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Abstract

Adaptive control schemes are developed, which provide
global asymptotic stability property with respect to state space
vector of the plant with functional uncertainty. In the presence
of disturbance these schemes ensure boundedness of all tra-
jectories of the system. A switching modification of proposed
schemes is considered.

1. Introduction

The adaptive stabilisation of nonlinear determined systems is
one of the most popular and complicated problems of the
modern theory of control. Presented work is devoted to a well
known problem of stabilisation of systems with input uncer-
tainty [9, 15, 20, 21, 32] as well as more complicated class of
systems with functional uncertainty [10, 14, 17]. The class of
uncertainties, which is considered here, includes external not
determined perturbation and functional indeterminacies. The
same problem was investigated in many works (see works
listed above and references therein). In paper [20] the control
law ensuring asymptotic tracking with compensating of per-
turbations was synthesized. However, class of nonlinear
plants, for which indicated problem was solved, is limited by
models reduced to the so-called normal form [13] and for
systems without  functional indeterminacy. The
monographies [9, 15, 21] and papers [10, 17, 32] concern to
the problem of nonlinear control of systems with functional
uncertainty, but, unfortunately the influence of input distur-
bances was not investigated in these works. And what is
more, only convergence of all trajectories of a nonlinear sys-
tem to some small neighbourhood of the origin was proven in
the most of above cited works. Adaptive stabilisation of sys-
tems with functional uncertainty in the presence of distur-
bance was investigated by Kosmatopoulus and Ioannou [14],
but in that paper it was supposed that all uncertainties are
linearly included in equations of the plant.

Opposite to previous works, in the present work the control

algorithm is developed for stabilizable nonlinear affine sys-
tem with functional uncertainty,  which provides asymptotic
stability in the case of absence of disturbances and asymptotic
boundedness of all trajectories of the system for ∞L  bounded
disturbances. In the second section the main definitions and
statements are presented. The non adaptive and adaptive con-
trol algorithms are described in the 3 section, in 4 section
some important tasks, which can be solved in line of proposed
control algorithms, are presented, the conclusion finishes the
paper.

2. Definitions and statements

Let us consider nonlinear dynamic system
( )( ) ( ) ( )[ ]tt 1,, wuxGxωxfx ++=& ,  (1)

where nR∈x  is state vector, mR∈u  is control; ( )ωxf ,  and
the columns of ( )xG  are continuous and locally Lipschitz
vector fields on nR , ( ) 0,0 =ωf  for any pR∈ω ; ( )t,xω  is
unknown vector function representing functional uncertainty
of system; pRR →≥01 :w  is external disturbance, that is
Lebesgue measurable and essentially bounded function of
time. Let us introduce main restrictions on properties of the
system.

A s s u m p t i o n  1 . There are an unknown constant
[ )∞+∈ ,0m , unknown Lebesgue measurable and essentially

bounded signal 002 : ≥≥ → RRw  and a known function
0: ≥→ RRr n , such, that

( ) ( ) ( )trmt 2, wxxω +≤ , nR∈x , 0≥t , ( ) 00 =r . ■

Assumption 1 does not imply boundedness of function
( )t,xω  for variable x . The presence of unknown parameter

m  leads us to necessity of adaptive controller construction.
Opposite to classical adaptive control theories [8, 9, 15] here
there is no assumption on compactness of admissible values
set of unknown parameter m . Such complication allows to
consider more wide class of tasks, for example, in this way
we can take into account the presence of unmodeled dynamic,



that is unknown dynamic system with bounded solution. Then
( ) ( ) ( ) ( )trtyt 2, wxxω += , where signal ( )ty  is output of

unmodeled dynamic system, hence, constant m  can reflect
the influence of unknown initial condition of unmodeled dy-
namic system. The robust and adaptive control algorithms for
systems with input unmodeled dynamics were investigated in
many works [3, 11], here we will mainly focus our attention
on the problem of nonlinear joining of uncertainty ( )t,xω  in
equation (1).

Further, for system (1) we can consider some differentiable
Lyapunov or storage function 0: ≥→ RRV n , then

( ) ( ) ( ) ( )[ ]tVLVLV 1, wuxx Gdxf ++=& ,
where 

( ) ( ) ( )dxfxxxf ,∂∂= VVL , ( ) ( ) ( )xGxxxG ∂∂= VVL .
According to Lemma 2.1 in [17], Lemma 9 in [26] or discus-
sion in section 4 (formula (10)) of paper [16], the first term of
above expression can be majorized as follows

( ) ( ) ( ) ( )dxxdxf laVL +≤, ,
where a  and l  are some continuous function, ( ) 00 =a ,
( ) 00 =l . Continuing in this line and combining with As-

sumption 1 we obtain:
( )( ) ( ) ( )( )ttl 2, wxxω σ+ρµ≤ ,

where µ  is a new unknown constant and ρ  is some new
known continuous function ( ( ) 00 =ρ ), which are dependent
on constant m  and function r  from Assumption 1 and from
functions f  and V ; σ  is some function from class K . The
definition of classes K  and ∞K   are common [23]. Hence
inequality for time derivative of V takes form:

( ) ( ) ( )( ) ( ) ( )[ ]tVLtaV 12 wuxwxx G ++σ+ρµ+≤& ,
or, finally, using Yang inequality

( ) ( ) ( )
( ) ( )( ) ,

5.0 2

tVL
VLaV

wux
xxx

G

G

δ++
++ρµ+≤& (2)

where ( ) ( ) ( )[ ]ttcolt 21 ,www =  is composed vector of exter-
nal disturbances and ( ) ( )( )25.0,max sss σ=δ .

A s s u m p t i o n  2 . There exists a differentiable Lyapunov
(storage) function ( )xV , such, that

( ) ( ) ( )xxx 21 α≤≤α V
for some functions ∞∈αα K21, , and inequality (2) holds for
all 0≠x  and any 0≥µ  with properties:
1. ( ) 0≡xGVL  ⇒ ( ) ( ) 0<ρµ+ xxa ;

2. ( ) ( ) ( ) ( ) 5.05.01 2 xxx G α≥−+ρµ+ VLa , ∞∈α K . ■

It is worth to note, that the first property of Assumption 2
supposes, that on the set where control can not affect on the
dynamic of system (1) (i.e. on set, where ( ) 0≡xGVL ) this
system is asymptotically stable for any admissible value of
µ . An example of class of systems which possess conditions
of this assumption is the following one with input functional

uncertainty:
( ) ( ) ( ) ( )[ ]tt 1, wuxωxGxfx +++=& . (3)

For system (3) property 1 of Assumption 2 takes form
( ) 0≡xGVL  ⇒ ( ) ( ) 0<= xxf aVL  for all 0≠x ,

the last fact simply means that system (3) can be asymptoti-
cally stabilised by (continuous) state feedback if functional
uncertainty ω  and external disturbance w  are missing (for
details see [24], another condition for system (3) to be as-
ymptotically stabilised by state feedback was presented in
work [6]). The second property of Assumption 2 can be satis-
fied by proper choice of function V  (see paper [23] for de-
tails). Both properties hold, for example, if function ρ  con-
tains multiplicative factor, which is dependent from ( )xGVL ,
i.e. ( ) ( )( ) ( )xxx G 21 ρρ=ρ VL  and ( ) 001 =ρ .

According to these statements, the solving problem consists
in development of adaptive controller, which provides for any
initial condition nR∈0x  and constant 0≥m :
– asymptotic stability of (1) then ( ) 0≡tw , 0≥t ;
– forward completeness of system [1] and asymptotic bound-
edness of x  for any ∞L  bounded ( )tw .

Further, the solution of these tasks will be presented.

3. Main results

For this purpose we will use the theory of input-to-state stable
systems [23, 25, 26, 27, 28]. It is worth to stress, that input-to-
state stable (ISS) system has global asymptotic stability prop-
erty for vanishing input (0-GAS) and for any essential
bounded inputs its trajectories stay asymptotically bounded
by ∞L  norm of input. The generalisation of this property is
input-to-output stability property (IOS for short), i.e. system
with some continuous output function ( )xhy =  is IOS, if it is
forward complete,  0-GAS with respect to output y  and pos-
sesses output trajectory boundedness property for ∞L
bounded inputs [22, 29, 30]. So, main characteristics of
ISS/IOS properties coincide with requirements of control
goal, which were formulated above. Hence, it is possible to
base solution of the task on ISS theory using.

3.1. Non adaptive control

At first, for the sake of simplicity, let us assume that constant
m  from Assumption 1 is known. It is required to design a
control law ensuring a input-to-state stability of a system (1)
for any function ω  that satisfies Assumption 1. It is well
known “universal” control [16, 33], which provides for any
function ρ  global asymptotic stability property of system (1)
(robust stability with specified stability margin ρ ):

( ) ( )( ) ( )TVL xxxu Gβψκ−= ,1 ,  (4)
where ( ) ( ) ( )xxx ρµ+=ψ a ,  ( ) ( )xx GVL=β ,
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For the task of global asymptotic stabilisation of system (1)
while disturbance w  is missing such controls were formu-
lated in papers [24, 33]. The extension of these results on the
problem IOS stabilisation was proposed in [5].

R e m a r k  1 . Note, that control (4) is continuous and locally
Lipschitz [24, 33], if function V  admits so-called Small
Control Property (SCP), that is

( )
( ) 0suplim

0
≤

→ x
x

G

f

x VL
VL .

Due to Assumption 2, for ( ) 0=xGVL  inequality
( ) ( ) ( ) 0<ρµ+≤ xxxf aVL  holds for all 0≠x  and any 0≥µ .

But under this condition the limit in general can stay positive
and to base continuity property of control (4) SCP should be
additionally imposed. ■

The ISS property uniformly with respect to uncertain function
ω  for system (1), (4) follows by ISS-Lyapunov function can-
didate V  analysis. Substitute in (2) control (4). According to
Assumption 2, for ( ) 0=xGVL  term ( ) ( )xx ρµ+a  is nega-
tively defined and radially unbounded. So, let ( ) 0≠xGVL
and inequality (2) takes form:

( ) ( )[ ] ( )wxx GG δ+++ρµ+−≤ 242 5.0 VLVLaV& .
The square root function is concave one, and, hence, inequal-
ity baba 5.05.0 +≥+  is satisfied, thus

( ) ( ) ( ) ( )wxx G δ+−−ρµ+−≤ 25.015.05.0 VLaV& .
Due to product ( )xρµ  is always positive semidefinite, re-
writing the last expression as follows:

( ) ( ) ( )
( ) ( ) ( ) ,5.01

5.01
2

2

VLa
VLa

G

G

xx
xx

−+ρµ+≥
≥−+ρµ+

and using property 2 of Assumption 2 finally we obtain
( ) ( )wx δ+α−≤V& ,

that is sufficient to conclude that V  is ISS-Lyapunov function
and system (1), (4) is ISS [25]. It is necessary to underline,
that control (4) depends nonlinearly and convexly from func-
tion ρ  and unknown parameter µ . Such kind of dependence
allows to construct adaptive algorithm using standard meth-
ods of the adaptive control theory [8, 9], however, obtained
algorithm of adaptation has in a denominator vanishing in the
origin function. Further, let us proceed with adaptive versions
of (4).

3.2. Adaptive and robust adaptive controls

Suppose, that constant m  from Assumption 1 is unknown
and, hence, constant µ  is unknown too, then for system (1)
control laws (4) should be modified as follows:

( ) ( )( ) ( )TVL xxxu Gβψκ−= ,1 ,  (5)

where ( ) ( ) ( )xxx ρµ+=ψ )a ; µ)  is adjusted parameter, esti-
mation of unknown constant µ . Updating algorithm for pa-
rameter µ)  is selected in the following way:

( )xργ=µ&) ,  (6)
where 0>γ  is design parameter. The main properties of de-
signed adaptive system (1), (5), (6) will be substantiated in
the following theorem, beforehand note, that control (4) en-
sure for a system (1) ISS property with respect to input w .
The adding of extra dynamic systems (6) means repeating of
this problem research in adaptive systems.

R e m a r k  2 . The right hand sides of the equations (11) and
(12), (13) vanish then 0=x . Hence, the set { }0:~ == xxA  is
invariant in extended space of adaptive system ( )µ= ),~ xx .  ■

T h e o r e m  1 . Let Assumptions 1 and 2 be true. Then sys-
tem (1), (5), (6) possesses the following properties uniformly
with respect to functional uncertainty ω  satisfied Assumption
1:
1. Forward completeness for any essentially bounded and
Lebesgue measurable disturbance w .
2. Asymptotic gain property with respect to x :

( ) ( )wx γ≤
∞+→

t
t
limsup ,

where function ( ) ( )ss δα=γ − o1  belongs to class K ,
( ){ }tt ww supess= . ■

All proofs in this paper are omitted due to economy of space
and can be found in [4].

R e m a r k  3 . If the vector x  is separated from zero, variable
µ)  can increase infinitely (more precisely if the function ρ  is
separated from zero). Therefore, the control (5) improves its
robust property. This increasing is the cost of disturbance
attenuation in adaptive system. Indeed, in classical adaptive
theory robustification of adaptation algorithms leads to static
error in the system [8] even in the case of disturbance is
missing. In this approach we recover unboundedness of µ) . ■

As mentioned in remark 3, proposed adaptive control scheme
(5), (6) does not guarantee boundedness of adjusted parameter
µ) . To compensate this shortage we need to introduce addi-
tional negative feedback in parameter updating law (6):

( ) µγ−ργ=µ )&) kx ,  (9)
where 0>k . In such a way Theorem 1 can be developed to
the following one.

T h e o r e m  2 . Let assumptions 1 and 2 be true. Then system
(1),(5),(9) is ISS with respect to extended input ( )( )µ,tw . ■

In proposed theorem the standard way of robustification  was
used [8, 9]. As pointed out in remark 3, in such systems there
is a static error provided by constant µ  (even then external
disturbance is vanishing). Algorithm (6) has not this shortage,



but algorithm (9) provides boundedness of all variables x
and µ)  for any ∞L  bounded disturbance w . It seems inter-
esting to develop a modification of proposed adaptive
schemes, which possesses the absence of static error property
like in system (5), (6) and boundedness of variables x  and µ)

like in system (5), (9). An intuitive way to solve this problem
consists in developing a switching scheme, that combine ad-
vances of both approaches described above. One solution,
obtained in this field, will be presented below.

3.3. Switching adaptive control

In Theorem 1 it was established, that there exists a moment of
time 0≥T , after which ( ) µ≥µ t)  and algorithm of adaptation
(6) can be switched off. Indeed, subsequent adaptation like
(6) would increase value of ( )tµ)  without any needs for task
of system (1) stabilisation, because inequality (8) would be
already satisfied (that according to [25] is enough to state ISS
property of system (1), (5)). Such algorithm of adaptation can
be formalised as follows:

( )xiF=µ&) , 2,1=i ; ( ) ( )xx ργ=1F , 0>γ ; ( ) 02 =xF . (10)
Control system with adaptation algorithm (10) becomes a
switching one, where signal ( ) { }2,1∈ti  describe a current
dynamic of variable ( )tµ) . While ( ) 1=ti  dynamic of system
(1), (5), (10) possesses properties, which were established in
Theorem 1: forward completeness, global asymptotic stability
of variable x  for vanishing disturbance w . For ( ) 2=ti  this
system becomes equivalent to non adaptive system (1), (5)
with some frozen value of variable ( )tµ) . If it happens, that
( ) 2=ti  but still ( ) µ<µ t) , then the behaviour of the system is

unknown and should be investigated. In the case, then
( ) 2=ti  and ( ) µ≥µ t) , as was discussed earlier, inequality (8)

would be true and, like in non adaptive case, system receives
ISS property. Hence properties of switching adaptive system
in a complicated manner depend on system, that will assign
value of signal ( )ti . Such system in theory of logic-based
control systems is called a supervisor [2, 12, 18, 19].

So, as it follows from previous discussion, supervision system
should detect situation then ( )tµ)  becomes bigger than un-
known constant µ  to switch signal ( )ti  into second position
and prevent further increasing of ( )tµ) . While ( ) µ≥µ t)  ine-
quality (8) is satisfied, and, hence, inequality

( ) ( )( ) maxDttV +α−≤ x& (11)
is also holding, where ( )maxmax WD δ=  and maxW  is an upper
bound of external disturbance w  and ( ) maxWt ≤w  for al-
most all 0≥t , such constant maxW  possibly unknown always
exists according to suppositions posed on signal ( )tw . Thus,
inequality (11) can help us to design a supervisor. Of course
inequality (11) does not mean inequality (8) satisfying, but by
itself inequality (11) is enough to prove boundedness of state
vector x . Before we proceed with algorithm of supervisor

system it is necessary to note, that in switching systems under
acting of disturbances a strange behaviour can arise, which is
called chattering regime. Such chattering regime originates
from fast switching that can take place in the system due to
disturbance presence. Classical definition of differential
equations solution does not suit well for dynamic system in
chattering regime [7, 31], hence, some special methods are
used in logic-based switching control theory to prevent such
regime arising. In this work we will use so-called dwell time
technique [18], which is traditionally used only in linear
switching control systems due to finite time escape phenom-
ena in nonlinear systems. Here to avoid this obstacles in non-
linear systems we will prove forward completeness property
of whole system under some mild conditions. So, supervision
algorithm can be described as follows:

( )
( )

( ) ( )( )
( ) ( )( )

( ) ,0,1

;if
;if,2
;if,1

;if

max

max

=τ=τ






τ≥τ




+α−≤
+α−>

τ<τ
=

k

D

Dk

t
DttV
DttV

ti
ti

&

&

&

x
x (12)

where auxiliary variable τ  represents internal supervisor
timer dynamic, 0>τD  is dwell time constant and kt ,

...,2,1,0=k  are moments of switching (moments then signal
( )ti  changes its value), k  is number of current switching.

The operating of algorithm (12) can be explaining in the fol-
lowing way: after each switching internal timer τ  is initial-
ised to zero, while Dτ<τ  signal ( )ti  does not change its
value. Dwell time presence in algorithm (12) help us to pre-
vent fast switching arising in the system (1), (5), (10), (12).
After dwell time signal ( )ti  can be set up to 1, if  inequality
(11) does not satisfy and, consequently, variable x  is not
bounded; signal ( )ti  would be set up to 2, if variable x  is
bounded. To state properties of adaptive switching system we
need another one assumption.

A s s u m p t i o n  3 . There exists a constant 0≥X , such, that
( ) ( ) ( )xxx V≤α−ρ

for all X≥x  and constant maxW  is given. ■

The knowledge of constant maxW  is supposed in algorithm
(12). The inequality introduced in Assumption 3 will be used
further to prove forward completeness property of the system.
Precise investigation of proposed switched system properties
is summarised in the following Theorem.

T h e o r e m  3 . Let assumptions 1, 2 and 3 are true. Then
system (1), (5), (10), (12) has
a) asymptotically bounded solution ( )µ= ),~ xx : there exists

01 >T , such, that
( ) Θ∈tx , ( ){ }max

1: D−α≤=Θ xx , ( ) constt =µ) , 1Tt ≥ ;
b) if, additionally, for each fixed µ<µ)  system (1), (5) pos-
sesses unbounded solution, i.e. for each 0>ε  there exists an

0>εT , such, that ( ) ε>tx  for ε>Tt , then asymptotic gain
property with respect to variable ( )tx  holds for the system :



( ) ( )wx γ≤
∞+→

t
t
limsup , K∈γ . ■

The closely connected approach was used for stabilisation of
uncertain nonlinear discrete time system in paper [2]. In that
work a kind of inequality (11) was used for cyclic switching
among of controller candidates.

R e m a r k  4 . Here Assumption 3 was used only to prove
forward completeness property of  system (1), (5) with fixed
µ) , then value µ<µ) . So in practise, any other conditions can
be applied to base this necessary property.               ■

In this section four variants of solution of proposed problem
were presented: non adaptive, adaptive, robust adaptive and
switching adaptive. Further we will consider some important
task, which can be solvable by approach proposed here.

4. Applications

4.1 System with input uncertainty

Let us analyse system (3), that is a special case of system (1)
with functional uncertainty linearly introduced on input of the
system. Consequently, all schemes presented in the third sec-
tion can be applied for system (3).

A classical task, that is considered in theory of adaptive con-
trol, is adaptive stabilisation of linearly parameterised nonlin-
ear system:

( ) ( ) ( )( )wuθxxGxfx ++ω+= t,& ,
where ( )t,xw  is known regression function and dR∈θ  is
vector of unknown parameters. Usually suppose, that values
of vector θ  belong to some compact set θΩ  of admissible
values. Here we can drop this assumption, it is easy to see,
that such task can be reformulated to solved in this paper one
if  we introduce a new parameterisation ( ) ( )xθx rmt ≤ω , ,
which always exists. In classical adaptive control theory [8, 9,
15] a compensation control law is usually used:

( ) ( )xkθxu +ω−=
)

t, ,
where ( )xk  provides input-to-state stabilisation of nominal
system without unknown parameters θ  for any disturbances
w ; vector θ

)
 is an estimate of vector θ . If it happens, that in

asymptotic ( ) θθ →t
)

, then such control annihilates any influ-
ence of unknown parameters θ . Unfortunately, presence of
disturbances w  leads to additional parametric feedbacks in
adaptation algorithm for θ

)
, which ensure additional static

error for adaptive system without disturbances, as mentioned
above in Remark 3.

In this paper another approach is used, where adjusted pa-
rameters m)  or µ)  determine robust stabilisation property of
control algorithm (5). Consequently, increasing of values of
these parameters during their adjusting leads to improving
robust properties of control (5). In this way this control com-

pensate not only exact uncertain function ( )θx t,ω  like in
classical approach, but some class of uncertainties, which can
be upper bounded by ( )xrm . This advance help us to obtain
some new properties for adaptive system, like it was stated in
Theorem 1, and unify solving of several different  tasks in one
framework.

4.2. Nonlinear parameterisation

In previous paragraph a task of adaptive stabilisation of line-
arly parameterised by vector of unknown parameters θ  sys-
tem was considered. In fact, nonlinear fashion of system (1)
equation dependence on function ω  allows to solve an adap-
tive stabilisation task for systems with nonlinear parameter-
isation. The main idea, that helps to handle nonlinear appear-
ance of vector of unknown parameters θ  in plant equations,
is linear reparameterisation of initial equation, or more pre-
cisely, linear reparameterisation of  time derivative of storage
function V , as was done above in this paper. The same ap-
proach was used, for example, in paper [17] for more par-
ticular class of plant equation (1) and without disturbance w
presence.

Let system equation takes form:
( ) ( ) ( )[ ]twuxGθxfx ++= ,& ,

where jR∈θ  is some vector of unknown parameters. There is
some differentiable storage function 0: ≥→ RRV n , such, that

( ) ( ) ( )xxx 21 α≤≤α V , ∞∈αα K21,  and

( ) ( ) ( ) ( )xxxθxf ρµ+≤aVL , ,
where constant µ  is a function of θ , and all conditions of
Assumption 2 is also valid. Thus, all conditions are satisfied
to use proposed in this paper robust adaptive technique to
stabilise nonlinear parameterised system. It is worth to note,
that there is no assumption about compactness property of set
of admissible values of θ .

5. Conclusion

In the paper adaptive, robust adaptive and switching adaptive
controls are synthesised, which ensure asymptotic stability of
equilibrium 0=x  for the indicated class of nonlinear plants in
the presence of functional uncertainties and provide asymp-
totic boundedness of state x  variable for additional distur-
bance signal. The proposed adaptive control law (5) allows to
adaptive stabilise systems, which are satisfied Assumptions 1
and 2 without any additional restrictions. Opposite to classical
adaptive stabilisation technique, in this paper adjusting of
parameters during adaptation increases robust ability of con-
trol (5), while in classical adaptive theory such controls are
simply tuned on some special class of uncertainties exact
compensation.
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