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Abstract

In this paper, a new adaptive PID-type iterative learning con-
troller (ILC) is proposed for a class of repeatable nonlinear
systems with unknown nonlinearities. The initial state errors
are allowed to be nonzero and varying for each iteration. The
main structure of the adaptive PID-type ILC is constructed
based on a time-varying boundary layer which is designed to
overcome the problem of initial state errors and further elim-
inate the possible undesirable chattering behavior. Although
the optimal gains of PID-type ILC for a best approximation are
generally unknown, adaptive algorithms with projection mech-
anisms are derived between successive iterations to ensure the
stability and convergence of the learning system. It is shown
that all the adjustable parameters and the internal signals re-
main bounded for all iterations, and the norm of tracking error
vector at each time instant will asymptotically converge to a
tunable residual set.

1 Introduction

As is widely known, iterative learning control (ILC) has be-
come one of the most effective control strategies for nonlin-
ear dynamic system in dealing with repeated tracking control
or periodic disturbance rejection. The ILC system improves
the control performances by some simple self-tuning processes
without using accurate system models and can be applied to
some practical applications such as robotics, servo motors, etc.
In most studies for traditional D-type or P-type ILC algo-
rithms [1]–[8], the control input is directly updated by a learn-
ing mechanism using the information of error and input in the
previous iteration. It is necessary to assume that the nonlin-
earities of nonlinear plants satisfying global Lipschitz continu-
ous condition. Recently, the ILC algorithm which tunes con-
trol parameters between successive iterations have been widely
studied [9]–[13]. In general, this type of ILC is referred as an
adaptive iterative learning controller (AILC). One of the most
interesting features of AILC schemes is that the requirement
of Lipschitz continuous condition could be relaxed.

The robustness of the ILC system against initial state error
is also an important issue in practical environment. Although
the related works [2]–[4] showed that tracking error will be
bounded in the presence of bounded initial state error and the

size of tracking error after learning will be small if the magni-
tude of initial state error is small. There was no information
on how to adjust the size of the bounds. In [6], the tracking
error can be estimated in terms of the initial state error and
the parameters of PD-type ILC algorithm. Later, a PID-type
ILC algorithm [7] and an operator algorithm were further stud-
ied in [8], respectively. However, the PID-type ILC in [7] only
deals with a class of nonlinear systems with fixed initial state
errors. For iterative learning control of nonlinear systems with
variable initial state errors, it is still a challenge for traditional
D-type, P-type, PD-type and PID-type ILCs. Unfortunately,
the problem of initial state errors seems more difficult in the
design of AILC since they are assumed to be zero in all the
related AILC works [9]–[14].

In this paper, an adaptive PID-type ILC for a class of non-
linear systems with unknown plant nonlinearities, and without
the requirement of Lipschitz continuous condition is proposed.
It is assumed that the system will probably exist the initial
state errors, which may be varying and large. A concept of
time-varying boundary layer, i.e., the width of the boundary
layer is decreased along the time axis, is used to design the PID-
type ILC. Motivated by [15], the PID-type controller is used as
an approximator for an optimal controller. Since the optimal
PID gains for the best approximation is generally unavailable,
the parameters of the PID-type ILC are tuned between succes-
sive iterations to ensure the stability and convergence. Under
this learning controller, the nonlinearities, especially the non-
linear input (control) gain, of the controlling plant can be un-
known. This is an important feature since most of the related
works dealing with the similar nonlinear control design prob-
lem need certain information of the input gain, e.g., the neural
network or fuzzy system based adaptive control in [16]–[22]
and adaptive iterative learning control in [10], [14]. We show
that the norm of tracking error vector will asymptotically con-
verge to a tunable residual set whose size depends on the width
of boundary layer. Furthermore, all adjustable parameters as
well as the internal signals will remain bounded.

This paper is organized as follows. In section 2, we propose
the PID-type controller and discuss the approximation error
between the PID-type controller and the optimal controller.
The plant description, control objective and design steps of
the proposed adaptive PID-type ILC are presented in section 3.
Analysis of stability and learning performance will be studied
extensively in section 4. A repetitive tracking control of a
Chua’s chaotic circuit is demonstrated in section 5. Finally a
conclusion is made in section 6.



2 Approximation of the optimal controller
using PID controller

In this paper, we apply a PID-type controller to design an
adaptive iterative learning controller for repeatable nonlinear
systems. In general, the form of a PID-type controller with
inputs e(t),

∫ t

0
e(τ )dτ , ė(t) and output uPID(t) is given by

uPID(t) = KP e(t) + KI

∫ t

0

e(τ )dτ + KDė(t) (1)

where e(t) is the output error which will be defined later, KP

is the proportional gain, KI is the integral gain, and KD is
the derivative gain. Let W = [KP , KI , KD]> ∈ IR3 and Z =

[e(t),
∫ t

0
e(τ )dτ, ė(t)]> ∈ IR3 be the gain vector and the input

vector of the PID-type controller. Then (1) can be further
described in a matrix form as follows :

uPID(t) = uPID(Z, W ) = W
>

Z (2)

It is emphasized that the PID-type controller (1) or (2) in this
paper is used to approximate the optimal controller u?. Define
the optimal weight as follows :

W
∗ ≡ arg min|W |<MW

[
sup|Z|<MZ

|uPID(Z, W )− u?|
]

(3)

where MW is the bound of W and MZ is the bound of Z. The
minimum functional approximation error between the optimal
PID-type controller uPID(Z, W ∗) and u? is defined as

εM ≡ uPID(Z, W
∗)− u? (4)

Note also that the minimum approximation error εM is as-
sumed to satisfy |εM | ≤ θ∗, in which θ∗ is a prescribed small
positive constant. Generally, gains of the PID-type controller
are often tuned via suitable adaptation laws in adaptive control
since it is not easy to get the optimal gains for the PID-type
controller.

Theorem 1 : Define the estimation errors of the PID gains

as W̃ ≡ W − W ∗ and Z ≡ [e(t),
∫ t

0
e(τ )dτ, ė(t)]> ∈ IR3. The

functional approximation error εf will satisfy

εf ≡ uPID(Z, W )− u? = W̃
>

Z + r (5)

and the residual term r can be bounded by

|r| < θ
∗ (6)

Proof : The functional approximation error εf satisfies

εf = uPID(Z, W )− u?

= uPID(Z, W )− uPID(Z, W
∗) + uPID(Z, W

∗)− u?

=
(
W
>

Z −W
∗>

Z
)

+ εM

= W̃
>

Z + εM (7)

If we let r=εM , then we have |r| = |εM | ≤ θ∗. Q.E.D.

3 Adaptive PID-type Iterative Learning
Controller

In this section, we consider a class of nonlinear systems which
can perform a given task repeatedly over a finite time interval

[0, T ] as follows :

ẋ
j
1(t) = x

j
2(t)

ẋ
j
2(t) = x

j
3(t)

...

ẋ
j
n(t) = −f(Xj(t)) + b(Xj(t))uj(t)

y
j(t) = x

j
1(t) (8)

where Xj(t) = [xj
1(t), · · · , x

j
n(t)]> ∈ IRn×1 × [0, T ] is the state

vector, uj(t) is the control input, yj(t) is the system output,
f(Xj(t)) and b(Xj(t)) are unknown real continuous nonlin-
ear functions of state. Here, j denotes the index of itera-
tion and t ∈ [0, T ]. The control objective is to force the
state vector Xj(t) = [xj

1(t), x
j
2(t), · · · , x

j
n(t)]> = [xj

1(t), ẋ
j
1(t),

· · · , x
(n−1),j
1 (t)]> to follow some specified desired trajectory

Xd(t) = [xd(t), ẋd(t), · · · , x
(n−1)
d

(t)]> for all t ∈ [0, T ] as close
as possible even there exists initial state errors. In order to
achieve the above control objective, some assumptions on the
nonlinear system and desired trajectory are given as follows :

(A1) There exists a positive but unknown lower bound bL, such
that 0 < bL < b(Xj(t)) for all Xj(t) ∈ IRn × [0, T ].

(A2) Let the state errors e
j
1(t), · · · , e

j
n(t) be defined as e

j
1(t) =

x
j
1(t) − xd(t), e

j
2(t) = ẋ

j
1(t) − ẋd(t), · · · , ej

n(t) =

x
(n−1),j
1 (t) − x

(n−1)
d (t), and the output error ej(t) be

defined as ej(t) = e
j
1(t). The initial state errors at

each iteration are not necessarily fixed, but assumed to
satisfy |ej

i (0)| ≤ εi for some known positive constants
εi, i = 1, · · ·n.

(A3) The desired state trajectory Xd(t) = [xd(t), ẋd(t),

· · · , x
(n−1)
d (t)]> is measurable and bounded.

In order to illustrate the idea of the proposed learning control
scheme, we use the following four steps to explain the design
approach.

• Step 1. Based on the assumptions on the nonlinear plant
(8), we define a switching function as follows :

s
j(t) = c1e

j
1(t) + c2e

j
2(t) + · · ·+ cn−1e

j
n−1(t) + e

j
n(t) (9)

where c1, · · · , cn−1 are the coefficients of a Hurwitz polynomial
∆(D) = Dn−1 + cn−1D

n−2 + · · · + c1. It is noted that there
exists a known constant ε∗ such that the initial value of sj(t)
will satisfy |sj(0)| ≤ c1ε1 + c2ε2 + · · ·+ εn ≡ ε∗ by assumption
(A2). In order to overcome the uncertainty from initial state
errors, a new function s

j

φ(t) is introduced as follows :

s
j

φ(t) = s
j(t)− φ(t)sat

(
sj(t)

φ(t)

)
(10)

where sat is the saturation function defined as

sat

(
sj(t)

φ(t)

)
=





1 if sj(t) > φ(t)
sj(t)
φ(t)

if |sj(t)| ≤ φ(t)

−1 if sj(t) < −φ(t)

and φ(t) is the width of the boundary layer which is time-
varying depending on time t, but not related to the iteration
number j. φ(t) is designed to satisfy the differential equation

φ̇(t) + kφ(t) = 0 (11)



with k > 0 and initial condition φ(0) = ε∗. Of course,
0 < ε∗e−kT ≤ φ(t) ≤ ε∗, ∀t ∈ [0, T ]. There are three im-
portant properties of the function s

j
φ(t) useful for the technical

analysis of convergence and stability. Firstly, according to the
definition of (10), it can be easily shown that s

j

φ(0) = 0 and

s
j

φ(t)sat
(

sj (t)
φ(t)

)
= |sj

φ(t)|. Secondly, the derivative of (sj

φ(t))2

with respective to time t can be computed as

d

dt

(
s

j
φ(t)

)2
= 2s

j
φ(t)ṡj

φ(t)

=





2s
j
φ(t)

(
ṡj(t)− φ̇(t)

)
if sj(t) > φ(t)

0 if |sj(t)| ≤ φ(t)

2s
j

φ(t)
(
ṡj(t) + φ̇(t)

)
if sj(t) < −φ(t)

= 2s
j

φ(t)
(
ṡ

j(t)− sgn
(
s

j

φ(t)
)

φ̇(t)
)

(12)

where sgn denotes the traditional sign function. Thirdly, sj(t)
and s

j
φ(t) will satisfy the following equation

2s
j
φ(t)

{
−ks

j(t)− sgn
(
s

j
φ(t)

)
φ̇(t)

}

= 2s
j
φ(t)

{
−ks

j
φ(t)− kφ(t)sat

(
sj(t)

φ(t)

)

− sgn
(
s

j

φ(t)
)

φ̇(t)

}

= −2k
(
s

j

φ(t)
)2
− 2|sj

φ(t)|
(
φ̇(t) + kφ(t)

)

= −2k
(
s

j
φ(t)

)2
(13)

according to the design of (10) and (11).

• Step 2. To give the motivation of our proposed control

strategy, we differentiate sj(t) along the system trajectory (8)
with respective to time t as follows :

ṡ
j(t) =

n−1∑

i=1

cie
j
i+1(t)− x

(n)
d (t)− f(Xj(t)) + b(Xj(t))uj(t) (14)

If the nonlinear functions f(Xj(t)) and b(Xj(t)) are completely
known, we can define the certainty equivalent controller as

u
j
?(t) =

f(Xj(t)) + x
(n)
d

(t)−
∑n−1

i=1
cie

j
i+1(t)− ksj(t)

b(Xj(t))
(15)

with the positive constant k the same as that in (11). Then
substituting (14) and (15) into (12), and use the fact of (13)
will lead to d

dt
(sj

φ(t))2 = −2k(sj
φ(t))2. This implies s

j
φ(t) = 0

for all t ∈ [0, T ] and j ≥ 1 since s
j

φ(0) = 0. However, f(Xj(t))

and b(Xj(t)) are in general unknown or only partially known.
Hence (12) can only be rewritten as

d

dt

(
s

j
φ(t)

)2

= 2s
j

φ(t)
(
ṡ

j(t)− sgn
(
s

j

φ(t)
)

φ̇(t)
)

= −2k
(
s

j
φ(t)

)2
+ 2s

j
φ(t)b(Xj(t))

(
u

j(t)− u
j
?(t)

)
(16)

To achieve the control objective, the proposed adaptive PID-
type ILC will be divided into two parts, which is given by

u
j(t) = u

j
L1

(t) + u
j
L2

(t) (17)

and

u
j
L1

(t) = uPID(Zj(t), W j(t))− sat

(
sj(t)

φ(t)

)
θ

j(t) (18)

u
j
L2

(t) = −γws
j

φ(t)Zj>(t)Zj(t)− γθs
j

φ(t) (19)

where Zj(t) = [ej(t),
∫ t

0
ej(τ )dτ, ėj(t)]> ∈ IR3 × [0, T ] and

W j(t) = [Kj
P (t), Kj

I (t),Kj
D(t)]> ∈ IR3 × [0, T ] are the input

vector and the gain vector of the PID controller, respectively,
and γw > 0 and γθ > 0. Here, the PID controller in (18)
is used to compensate for the certainty equivalent controller.
Now if we do not consider the effect of u

j
L2

(t) in this moment
and substitute (18) into (16), we have

1

b(Xj(t))

d

dt

(
s

j

φ(t)
)2

= −
2k

b(Xj(t))

(
s

j

φ(t)
)2

+ 2s
j

φ(t)

[
W̃

jT (t)Zj(t)

− sat

(
sj(t)

φ(t)

)
θ

j(t) + r
j(t) + u

j
L2

(t)

]

≤ −
2k

b(Xj(t))

(
s

j

φ(t)
)2

+ 2s
j

φ(t)W̃ j>(t)Zj(t)

− 2|sj
φ(t)|θ̃j(t) + 2s

j
φ(t)uj

L2
(t) (20)

by using the results (5) and (6) given in Theorem 1.

• Step 3 : Since the optimal parameters K∗
P , K∗

I , K∗
D and

θ∗ for an optimal approximation are generally unknown, the
control parameters at time t of jth iteration will be tuned via
some suitable adaptive laws between successive iteration. The
adaptation algorithms for control parameters at (next) j +1th
iteration W j+1(t) and θj+1(t) are given as follows :

W
j+1
p (t) = W

j(t)− γws
j

φ(t)Zj(t) (21)

θ
j+1
p (t) = θ

j(t) + γθ|s
j
φ(t)| (22)

and

W
j+1(t) = proj

(
W

j+1
p (t)

)

=
[
proj(Kj+1

p,P (t)), proj(Kj+1
p,I (t)), proj(Kj+1

p,D (t))
]>

(23)

θ
j+1(t) = proj

(
θ

j+1
p (t)

)
(24)

where proj denotes the projection mechanism :

proj
(
z

j+1
p (t)

)
=

{
z̄ if zj+1

p (t) ≥ z̄

−z̄ if zj+1
p (t) ≤ −z̄

zj+1
p (t) otherwise

with z̄ being the upper bound of |z∗| (z∗ belongs to an element
of {W ∗, θ∗}). According to the projection algorithm, it is noted
that the parameter errors will be bounded for all iterations and
for all t ∈ [0, T ].

4 Analysis of Stability and Convergence

If we define the projected parameter errors as W̃ (t) = W (t)−

W ∗, θ̃j(t) = θj(t) − θ∗ and unprojected parameter errors as

W̃p(t) = Wp(t)−W ∗, θ̃j
p(t) = θj

p(t)− θ∗, respectively, then we

have W̃ j>
p (t)W̃ j

p (t) ≥ W̃ j>(t)W̃ j(t) and (θ̃j
p(t))

2 ≥ (θ̃j(t))2.



Furthermore, it is easy to show by subtracting the optimal
control gains on both side of (21), (22) that

W̃
j+1
p (t) = W̃

j(t)− γws
j
φ(t)Zj(t)

θ̃
j+1
p (t) = θ̃

j(t) + γθ|s
j

φ(t)|

Now we are ready to state the main results in the following
theorem.

Theorem 2 : Consider the nonlinear system (8) satis-
fying the assumptions (A1)–(A3). If we define Ej(t) =
[ej

1(t), e
j
2(t), · · · e

j
n−1(t)]

>, then the proposed adaptive PID-
type ILC guarantees :

(t1) lim
j→∞

s
j

φ(t) = s
∞
φ (t) = 0, ∀t ∈ [0, T ].

(t2) lim
j→∞

|sj(t)| = |s∞(t)| ≤ φ(t) = e
−kt

ε
∗, ∀t ∈ [0, T ].

(t3) All adjustable control parameters and internal signals are
bounded ∀t ∈ [0, T ] and ∀j ≥ 1.

(t4) Let λ be the positive constant such that ∆(D− λ) is still
a Hurwitz polynomial, then

lim
j→∞

‖Ej(t)‖ = ‖E∞(t)‖

≤ m1e
−λt‖E∞(0)‖+ m1ε

∗ e−kt − e−λt

λ− k

for some positive constant m1 and t ∈ [0, T ], and

lim
j→∞

|ej
n(t)| = |e∞n (t)| ≤

n−1∑

i=1

ci|e
∞
i (t)|+ e

−kt
ε
∗
, ∀t ∈ [0, T ]

Proof :
(t1) Define the cost functions of performance as :

V
j(t) =

∫ t

0

[
1

γw

W̃
j>(τ )W̃ j(τ ) +

1

γθ

(
θ̃

j(τ )
)2

]
dτ

V
j

p (t) =

∫ t

0

[
1

γw

W̃
j>
p (τ )W̃ j

p (τ ) +
1

γθ

(
θ̃

j
p(τ )

)2
]
dτ

then we can derive

V
j+1(t)− V

j(t)

≤ V
j+1
p (t)− V

j(t)

=

∫ t

0

[
1

γw

W̃
j+1>
p (τ )W̃ j+1

p (τ ) +
1

γθ

(
θ̃

j+1
p (τ )

)2

−
1

γw

W̃
j>(τ )W̃ j(τ )−

1

γθ

(
θ̃

j(τ )
)2

]
dτ

=

∫ t

0

[
−2s

j

φ(τ )W̃ j>(τ )Zj(τ ) + γw(sj

φ(τ ))2Zj>(τ )Zj(τ )

+ 2|sj
φ(τ )|θ̃j(τ ) + γθ(s

j
φ(τ ))2

]
dτ (25)

If we integrate (20) over time interval [0, t], t ∈ (0, T ] as follows
:

∫ t

0

1

b(Xj(τ ))

d

dτ
(sj

φ(τ ))2dτ =

∫ (s
j

φ
(t))2

(s
j

φ
(0))2

1

b(Xj(τ ))
d(sj

φ(τ ))2

≤

∫ t

0

[
−

2k

b(Xj(τ ))
(sj

φ(τ ))2 + 2s
j

φ(τ )W̃ j>(τ )Zj(τ )

− 2|sj
φ(τ )|θ̃j(τ ) + 2s

j
φ(τ )uj

L2
(τ )

]
dτ

then after some manipulations, we can find

∫ t

0

[
−2s

j
φ(τ )W̃ j>(τ )Zj(τ ) + 2|sj

φ(τ )|θ̃jT (τ )
]

dτ

≤

∫ t

0

[
−

2k

b(Xj(τ ))
(sj

φ(τ ))2 + 2s
j
φ(τ )uj

L2
(τ )

]
dτ

−

∫ (s
j

φ
(t))2

(s
j

φ
(0))2

1

b(Xj(τ ))
d(sj

φ(τ ))2 (26)

Since s
j
φ(0) = 0 due to step 1, the design of u

j
L2

(t) in step 2
is now clear if we substitute (26) and (19) into (25), and show
that

V
j+1(t)− V

j(t)

≤

∫ t

0

[
−

2k

b(Xj(τ ))
(sj

φ(τ ))2 + 2s
j

φ(τ )uj
L2

(τ )

+ γw(sj
φ(τ ))2Zj>(τ )Zj(τ ) + γθ(s

j
φ(τ ))2

]
dτ

−

∫ (s
j

φ
(t))2

0

1

b(Xj(τ ))
d(sj

φ(τ ))2

≤ −

∫ (s
j

φ
(t))2

0

1

b(Xj(τ ))
d(sj

φ(τ ))2 (27)

Thus, we have

∫ (s
j

φ
(t))2

0

1

b(Xj(τ ))
d(sj

φ(τ ))2 ≤ V
j(t)− V

j+1(t) ≤ V
1(t)

for iteration j ≥ 1. This implies
∫ (s

j

φ
(t))2

0
1

b(Xj(τ))
d(sj

φ(τ ))2 is

bounded ∀t ∈ [0, T ] and j ≥ 1 since V 1(t) is bounded ∀t ∈
[0, T ] due to projection algorithms (23)-(24). On the other
hand, V j(t) will converge to some positive function since V j(t)
is positive definite and monotonically decreasing by the fact of
(27). Hence, V j+1(t)− V j(t) converges to zero and

lim
j→∞

∫ (s
j

φ
(t))2

0

1

b(Xj(τ ))
d(sj

φ(τ ))2

=

∫ (s∞
φ

(t))2

0

1

b(X∞(τ ))
d(s∞φ (τ ))2 = 0, ∀ t ∈ [0, T ]

since b(X∞(t)) > 0. Therefore, we have

lim
j→∞

s
j
φ(t) = s

∞
φ (t) = 0, ∀ t ∈ [0, T ]

This proves (t1) of theorem 2.

(t2) The boundedness of sj(t) at each iteration over [0, T ]
can be concluded from equation (10) because φ(t) is always
bounded and the bound of s∞(t) will satisfy

lim
j→∞

|sj(t)| = |s∞(t)| ≤ φ(t) = e
−kt

ε
∗
, ∀ t ∈ [0, T ]

This proves (t2) of theorem 2.

(t3) Boundedness of sj(t) implies boundedness of e
j
1(t), e

j
2(t),

· · · , ej
n(t). Together with the fact that all the adjustable pa-

rameters are bounded due to projection algorithms, (t3) of
theorem 2 is guaranteed.



(t4) To find the learning performance of each state tracking
error at the final iteration, we consider the following state space
equation :



ė∞1 (t)
ė∞2 (t)

...
ė∞n (t)


 =




0 1 · · · 0
0 0 · · · 0
...

...
. . .

...
−c1 −c2 · · · −cn







e∞1 (t)
e∞2 (t)

...
e∞n (t)


 +




0
0
...
1


 s

∞(t)

or simply

Ė
∞(t) = AcE

∞(t) + Bcs
∞(t) (28)

by using assumption (A2) and the definition of switching func-
tion sj(t) in (9). Solution of (28) in time domain is given by

E
∞(t) = e

Act
E
∞(0) +

∫ t

0

e
Ac(t−τ)

Bcs
∞(τ )dτ (29)

where the state transition matrix eAct satisfies ‖eAct‖ ≤
m1e

−λt for some suitable positive constant m1. Taking norms
on (29), it yields

‖E∞(t)‖

≤ m1e
−λt‖E∞(0)‖ + m1

∫ t

0

e
−λ(t−τ)‖Bc‖|s

∞(τ )|dτ

≤ m1e
−λt‖E∞(0)‖ + m1

∫ t

0

e
−λ(t−τ)

e
−kτ

ε
∗
dτ

≤ m1e
−λt‖E∞(0)‖ + m1ε

∗ e−kt − e−λt

λ− k

Finally, tracking performance of e∞n (t) which is shown in (t4)
can be easily found by using (9). This concludes (t4) of theo-
rem 2.

5 Simulation Example

In this section, we apply the proposed adaptive PID-type ILC
to a Chua’s chaotic circuit with variable initial states to repet-
itive track a desired trajectory. The typical Chua’s chaotic
circuit is a simple nonlinear oscillator circuit, which includes
very rich bifurcation and chaotic phenomena. The transformed
dynamic equation of a Chua’s circuit [22] is given by

ẋ
j
1(t) = x

j
2(t)

ẋ
j
2(t) = x

j
3(t)

ẋ
j
3(t) =

14

1805
x

j
1(t)−

168

9025
x

j
2(t) +

1

38
x

j
3(t)

−
2

45

(
28

361
x

j
1(t) +

7

95
x

j
2(t) + x

j
3(t)

)3

+ u
j(t)

y
j(t) = x

j
1(t)

where x
j
1(t), x

j
2(t) and x

j
3(t) denote the system states, yj(t) is

the system output. The control objective is to control the state
Xj(t) = [xj

1(t), x
j
2(t), x

j
3(t)]

> to track the desired trajectory
Xd(t) = [xd(t), ẋd(t), ẍd(t)]

T = [sin(t), cos(t),− sin(t)]> for t ∈
[0, 10] as close as possible even initial state error exists. The
design steps are given in the following :

(D1) The switching function is simply equal to sj(t) = c1e
j
1(t)+

c2e
j
2(t) + e

j
3(t) where e

j
1(t) = x

j
1(t)− sin t, e

j
2(t) = x

j
2(t)−

cos t and e
j
3(t) = x

j
3(t) + sin t. The modified switching

function with time-varying boundary layer is designed as

s
j

φ(t) = sj(t)− φ(t)sat
(

sj(t)
φ(t)

)
with φ̇(t) + kφ(t) = 0 and

k > 0.

(D2) Design the controller uj(t) as in (17) with the two iterative
learning control components as in (18) and (19), respec-
tively. In this case, the initial gains of the PID-type ILC
are given as :

W
1(t) = [K1

P (t), K1
I (t), K1

D(t)]> = [0.1, 0.5, 0.1]>

for all t ∈ [0, 10]. The compensated force for approxima-
tion error of the PID-type controller in (18) is designed
with initial control parameter θ1(t) = 0.1.

(D3) Finally, the parameters W j(t) and θj(t) are updated for
next iteration by using the projection type adaptation
algorithms (21)–(24). In general, the upper bounds on
the optimal parameters are not easy to estimate for an
arbitrary optimal controller. For real implementation of
iterative controlling the plant, suitable values of the upper
bounds are usually selected as large as possible. In most
of our simulations, these upper bounds are all set to be
10.

To begin with this example, the parameters of k, γw, γθ, c1 and
c2 are chosen as k = 4, γw=γθ=100 and c1 = c2 = 4. For a
practical situation the Chua’s chaotic circuit may have variable
initial states at the beginning of each iteration. In other words,
Xj(0) = [xj

1(0), x
j
2(0), x

j
3(0)]

> = [rand, rand, rand]> for all
j ≥ 1, in which rand is a generator of random number between
the interval [−1, 1]. Here the variable initial states are chosen
as

X
1(0) = [0.9003,−0.5377, 0.1603]>

X
2(0) = [−0.0280, 0.7826, 0.3931]>

X
3(0) = [−0.0871,−0.9630, 0.4821]>

X
4(0) = [−0.0829, 0.1731, 0.4379]>

X
5(0) = [0.6327, 0.3573,−0.4856]>

Therefore, this implies there exist initial state errors for
e

j
1(0) = x

j
1(0) − sin(0) = x

j
1(0), e

j
2(0) = x

j
2(0) − cos(0) =

x
j
2(0) − 1 and e

j
3(0) = x

j
3(0) + sin(0) = x

j
3(0). Since sj(0) =

c1e
j
1(0) + c2e

j
2(0) + e

j
3(0), the initial value of φ(t) is selected

as φ(0) = ε∗ = maxj

(
|c1e

j
1(0)|+ |c2e

j
2(0)| + |ej

3(0)|
)

= 9.8963.
From Figure 1, simulation results are discussed as follows :

(R1) Figure 1(a) shows that the supremum value of |sj

φ(t)|,

i.e., supt∈[0,10] |s
j

φ
(t)| with respective to iteration j. It is

noted that the technical result given in (t1) of theorem 2
is verified by observing the asymptotical convergence of
|sj

φ
(t)| in Figure 1(a).

(R2) We demonstrate the trajectory of sj(t) for iteration j = 5
in Figure 1(b). This fact satisfies the technical result (t2)
of theorem 2. It is also shown that the tracking error tra-
jectory can be bounded by a tunable pre-specified time-
varying boundary layer φ(t) and the proposed adaptive
PID-type ILC successfully overcome the variable initial
state errors. Furthermore, the comparisons of the sys-
tem states x5

1(t), x5
2(t) and x5

3(t) as well as desired states
xd(t), ẋd(t) and ẍd(t) are shown in Figure 1(c)-(e). The
trajectories of PID gains K5

P (t), K5
I (t) and K5

D(t) of the
propose adaptive PID-type ILC are also shown in Figure
1(f)-(h).

(R3) Finally, the bounded control input in the technical result
(t3) of theorem 2 is proven in Figure 1(i). It is obvious
that the smooth control force u5(t) at 5th iteration is
obtained by using the time-varying boundary layer design.
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Figure 1 :
(a) supt∈[0,10] |s

j

φ(t)| versus iteration j.

(b) s5(t) (solid line) and φ(t),−φ(t) (dashed line) versus t.
(c) xd(t) (solid line) and x5

1(t) (dashed line) versus time t.
(d) ẋd(t) (solid line) and x5

2(t) (dashed line) versus time t.
(e) ẍd(t) (solid line) and x5

3(t) (dashed line) versus time t.
(f) K5

P (t) versus time t.
(g) K5

I (t) versus time t.
(h) K5

D(t) versus time t.
(i) u5(t) versus time t.

6 Conclusion

In this paper, we proposed a method for designing an adaptive
PID-type ILC for a class of nonlinear systems with varying ini-
tial state errors and unknown bounds on plant nonlinearities.
The main PID-ILC in this AILC is used to follow the unknown
certainty equivalent controller. To deal with the problems of
initial state errors at each iteration and the possible unde-
sirable chattering behavior, a technique of time-varying layer
is adopted. Based on the Lyapunov like analysis, the pro-
portional, integral and derivative gains of the PID-type ILC
are adjusted between successive iterations to achieve a better
learning performance. We show that the tracking error can
asymptotically converge to a tunable residual set as iteration
goes to infinity, and all adjustable parameters and the internal
signals remain bounded. From the simulation result of itera-
tive learning control for a Chua’s circuit, the feasibility of the
proposed adaptive PID-type ILC is clearly demonstrated.
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