�“, “
“,
and “�“, respectively. We use �� to denote the space of square
summable functions defined on time interval 
��	�. Given a
signal � in�� space, we use ����� to denote the�� norm of � .
Given an bounded operator � on the �� space, we use �����
to denote the �� induced norm of �.

2 Main Results

Let
� denote the time-delay operator and let� be �
��	�Æ �
�
.

That is, 
� ��� 
� ���� �����, and

���� 
�

� ������

�

������ (4)

In this paper, we derive stability criteria for linear time delay
systems based on Integral Quadratic Constraints (IQC) anal-
ysis. Given an operator � and a quadratic form ���� �� de-
fined on �� space, we said that � satisfies IQC defined by � if
��������� � � for all � � ��.

2.1 IQCs for Operators
� and �

The following lemmas are the main technical results of this
paper.

Lemma 1. Operator
� is bounded on �� space if � 
 	. The
�� induced norm of 
� is equal to 	�

�
	� �, and
� satisfies

integral quadratic constraints defined by

����� �� �

� �

�

	

	� �����
�������� �������������� (5)

where�� � � �
� is any positive definite matrix.

Proof. Let �� � � �
� � �, and let ���� be any �� signal. We

have � �

�

���� ������������ �������

�

� �

�����
�����������

	

	� �� ������
��

�
� �

�

	

	� �����
���������

The last inequality follows that � �� ���� � �, �� � �. This ver-
ifies that 
� satisfies IQC defined ��. Furthermore, by tak-
ing �� to be identity matrix, we immediately conclude that
�
���� � ��

��� . To see �
���� � ��
��� , let us consider the

following signal

���� �

�
	 � � 
�� �

�
� ���

� otherwise
���� �

�
�� � � 
�� �

�
��

� otherwise
�

then one can easily verify that ��� � ����� is equal to 	 for
� � 
�� �

�
�, and equal to � otherwise. Hence we have

����� �������
��

�������
��

�
	

	� � �

This concludes the proof. We note that the ��-gain of 
� is
independent of � as long as � is strictly greater than 0.

Lemma 2. Operator � is bounded on �� space. The ��

induced norm of �� is equal to �, and � satisfies integral
quadratic constraints defined by

����� �� �

� �

�

�������������� �������������� (6)

where �� � � �
� is any positive definite matrix.

Proof. Let �� � � �
� � � and � � ����. We have
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Hence, the followings follow the Cauchy-Schwartz inequality
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This in turn implies� �

�
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� �

�

���������������

This verifies the IQC defined by ��. By taking �� � 	 , it is
obvious that the ��-gain of � is bounded by �.

To show that ��� � �, let ���� � � for all �. Then opera-
tor � is an linear time-invariant operator such that the transfer
function of � is equal to

���� �
���� � 	

�

 	

The �� induced norm of � satisfies

������ � ���
���

��������� � 	

��

����� � ��

Hence, ����� � � which in turn implies that ��� � �.
Again, we note that the ��-gain of � is independent of �;
that is, the variation of � has no effect on the worst-case energy
amplification.

2.2 Stability Criteria based on IQC Analysis

Our results are based on the following transformation, similar
to the one introduced in [17].

Lemma 3. Let � � ���� be a constant matrix. Then the
time-delay system (1) can be equivalently formulated as

����� � ����������� � �	� ����������

���������� ���
�
������

(7)

where ����� � ���� �����,

����� �

� ������

�

������� ����� �

� ������

�

�������

Using (7), one can put the linear time delay system in standard
Linear Fractional Transformation (LFT) setup for robustness
analysis, as shown in Figure (1). The LTI system � has a state
space representation

����� � ������ � ��� ������ � ��� ������

������ � ����

������ �

�
����
������

� (8)

where ��� � 
� �����, ������ � ������, and matrices �� �
� � ���, ��� � �	� � ����, ��� �

	
���� ���

�



.

Since systems (1), (7) and (8) are equivalent, stability of any

�


�

�

������ ������

Figure 1: Equivalent System of (1)

one of the systems implies stability of the other two. Applying
standard IQC analysis [14] to (8) and using the IQCs derived in
Lemmas 1 and Lemma 2 for 
� and �, respectively, we have
the following stability result for linear time delay system (1)

Theorem 1. Linear time delay system (1) is stable if there exist
symmetric positive-definite matrices��,�� of suitable dimen-
sions, such that for some � � �,

������
�

�
����� �

� ����

�
������

�
�� �
� ��

�
� ��	�

�� � 
��	�

The above stability condition can be formulated as a semi-
definite problem (or linear matrix inequality) using the well-
known Kalman-Yakubovich-Popov lemma [18].

Theorem 2. Linear time delay system (1) is stable if there exist
matrices � � � � � � �� � � �

� � �, ��� � � �
��, ���,

��� � � �
��, and  of suitable dimensions, such that�

��� ���

� �
�� ���

�
� ����


��� �� � ��� � �
����  ���  ��

�

� ����� ��� � �
� � ���� ����

� � � ����

���� 
 �

where ��� � ������ � �� ��
�
� � �

����� � �
����.

In cases where there is no restriction on �� ���; i.e., � � 	, or
� � 	, we choose� to be 	� and reformulate (7) as

����� � ���������� ��� �����

����� � ����� � ���������� ��� �����
(9)

where ����� � �����. Stability criterion for (1) can be obtained
using IQC defined by (6) and we have the following theorem

Theorem 3. Linear time delay system (1) is stable if there exist
symmetric positive-definite matrix � , such that�

��� ��� � �
�������

����

� ��
�

 � (10)

where ��� � � �������������
�� ���������

�����
���.



2.3 Further Stability Results

Stability criteria derived in the previous section are used on
simple norm-bounded type of integral quadratic constraints for

� and �, which might be very conservative. Less conserva-
tive criteria can be derived provided IQCs which better charac-
terize 
� and � are available. In this section, stronger IQCs
for
� and � are derived

Lemma 4 (Swapping lemma for operator 
� ). Let � be a
stable linear time invariant system with state space represen-
tation ��� � ��� � !� ����� � �, and let " denote the
operator of multiplying �� ���; i.e., " ������ 
� ���������. Then


� Æ���� � ���� Æ 
� ����� Æ " Æ 
� Æ ������

Proof. Let � be any �� function and define # and $ to be

�#��� � ��#��� � ����� #��� � �

�$��� � ��$��� � ���� ������ $��� � �

Let %��� � #��� ����� � $���, and we have

�%��� � �#��� ������	 � �� ����� �$���

� ���#��� ����� � $����� �� ��� 
 �#��� �����
� ��%��� � �� ��� 
 
� � �#�����

which implies
� ���� � � Æ
� ����� Æ " Æ
� �
�
��
�����.

This concludes the proof.

Lemma 5 (Swapping lemma for operator �). Let � and "
be the operators as defined in Lemma 4. Then

� Æ���� � ���� Æ������ Æ " Æ 
� Æ����

Proof. The proof is similar to the one of Lemma 4. Let � be
any �� function and define #, $ and � to be

�#��� � ��#��� � ����� #��� � �

�$��� � ��$��� �

� ������

�

������� $��� � �

%��� �

� ������

�

#����� � $���

One can easily verify that

�%��� � #��� ������	 � ������ � #���� �$���

�

� ������

�

�#����� � �$���� �� ��� 
 #��� �����

� ��

� ������

�

#����� ���$���� �� ��� 
 #��� �����

� ��%���� �� ��� 
 
� �#�����

which implies ����� � � Æ���� �� Æ " Æ 
� ����. This
concludes the proof.

Using these swapping lemmas, the following integral quadratic
constraints for 
� and � can be derived.

��


�

�

��
�

������ ������ ������

Figure 2: Extended System

Lemma 6. Let ���� be any �� signal, and���� be any strictly
proper stable transfer matrix of the form ��	 � ���

��. Let
# � ��, $ � ��, % � � ��, where � � 
� ���, ����� �
�� ��� 
 
� � �#�. For any given�� � � �

� � �, �� � � �
� � �, the

following integral inequalities hold� �

�

	

	� �
�
�
#

��
��

�
�
#

�
�
�

�
�$ � %�

��
��

�
�

�$ � %�
�
�� � �

(11)� �

�

��

	� � �#
��� �# � ����� �� �� � � (12)

Proof. By swapping lemma 4, we have $ � % � 
� �#�, � �

� ���. Then integral inequality (11) follows immediately from
Lemma 1. Let �� � 
� � �#�. Then� �

�

�������� ������� �

� �

�

�� ���� �������� �������

� ��
� �

�

�������� ������� � ��
� �

�

	

	� � �#���
��� �#�����

The last inequality follows Lemma 1 and that �� � 
� � �#�. This
concludes the proof.

Lemma 7. Let ���� be any �� signal, and���� be any strictly
proper stable transfer matrix of the form ��	 � ���

��. Let
# � ��, $ � ��, % � � ��, where � � ����, ����� �
�� ��� 
 
� �#�. For any given�� � � �

� � �, �� � � �
� � �, the

following integral inequalities hold� �

�

��
�
�
#

��
��

�
�
#

�
�
�
�
$ � %

��
��

�
�
$ � %

�
�� � � (13)� �

�

��

	� �#
���# � ����� �� �� � � (14)

Proof. By swapping lemma 5 we have $ � % � ��#� and � �
����. Then integral inequality (13) follows immediately from
Lemma 2. Integral inequality (14), which is similar to (12), is
derived using the same argument for deriving (12).



����� �

���������


�
���������� � � � � � �

� ��������� � � � � �

� � ��

����� � � � �

� � � �������� � �������� �
� � � � �������� � ��������

� � � � � ���� �������� ����

� � � � � � ���� ��������

����������
(15)

Using the above IQCs, one can derive less conservative stabil-
ity criteria for system (1). Consider system (8) and the follow-
ing extended system

�#� � ���#� � ���

�$� � ���$� � ���

�%� � ���%� � ��

�#� � ���#� � ���

�$� � ���$� � ���

�%� � ���%� � ��

(16)

where ��� and ��� are two given Hurwitz matrices. Sig-
nals ���, ���, ���, and ��� are as defined in (8). Signals �� and
�� are equal to �� 
 
� � �#� and �� 
 
� �#�, respectively. Let
��� �

	
�� #�� #�� $�� $�� %�� %��



. Then systems (8) and

(16) can be combined and put into the LFT setup as shown in
2, where ���� �

	
�#�� #��



and ���� �

	
� �� � ��



. State space rep-

resentation of LTI system �� can be easily derived using state
space representation of (8) and (16). Here we omit the details.

Since the original time delay system (1) is embed in the ex-
tended system shown in Figure 2, stability of the extended
system implies stability of the original system. Applying
lemmas 4 to 7, one can verify that the following integral
quadratic constraint holds for � �� 
�

	
���� ���� ����



, and ��� 
�	

���� ���� � �� � ��


.� �

��

�
�������
�������

��
�����

�
�������
�������

�
�� � �

where ������� and ������� are Fourier transform of ����� and
�����, respectively. ����� � ������ is of the form (15),
where

�� �

�
	

������

�
� �� �

�
	

������

�
�

�� �

�
�

������

�
� �� �

�
�

������

�
�

and ������ � ���	 � ����
��, ������ � ���	 � ����

��.
Matrices��, �� and

�� �

�
��� ���

� �
�� ���

�
are symmetric positive-definite matrices of suitable dimen-
sions. We have the following stability theorem for the extended
system in Figure 2.

Theorem 4. The extended system is stable if there exist �� �
� �

� � �,�� � � �
� � �, and

�� �

�
��� ���

� �
�� ���

�
� �

such that for some � � �� ������
	

��
�����

� ������
	

�
� ��	� �� � 
��	� (17)

where ����� is of the form (15).

Remark 1. Using Kalman-Yakubovich-Popov lemma, one can
derive an equivalent condition of (17) in terms of Linear Matrix
Inequalities (LMIs). Here we omit the details.

3 Example

In this section, we present a numerical example to test the sta-
bility criteria proposed in this paper and compare them with
existing criteria from the literature.

Consider the following system (Example 4 of [12]),

����� �

��� �
� ����

�
���� �

��	 �
�	 �	

�
��� � ����� (18)

As indicated in [12], this system is not asymptotically stable
independently of the size of the delay. When delay parameter
���� is arbitrarily time-varying; i.e., � �	, using the criterion
in [12], one obtains asymptotically stability in case � � ���� �
�����	. Using criterion (10) in Theorem 3, we obtain the bound
� � ���� � ������.

If we further restrict the variation of ���� to be strictly less than
one, then stability regions as shown in Figure 3 can be obtained
using Theorem 2. Here we compare our criteria with those pro-
vided in [9] and [3]. In Figure 3, the solid line is obtained using
the criterion in Theorem 2, while the dotted and dashed lines
are obtained using criteria given in [9] and [3], respectively.

As we can see from Figure 3, the stability region obtained using
the criterion in [9] is much smaller than the region obtained us-
ing the criterion in Theorem 2. On the other hand, the criterion
in Theorem 2 is slightly conservative compared to the crite-
rion given in [3]. Currently, we are working on implementing
the stability criterion given in Theorem 4, which hopefully is
much less conservative and can give a better estimation of the
stability region.
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Figure 3: Stability Regions

4 Conclusions

Stability conditions for linear time delay systems were derived.
The delay parameter is an unknown time-varying function for
which the upper bounds on the magnitude and the variation
are given. The influence of time-varying delay is modelled as
uncertainties in the system, and integral quadratic constraints
were derived to characterize the effect of these uncertain op-
erators. Conditions for stability were then derived based on
IQC analysis. The advantage of this approach is that the results
can be easily generalized to systems with multiple delays, and
extended to deal with systems with parametric uncertainties,
unmodelled dynamics, and/or various simple non-linearities.
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