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Abstract

An switching adaptive control scheme is presented, which
provides global asymptotic stability property with respect to
state space vector of the plant. In the presence of disturbance
these schemes ensure boundedness of all trajectories of the
system.

1. Introduction

This work is devoted to problem of adaptive state feedback
stabilisation of affine linearly parameterised system with ex-
ternal disturbances in control channel. Such problem is very
popular during last years [5, 6, 9, 14], but, unfortunately, the
comprehensive solution is not obtained yet. To take a brief
survey into this problem let us consider a task of adaptive
stabilisation of the following linear first order system:

duxxx ++θ+−=& , (1)
where Rx∈  is state variable; Ru∈  is control; Rd∈  is ex-
ternal disturbance and R∈Ω∈θ θ  is unknown parameter,
which belongs to some known compact set, such, that for all

θΩ∈θ  inequality maxθ≤θ  holds for some known positive
constant maxθ . It is well known classical solution of task of
adaptive stabilisation of (1) for case of disturbance absence
[3, 5, 7, 14]:

xu θ−=
)

, 2xγ=θ&
)

, (2)

where R∈θ
)

 is an estimate of θ . Such solution provides sta-
bility of overall system and asymptotic stability with respect
to variable x . But for case of disturbance d  presence such
scheme loses overall stability property, and, in general finite
time escape phenomena can appear for such adaptive systems
[17]. To avoid divergence of variable θ

)
 adaptation algorithm

(2) can be replaced by [5, 8]
θγ−γ=θ
)&) kx2 , (3)

where coefficient 0>k  introduce additional parametric feed-
back, which prevents unbounded increasing of variable θ

)
.

But for unstable systems such solution leads to undesirable
response [16] and, additionally, for case of disturbances ab-
sence there is an static error in adaptive system [5]. To solve

this problem one can use a function of x  instead of coeffi-
cient k  in (3) like it was done in [13]:

( ) θγ−γ=θ
)&) xkx2 ,

but such innovation cause in general case a new equilibrium
in the system. Another way is dead-zone modification [15,
18] of (2):





∆<
∆≥γ

=θ ,,0
;,2

x
xx&)

where ∆  is some positive constant, which value depends on
disturbance amplitude. Such modification guarantees bound-
edness of all signal in the system and static error presence for
case of disturbance absence. In work [19] more complex
adaptive controller was used instead of (2), where addition-
ally upper bound of disturbance is estimated:

( )xxu signα+θ−= ))
;

2xγ=θ&
)

;
x23αγ=α )&) ,

where α)  is estimate of amplitude of disturbance d . There
are several nonlinear adaptive stabilisation algorithms which
possess robust stability property with respect to disturbance
[2, 9, 10, 20].

In this work another one approach will be utilised, which con-
sists in on-line switching between two adaptation algorithms
(2) and (3). First of them provides asymptotic stability prop-
erty for the plant for case of disturbance absence, while the
second one ensures boundedness of all variables of the adap-
tive system for any bounded disturbances. Such switching
will be performed basing only on state of the plant measure-
ments with supposition, that upper bound maxθ  for set θΩ  of
admissible values of unknown parameters is known. At sec-
ond section all definitions will be presented, in third section
main results will be proved, conclusion finishes the paper.

2. Definitions and statements

Let us consider nonlinear dynamic system
( ) ( ) ( ) ( )[ ]tt duθxωxGxfx +++= ,& ,  (4)

where nR∈x  is state vector, mR∈u  is control; ( )xf  and the
columns of ( )xG  are continuous and locally Lipschitz vector
fields on nR , ( ) 00 =f ; ( )t,xω  is known regressor matrix



function; rR∈Ω∈ θθ  is vector of unknown parameters, which
values belong to some known compact set, such, that for all

θθ Ω∈  inequality maxθ≤θ  holds for some known positive
constant maxθ ; pRR →≥0:d  is external disturbance, that is
Lebesgue measurable and essentially bounded function of
time, it means that

( ){ } ∞+<≥= 0,sup ttess dd .
Let us introduce main restrictions on properties of system (4).

A s s u m p t i o n  1 . There exists a function K∈ρ , such, that
( ) ( )xxω ρ≤t,

for all nR∈x  and all 0≥t . ■

This supposition rather common and does not mean bounded-
ness of regressor function ω  with respect to variable x . It is
said, that function 00: ≥≥ →ρ RR  belongs to class K , if it is
strictly increasing and ( ) 00 =ρ ; ∞∈ρ K  if K∈ρ  and
( ) ∞→ρ s  for ∞→s  (radially unbounded). Function

000: ≥≥≥ →×β RRR  is from class LK , if it belongs to class K
on the first argument (for any fixed second) and strictly de-
creases to zero on the second (for any fixed first argument).

A s s u m p t i o n  2 . There exists a differentiable Lyapunov
function ( )xV , such, that

( ) ( ) ( )xxx 21 α≤≤α V
for some functions ∞∈αα K21, , and the following inequality
holds for all nR∈x

( ) ( )xxf α−≤VL , ∞∈α K . ■

Expression ( )xfVL  denotes scalar Lie derivative of function
V  with respect to vector field f , term ( )xGVL  further will
be stated for covector:

( ) ( ) ( )xfx
xxf ∂

∂= VVL , ( ) ( ) ( )xGx
xxG ∂

∂= VVL .

According to Assumption 2 system (4) is globally asymptoti-
cally stable for control 0=u  with known Lyapunov function
V  for case of disturbances and parametric uncertainty ab-
sence. It is clear, that such property is not sufficient in general
to guarantee boundedness of state for any bounded distur-
bances even in situation, then 0=θ .

In next section forward completeness property and input-to-
state stability (ISS) property will be used to investigate be-
haviour of system (4), definitions of these properties and their
necessary and sufficient conditions can be found in [1, 21, 22,
23].

3. Main results

For system (4) it is possible to use the following control law:
( ) ( )θxωxu G

)
tVL T ,5.0 −−= , (5)

where rR∈θ
)

 is an estimate of unknown vector θ . If θθ=
)

,

then control (5) provides for system (4) ISS property. Indeed,
substituting (5) in equation (4) with assumption, that θθ=

)
,

let us consider time derivative of function V  for obtained
system:

( ) ( ) ( )[ ]
( ) ( ) ( ) .5.0

5.0
2 dxxx

dxxx
GG

GG

VLVL
VLVLV T

+−α−≤
≤+−+α−≤&

Using the following simple inequality
  ( ) ( ) 22 5.05.0 dxdx GG +≤ VLVL ,

it is possible to receive:
( ) 25.0 dx +α−≤V& ,

that according to [23] is equivalent to ISS property. Hence,
for case θθ=

)
, system (4), (5) possesses asymptotic stability

property for vanishing disturbance d  and boundedness of
state vector x  for any essentially bounded d .

It is necessary to design an adaptation algorithm for adjusting
vector θ

)
, such, that for any initial conditions ( ) nR∈0x ,

( ) rR∈0θ
)

:
a) solution ( ) ( )( )tt θx

)
,  is bounded for any essentially

bounded disturbance d ;
b) if ( ) 0≡td  for all 0≥t , then ( )tx  should asymptotically
converges to zero.

The solution of this problem will be based on two adaptation
algorithms construction, which will solve different tasks for
situations of disturbance d  presence or absence (the conver-
sation is about analogues of algorithms (2) and (3) for system
(4)). And after that, a switching algorithm among them will
be developed, which under some mild conditions solves
posed problem.

First algorithm is a kind of adaptation algorithm (2) for sys-
tem (4) [5, 6, 14]:

( ) ( )TT VLt xxωθ G,γ=&
)

, (6)
where γ  is a positive design parameter. Main properties of
adaptive system with such adaptation algorithm are summa-
rized in the following Lemma [6].

L e m m a  1 . Suppose that for system (4) Assumption 1 and 2
are satisfied. Then system (4), (5), (6) admits properties:
1. Forward completeness for any essentially bounded signal
( )td ;

2. Lyapunov stability of ( ) ( )( )tt θx
)

,  and asymptotic attrac-
tiveness of ( )tx  for ( ) 0≡td , 0≥t .
P r o o f . Let us consider the following Lyapunov function
candidate:

( ) ( ) ( ) ( )θθθθxθx
)))

−−γ+= − TVU 15.0, . (7)
Its time derivative for the system takes form:

( ) 25.0 dx +α−≤U& .
The last inequality ca be rewritten as

25.0 d+≤UU& ,



that due to properties of function U  and work [1] means for-
ward completeness property. For case of disturbance d  ab-
sence claim of Lemma immediately follows from classical
Lyapunov function theory and LaSalle invariance principle. ■

Thus, algorithm (6) provides for the system asymptotic sta-
bility property with respect to variable x  for case of distur-
bance d  absence, but for any bounded signal d  only forward
completeness was proved, opposite to stated in control goals
boundedness of solution ( ) ( )( )tt θx

)
, . Such boundedness can

be ensured using an analogue of algorithm (3) for system (4)
[5, 6, 14]:

( ) ( ) θxxωθ G
)&) kVLt TT γ−γ= , , 0>k . (8)

Here coefficient k  introduce in (6) additional negative feed-
back, which prevents infinite increasing of variable θ

)
 for any

bounded disturbance. Basic properties of such adaptive sys-
tem are presented in the following Lemma [6].

L e m m a  2 . Suppose that for system (4) Assumption 1 and 2
are satisfied. Then system (4), (5), (8) is ISS with respect to
extended input ( )θd, .
P r o o f . Time derivative of function (7) takes form for sys-
tem (4), (5), (8):

( ) ( ) ( )
.5.05.0

5.0
22 dθ

θθθθx
++

+−−−α−≤
k

kU T ))
&

(9)

That according to properties of function U  and [23] implies
ISS property for state ( )θθx

)
−,  and input ( )θd, . ■

Thus, adaptation algorithm (8) provides for the system solu-
tion ( ) ( )( )tt θx

)
,  necessary boundedness property. But from

definition of ISS property follows, that for vanishing input d
in common case a static error can appear, which is propor-
tional to θk .

Therefore, making switching to algorithm (6) in the case of
disturbance absence and to algorithm (8) if disturbance d  is
detected, it is possible to solve proposed adaptive control
problem. But, unfortunately, only state of the plant x  is on-
line measured for control purposes. Hence, a supervisor sys-
tem (i.e. system which will orchestrate of switching among
algorithms (6) and (8)) should detect a presence of external
disturbances basing only on vector x  measurements.

A way to solve this rather non trivial problem is based on
inequality (9) utilising. The main result, that will help us to
detect disturbance presence from this inequality, is formulat-
ing below.

P r o p o s i t i o n  1 . Suppose that for system (4) Assumption
1 and 2 are satisfied. Then in system (4), (5), (8) for any ini-
tial condition ( ) nR∈0x , ( ) rR∈0θ

)
, ( ) ( ) κ≤− 0,0 θθx

)
 and

for any 0>ε  there exists a ( ) 0, >κε=TT , such, that the fol-
lowing inequality is satisfied:

( ) ( ) ( ) ε++θλ≤− dθθx max, tt
)

,

for all Tt ≥  and function λ  from class ∞K .
P r o o f . Inequality (9) can be rewritten as follows:

( )( )
( ) ( )( ),5.0

5.05.0
1

2

22
1

θθθθ
dθx

))
&

−−γσ−

−++σ−≤
− T

kVU

where functions ( ) ( )ss 1
21
−αα=σ o  and ( ) sks 1

2
−γ=σ  are

taken from class ∞K . Introducing new function
( ) ( ) ( ){ }sss s 5.0,5.0min 21 σσ=σ , one can receive:

( ) 22
max 5.05.0 d+θ+σ−≤ kUU& ,

hence, for all ( )22
max

1 5.05.0 d+θσ≥ − kU  inequality 0≤U&  is
true. Thus, for any 0≥ε , there exists a 0>T , such, that
( ) ( ) ε++θσ≤ − 22

max
1 5.05.0 dktU  for all Tt ≥ . But the last

fact means, that statement of the Proposition is true for
( ) ( )( )( )211 12 sks +σδ=λ −− ,
( ) ( ){ }21

1 2,2min sss s
−γα=δ . ■

Note, that result of Proposition 1 is a corollary of uniform
asymptotic gain property, which is equivalent to ISS property
[23]. By the way, if disturbance d  is absent, then according
to Proposition 1 in system (4), (5), (8) plant state trajectory
( )tx  and ( )tθ

)
 enters a neighborhood of the origin

( ) ( ){ }maxmax,:, θλ+θ≤Θ∈=Ξ θxθx
))

 in finite time. The
bounds of this neighborhood depend on value of  constant

maxθ , which determines admissible values for unknown pa-
rameters θ . Of course, the converse in general fails: if in
system (4), (5), (8) a trajectory  reaches set Ξ , then it does
not mean, that disturbance d  is zero. This is the main obsta-
cle, that should be handled during further design.

R e m a r k  1 . Let us show a way to calculate function
( )κε,T , which was used in Proposition 1. This consideration

is based on comparison principle [21]. Note, that the last ine-
quality from proof of Proposition 1 can be rewritten as fol-
lows

( ) ( )dθθx +θλ≥− max,
)

 ⇒ ( )UU σ−≤ 5.0&

Define for any 0≥s  strictly decreasing differential function

( ) ( )∫ σ−=η
s

r
drs

1

2 ,

with assumption ( ) ∞+=η+→ ss 0lim  (in [21] was discussed,
that such assumption can be imposed without loosing gener-
ality). Then for ( ) 00, ≥≥ ×∈ RRrs , define

( ) ( )( )



>+ηη
==β .0if,

;0if,0, 1- sts
srs

In [21] was proved, that LK∈β  and for any initial condition
( ) nRt ∈0x , ( ) rRt ∈0θ

)
 solution of system (4), (5), (8) admits

the following inequality:
( ) ( )( ) ( )22

max
1

00 , d+θσ+−β≤ − ktttUtU ,
introducing function ( ) ( )( )rsrs ,2, 1

1 βδ=β −   we obtain



( ) ( )( ) ( ) ( )( )( )
( ).

,,,
max

0001

d
θθxθθx

+θλ+
+−−β≤− tttttt

))

(10)

Hence for given 0>ε  and ( ) ( )( )max0,0 θ+=κ tθx
)

 it is pos-
sible to solve equality

( )( ) ε=−κεκβ 0,, tT ,
to obtain desired function ( )κε,T . ■

Before we proceed with algorithm of supervisor it is worth to
note, that in switching systems under acting of disturbances a
strange behaviour can appear, which is called chattering re-
gime. Such chattering regime originates from fast switching
that can take place in the system due to disturbance presence.
Classical definition of differential equations solution does not
suit well for dynamic system in chattering regime, hence,
some special methods are used in logic-based switching con-
trol theory to prevent such regime arising. In this work so-
called dwell time technique will be used [11, 12], which is
traditionally conformed to linear switching control systems
only due to finite time escape phenomena in nonlinear sys-
tems. Here to avoid this obstacles in nonlinear systems we
will prove forward completeness property of whole system, as
it was done in [2].

For system (4), (5) we will use the following switching adap-
tive algorithm:

( )θxFθ
)&) ,iγ= , 2,1=i ; (11)

( ) ( ) ( )TT VLt xxωθxF G,,1 =
)

,

( ) ( ) ( ) θxxωθxF G
))

kVLt TT −= ,,2 ,
where 0>γ  and 0>k  as above are design parameters, vari-
able i  determines current right hand side of adaptation algo-
rithm (11). As it follows from (11), for 1=i  algorithm (11)
transforms to (6), and for 2=i  this algorithm switches to (8).
So, supervision algorithm can be described as follows:

( )
( )

( ) ( )( )
( ) ( )( )

( ) ,0,1

;if
;,if,2
;,if,1

;if

=τ=τ






τ≥τ




Ξ∉
Ξ∈

τ<τ
=

k

D

Dk

t
tt
tt

ti
ti

&

)

)

θx
θx (12)

where auxiliary variable τ  represents internal supervisor
timer dynamic, 0>τD  is dwell time constant and kt ,

...,2,1,0=k  are moments of switching (moments then signal
( )ti  changes its value), k  is number of current switching.

The operating of algorithm (12) can be explaining in the fol-
lowing way: internal timer τ  is initialised to zero after each
switching, while Dτ<τ  signal ( )ti  does not change its value.
Dwell time presence in algorithm (12) help us to prevent fast
switching arising in the system (4), (5), (11), (12). After dwell
time signal ( )ti  can be set up to 1, if ( ) ( )maxθλ≤tx ,

( )maxmax θλ+θ≤θ
)

 and disturbance d  absence it is sup-

posed; signal ( )ti  will be set up to 2, if disturbance is de-
tecting from condition ( ) ( )maxθλ>tx  or

( )maxmax θλ+θ>θ
)

. The whole system properties are stated
in the following Theorem.

T h e o r e m  1 . Suppose that for system (4) Assumption 1
and 2 are satisfied. Then system (4), (5), (11), (12) admits
properties:
1. Global boundedness of solution ( ) ( ) ( )( )ttt θxx

)
,~ =   for any

essentially bounded signal ( )td :

( ) ( )( ) ( ) ( )dθθx +θλ+β≤− maxmax1 0,, Utt
)

,

( ) ( )( )( )
( )( )

DeU τ
− 








+θλ+θγ+

+θλα
= 2

maxmax
1

max2
max 5.0

0,max
d

x
;

2. Global asymptotic attractiveness of ( )tx  for ( ) 0≡td ,
0≥t .

P r o o f . Let us at first investigate continuity property of sys-
tem (4), (5), (11), (12) solution ( )tx~ . Note, that according to
Lemmas 1 – 2, system is forward complete for 1=i  and ISS
for 2=i , thus, it is possible to conclude, that for each value
of signal ( ) { }2,1∈ti  solution of the system x~  is defined as
long, as we need. Additionally, at each switching time kt ,

...,2,1=k  functions iF , 2,1=i  have finite values, presence of
dwell time in algorithm (12) bounds number of switching

[ ]BtAtN ,  on any time interval [ ]BA tt ,  in the following obvious
way:

[ ] 1, +
τ
−

≤
D

AB
BtAt

ttN .

Consequently, function ( ) ( ) ( )xFxF ~~ ∈ti , where F  is some
differential inclusion with convex compact and non empty
values for each rnR +∈x~ , which is upper semicontinuous for
all rnR +∈x~ . Then according to [4, 24] for each ( ) rnR +∈0~x
system (4), (5), (11), (12) has a maximal solution ( )tx~ ,
which is absolutely continuous function of time and defined
at least locally on interval [ )x~,0 T . But according to Lemmas
1 – 2, this solution is defined for all 0≥t . Now we are ready
to base boundedness property, stated at first point of the
Theorem.

Suppose, that there exists some 01 >T , such, that ( ) constti =
for all 1Tt ≥ . Then ( )tx~  is bounded, indeed, if ( ) 1=ti , then
by construction ( ) Ξ∈tx~  for all 1Tt ≥ ; in opposite case, if
( ) 2=ti , then according to Lemma 2 system admits ISS prop-

erty and solution ( )tx~  possesses inequality (10). Thus, if
such time 1T  exists, then first point of the Theorem is proven.
Hence, further we assume, that there is no such time 1T  and
in this situation an infinite sequence of time intervals is ap-
peared [ ){ }...,2,1,0,, 1 == + ktt kkT , where kt  are moments of
algorithm (12) switching and 00 =t . Without loosing gener-
ality we can suppose, that for all odd values of index k  on
time intervals [ )1, +kk tt  value of ( )ti  equals to 1, for all even
values of index k  it equals to 2. Let us consider time inter-



vals, where ( ) 1=ti . At beginning of these time intervals the
following inequality is satisfied:

( ) ( ) ( )( )0,max max xx θλ≤kt ,

( ) ( )maxmax θλ+θ≤ktθ
)

, (13)

here it is assumed, that ( ) max0 θ≤θ
)

. Starting from this initial

conditions set a trajectory ( )tx~  can leave set Ξ . Note, that
by construction of algorithm (12) the maximum time before
switching in the second position, while ( ) Ξ∉tx~ , is limited by
constant Dτ . As it follows from Lemma 1, system is forward
complete at this time interval and inequality

25.0 d+≤UU&

holds. It is a linear differential inequality, which solution pos-
sesses an estimate:

( ) ( )[ ] ktt
k etUtU −+≤ 25.0 d .

From (13) ( ) ( )( ) ( )( )maxmax
1

2 θλ+θγ+α≤ −
kk ttU x , then for

all [ )1, +∈ kk ttt  and for each odd values of index k function
( )tU  admits inequality:

( )
( ) ( )( )( )

( )( )
DetU τ

− 







+θλ+θγ+

+θλα
≤ 2

maxmax
1

max2

5.0
0,max

d
x

. (14)

Inequality (14) should be understood taking in mind, that
length of time interval [ )1, +kk tt  can be bigger than Dτ , but
length of time, during that trajectory ( )tx~  leaves set Ξ , can
not exceed constant Dτ . Hence, on time intervals with
( ) 1=ti  solution of system (4), (5), (11), (12) is bounded.

Further, let us consider time intervals with even values of
index k , where ( ) 2=ti . Rewrite inequality (10) for function
U  like it was done in Remark 1,

( ) ( )( ) ( )
( )( ) ( ).0,

,
22

max
1

22
max

1

d
d

+θσ+β≤
≤+θσ+−β≤

−

−

ktU
ktttUtU

k

kk

It is possible to conclude, that on each time intervals with
( ) 2=ti  solution of system (4), (5), (11), (12) is bounded.

Substituting (14) in the last inequality we can receive stated in
Theorem upper estimate for ( )tx~ .

Let us substantiate second point of the Theorem. From Propo-
sition 1 follows, that if ( ) 0≡td  for all 0≥t , then for case
( ) 2=ti  there exists a 0≥T , such, that ( ) Ξ∈tx~ , Tt ≥  and

algorithm (12) should switch at this time to first position, then
also according to proof of Proposition 1 inequality

( ) ( )2
max

1 θσ≤ − ktU
should be satisfied for Tt ≥ . Expected value of time T  can
be calculated using result of Remark 1. It is easy to see, that
( ) Ξ∈tx~  for all 0≥t  for case ( ) 1=ti  with absent distur-

bances. Indeed, from Lemma 1 in this situation the following
inequality holds:

( )xα−≤U& ,
hence, value of function ( )tU  does not increase:

( ) ( )ktUtU ≤ , ktt ≥ ,

where kt  is a time to last switching of signal ( )ti  in first po-
sition, but by continuity due to previous discussion
( ) ( )2

max
1 θσ≤ − ktU k . It means that

( ) ( ) ( )max, θλ≤− tt θθx
)

for all ktt ≥  and condition ( ) Ξ∈tx~  holds for all such time. ■

It is worth to stress that upper bound estimate for solution of
switching adaptive system (4), (5), (11), (12) is bigger than
for ISS system (4), (5), (8) presented in expression (10):

( ) ( )( ) ( ) ( )( )( ) ( )dθθxθθx +θλ+−β≤− max001 0,,, tttt
))

.
But it is a price for global attractiveness property of variable
( )tx  for case disturbance d  missing. Augmenting value of

design parameter γ  and decreasing value of another design
parameter Dτ  it is possible to bring near both estimate for
robust adaptive and switching adaptive systems. Another con-
stant, which influences on value of upper bound estimate of
switching adaptive system solution is gain k , that small val-
ues are preferable.

R e m a r k  2 . Algorithm (12) has one disadvantage, which
deals with continuous decision making for Dτ≥τ . In other
words, for Dτ≥τ  algorithm (12) should immediately switch
signal ( )ti  in another position at precisely that moment of
time, where corresponded condition for switching is satisfied
( ( ) ( )( ) Ξ∈tt θx

)
,  or ( ) ( )( ) Ξ∉tt θx

)
, ). But on practice, to make

such decision a some time delay is necessary. This fact is
connected with realization of algorithm (12), typically it is a
kind of computer system, which is functioning with some
sample time 0>τC , that is spent on measurements, calculat-
ing of switching condition and so on. Thus, algorithm (12) in
such situation should be rewritten as follows:

( )
( )

( ) ( )( )
( ) ( )( )

( ) ...,2,1,0,0,1

;if
;,if,2
;,if,1

;,if

==τ=τ






τ+τ=τ




Ξ∉
Ξ∈

τ+τ≠ττ<τ
=

zt

z
tt
tt

zti
ti

k

CD

CDDk

&

)

)

θx
θx (15)

In supervision algorithm (15) signal ( )ti  can change its value
only in specified time moments, where internal time

CD zτ+τ=τ , ...,2,1,0=z  All other time before switchings
value of signal ( )ti  can not be changed. It is clear, that for
small values of constant Cτ  applicability conditions of algo-
rithms (12) and (15) are the same. If one would use algorithm
(15) to prove result like was stated in Theorem 1, then minor
modifications are needed. ■

4. Conclusion

An switched adaptive algorithm is proposed, which can pro-
vide boundedness of system solution with global attractive-
ness property for plant state. Construction of switched algo-
rithm additionally needs only knowledge about constant maxθ ,
that defines upper bound of set of admissible values for vector
of unknown parameters θ . Detection of disturbance d  pres-



ence in the system is performed basing on on-line measure-
ments of plant state x . Though on complex formulas for su-
pervision algorithm (12) or (15), practical implementation of
obtained solution does not meet significant difficulties, as it
was shown during computer simulation phase.
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