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Abstract

The problem of existence of continuous storage function
for dissipative nonlinear systems is considered. It is shown
that, if a nonlinear system is dissipative in the state x∗,
then, under certain assumptions, a continuous storage
function can be constructed on a set of points accessi-
ble from x∗ by concatenation of a finite number of for-
ward and backward motions of the system. Most of these
assumptions are weaker than certain controllability-type
properties and can be checked by the similar tests.

1 Introduction

The theory of dissipative systems was established in the
pioneering work of Willems [14] and subsequently devel-
oped in the series of papers by Hill and Moylan [4, 3, 5].
Since then this theory plays an increasing role in nonlin-
ear control and, in particular, has found applications in
nonlinear H∞ control [7, 13], control of mechanical and
port-controlled Hamiltonian systems [8], ISS systems and
related notions [12], and other areas. For general refer-
ences, see [13, 8]. The system is called dissipative if a
certain integral functional is nonnegative along the trajec-
tories. One of the most important results in this theory
states that the dissipativity property is equivalent to the
existence of a nonnegative function, called storage func-
tion, which is defined on the state space of the system
and satisfies a so called dissipation inequality. This re-
sult provides a connection between the theory of dissipa-
tive systems and a variety of nonlinear control problems,
since the storage function may serve as (or can be used
for construction of) a Lyapunov function corresponding
to a given control problem. In general, however, a storage
function is discontinuous, while the Lyapunov function is
usually required to satisfy some regularity assumptions.
For example, essentially stronger results in nonlinear H∞
control theory can be obtained under the assumption that
the corresponding storage function is continuously differ-
entiable [7]; recursive design procedures like backstepping
require the corresponding Lyapunov function to be suffi-

ciently smooth; the possibility of stabilization by feedback
depends on existence of a continuous control Lyapunov
function [1], etc. Thus the problem of finding conditions
for existence of more regular (continuous, smooth, etc)
storage functions is of essential interest. However, this
problem has received scant attention in the literature. For
dissipative systems with supply rate of general form such
a problem was addressed in [5, 6, 10]. In particular, in [6]
it is proved that any dissipative system has a lower semi-
continuous storage function. Hill & Moylan [5] stated that
any storage function is continuous, if the dissipative sys-
tem has the local w-uniform reachability property in all
points of the state space. A more refined version of this re-
sult has been presented in [10]: if the system is dissipative
in one point x∗ and satisfies the local w-uniform reacha-
bility assumption in the same point x∗, then there exists
a continuous storage function defined on the set R(x∗) of
points reachable from x∗.

The main purpose of this paper is to provide conditions
for the existence of a continuous storage function defined
on a set larger than R(x∗). In fact, we show that, un-
der some assumptions, a continuous storage function can
be constructed on a set of points accessible from x∗ by
concatenation of a finite number of forward and backward
motions of the system. It is also shown that most of our
assumptions are weaker than some well-studied controlla-
bility type properties of the system and can be checked in
a similar manner.

The structure of the paper is as follows. In section 2 the
necessary definitions are given and some preliminary re-
sults are provided, in particular, the relations between
our assumptions and the corresponding controllability-
type properties of the system are studied. The main re-
sults together with the proofs are presented in section 3.
Finally section 4 contains some concluding remarks.

2 Preliminaries

Consider a nonlinear control system

ẋ = F (x, u). (1)

Here x ∈ X ⊂ Rn is state, u ∈ U ⊂ Rm is input, X and
U are open and connected sets, U contains 0, F (x, u) is



assumed to have following properties: for every fixed u
the function F (·, u) is of class C1 (continuously differen-
tiable), and both F (x, u) and ∂F

∂x (x, u) are continuous on
x, u. Under these conditions for every measurable essen-
tially bounded control u: [0, s) → U , where s > 0, and
every initial condition x0 ∈ X the corresponding solution
x(t) = φ (t, x0, u) of the system (1) exists at least for all
t ∈ [0, t0], where t0 ∈ (0, s]. A measurable essentially
bounded control ω: [0, s) → U is said to be admissible
for initial condition x0 (u ∈ U [0,s)

x0 ) if the corresponding
solution x(t) = φ(t, x0, u) is defined for all t ∈ [0, s].

Let U be a subset of X . We will say the set U is forward
invariant with respect to trajectories of the system (1)
if for any x0 ∈ U , u ∈ U [0,t)

x0 , t ≥ 0 the corresponding
solution satisfies φ(s, x0, u) ∈ U for all s ∈ [0, t]. The
set U is said to be backward invariant with respect to
trajectories of (1) if it is forward invariant with respect to
trajectories of the time-reversed system

ẋ = −F (x, u).

Finally, the set is said to be invariant if it is both forward
and backward invariant.

Again, let U be a subset of X . The state ξ ∈ U is said to be
reachable from η ∈ U (equivalently, η ∈ U is controllable
to ξ ∈ U) without leaving U if there exists t ≥ 0 and
u ∈ U [0,t)

η such that φ(s, η, u) ∈ U for all s ∈ [0, t], and
φ(t, η, u) = ξ. If U = X , we will simply said the state ξ
is reachable from η (η is controllable to ξ). The set of all
points reachable from ξ (controllable to η) without leaving
U is denoted by RU (ξ) (CU (η)), or, if U = X , simply by
R(ξ) (C(η)).

Finally, given a set U , then it’s interior will be denoted by
int U , it’s closure by Ū , and it’s boundary by ∂U .

2.1 Dissipativity, virtual storage and storage functions

Let w(x, u) be a scalar function continuous on X × U in
both arguments. Following [14, 5] we will say that the
system (1) in the state x0 ∈ X is dissipative with respect
to supply rate w(x, u) if there exists β ≥ 0 such that for
each t ≥ 0 and each u ∈ U [0,t)

x0 ,
t∫

0

w (φ(s, x0, u), u(s)) ds + β ≥ 0.

The following notion are closely related with the dissipa-
tivity property of the system.

Definition 1. The function V : X → R is said to be a
virtual storage function for the system (1) with supply
rate w(x, u) if for every x0 ∈ X , every t ≥ 0 and every
u ∈ U [0,t)

x0

V (φ(t, x0, u)) − V (x0) ≤
t∫

0

w (φ(s, x0, u), u(s)) ds. (2)

If, in addition, V (x) ≥ 0 for all x ∈ X , then V is called a
storage function.

It is a well-known fact (see [5]) that the dissipativity prop-
erty of the system is equivalent to the existence of a stor-
age function, while so-called cyclo-dissipativity (i.e. dissi-
pativity along the pieces of trajectories where the initial
and the final states coincide) is equivalent to the existence
of a virtual storage function. In general, however, the stor-
age function is discontinuous. To formulate conditions for
the existence of a continuous storage function, we need
the following notion.

2.2 w-uniform reachability

Again, let w(x, u) be a scalar function continuous on X×U
in both arguments.

Definition 2. [5, 10]The system (1) is said to be locally w-
uniformly reachable in the state x∗ if there exists a neigh-
borhood Ω of x∗ and a class-K function ρ such that for
each x ∈ Ω there exist t ≥ 0 and u ∈ U [0,t)

x∗ such that
x = φ (t, x∗, u) and

∣∣∣∣∣∣

t∫

0

w (φ(s, x∗, u), u(s)) ds

∣∣∣∣∣∣
≤ ρ (|x − x∗|) .

It is shown in [5] that under the assumptions of dissipativ-
ity in every state and local uniform reachability in every
state, every storage function is continuous. On the other
hand, we have the following result.

Theorem 1. [10] Suppose the system (1) is dissipative
in the state x∗ ∈ X with respect to supply rate w(x, u)
and uniformly w-reachable in the same state x∗. Then
there exists a continuous storage function defined on the
set R(x∗).

The purpose of this paper is to present conditions under
which a continuous storage function can be defined on a
set larger than R(x∗).

Remark 1. In some cases the local w-uniform reachability
property follows from the local controllability and, there-
fore, can be checked using controllability-type tests [10].
Below we formulate a simple statement of this type which
generalizes one given in [10]. To this end, denote

RT,L(x∗) := {φ (t, x∗, u) | t ∈ [0, T ],
u ∈ U [0,t)

x∗ , esssups∈[0,t] |u(s)| ≤ L
}

.
(3)

In words, RT,L(x∗) is the set of states reachable from x∗
in time less than or equal to T by an admissible control
essentially bounded by L. The system (1) in the state
x∗ ∈ X is said to be small-time locally controllable by
uniformly bounded control (STLC-UBC) if there exists
L < ∞ such that for any T > 0

x∗ ∈ intRT,L(x∗).



In other words, the system is STLC-UBC if RT,L(x∗) con-
tains an open neighborhood of x∗. The notion of STLC-
UBC is a version of small-time local controllability notion
extensively studied in the literature(see [9, 11] and the
bibliography therein).

Proposition 1. The system (1) is locally w-uniformly
reachable in the state x∗ if it is STLC-UBC in x∗.

Proof. Take an arbitrary δ > 0 and consider the closed
ball B̄δ(x∗) := {x ∈ X : |x − x∗| ≤ δ}. By assumption,
the right-hand side F (x, u) as well as supply rate w(x, u)
are continuous in both arguments, therefore we have

sup
x ∈ B̄δ(x∗)
|u| ≤ L

|F (x, u)| = F ∗ < ∞, (4)

and
sup

x ∈ B̄δ(x∗)
|u| ≤ L

|w(x, u)| = D∗ < ∞. (5)

Put T ∗ = δ/F ∗. From (4) we see that

RT,L(x∗) ⊂ B̄δ(x∗) for all T ∈ [0, T ∗] . (6)

Now for each T ∈ [0, T ∗] define β∗(T ) as the supremum
of all posiible β ≥ 0 such that

{x ∈ X : |x − x∗| < β} ⊂ intRT,L(x∗).

Clearly, β∗(0) = 0, β∗(·) is nondecreasing, and, since
the system is STLC-UBD, we have β∗(t) > 0 for all
t ∈ (0, T ∗). Further, take any continuous function
β: [0, T ∗] → R+ strictly increasing and satisfying β(t) ≤
β∗(t) for all t ∈ [0, T ∗]. It is easy to see that such
a function β(·) always exists . Due to the properties
of β(·), the inverse function β−1(s) is well defined for
s ∈ [0, β(T ∗)], satisfies β−1(0) = 0, and is strictly increas-
ing. By construction of β−1(·), we see that |x − x∗| ≤
β(T ∗) implies x ∈ Rβ−1(|x−x∗|),L(x∗), i.e. there exists
t ∈

[
0, β−1 (|x − x∗|)

]
, and a control u ∈ U [0,t)

x∗ satisfying
‖u[0,t)‖∞ ≤ L such that φ(t, x∗, u) = x. Using (5), (6), we
see that along the corresponding trajectory

∣∣∣∣∣∣

t∫

0

w (φ(s, x∗, u), u(s)) ds

∣∣∣∣∣∣
≤ D∗β−1 (|x − x∗|) .

This completes the proof.•

Proposition 1 shows that a number of existing tests for
local small-time controllability can also be applied to de-
termine the w-uniform reachability property.

The following nonlocal version of w-uniform reachability
will be also used below.

Definition 3. Let M,N are subsets of X . We will say
that M is w-uniformly reachable from N (equivalently,

N is w-uniformly controllable to M), if M ⊂ R (N ), and
there exists K < +∞ such that for each µ ∈ M there
exists η ∈ N and u ∈ U [0,t)

η , t ≥ 0 such that φ (t, η, u) = µ
and ∣∣∣∣∣∣

t∫

0

w (φ(s, η, u), u(s)) ds

∣∣∣∣∣∣
≤ K.

2.3 Weak Accessibility

Definition 4. [2] The state ξ ∈ X is said to be weakly
accessible from the state η ∈ X if there exists a finite
number of states x0, x1, . . . , xn ∈ X such that x0 = ξ,
xn = η, and xi+1 ∈ R(xi) ∪ C(xi) for any integer 0 ≤ i ≤
n − 1.

It is worth noting that thus defined weak accessibility is an
equivalence relation, while the reachability and the con-
trollability are not. More precisely, both the controllabil-
ity and the reachability are reflexive and transitive rela-
tions, but in general they are not symmetric, while the
weak accessibility is clearly symmetric (to prove this note
that if x ∈ R(y) then y ∈ C(x), and vice versa). Since
the weak accessibility is an equivalence relation, one can
consider the following partition of the state space

X =
⋃

i∈Ξ

Wi,

where Wi are classes of equivalence with respect to weak
accessibility relation. Note that each set Wi is invariant
with respect to trajectories of the controlled system.

We now provide a construction that will be used in the
sequel. For a given ξ ∈ X define the sequence of sets Ωi,
i = 0, 1, . . . as follows:

Ω0(ξ) = R(ξ),

and
Ωi(ξ) = R (C (Ωi−1(ξ))) .

for i = 1, 2, . . .. Thus, each set Ωi(ξ), i = 0, 1, 2, . . .,
consists of points accessible from ξ by concatenation of
k possible forward and backward motions of the system
(1), where k ∈ {0, 1, . . . , 2i− 1}. It is easy to see that
each set Ωi(ξ), i = 0, 1, 2, . . ., is forward invariant with
respect to trajectories of the controlled system (1), and

W(ξ) =
⋃

i=0,1,2,...

Ωi(ξ), (7)

where W(ξ) is the class of states equivalent to ξ with re-
spect to the weak accessibility relation.

2.4 Local w-uniform accessibility

Let w(x, u) be a scalar function continuous on X × U .

Definition 5. The system is called locally w-uniformly
accessible at the state ξ ∈ X , if for any ε > 0 and for any



neighbourhood U of ξ the set

A
U,

∣∣∫ w
∣∣<ε

(x∗) :=
{

x ∈ U : ∃t ≥ 0, u ∈ U [0,t)
ξ ,

s.t. φ(t, ξ, u) = x,

∣∣∣∣
t∫
0

w (φ(s, ξ, u), u(s)) ds

∣∣∣∣ < ε

}

has a nonempty interior.

The introduced local w-uniform accessibility is also re-
lated to the more traditional accessibility-type property.
Indeed, using the notation (3), the following statement
can be formulated.

Proposition 2. The system (1) is locally w-uniform acces-
sible in the state x∗ ∈ X if there exists L < ∞ such that
for any T > 0

intRT,L(x∗) 6= ∅. (8)

Proof. Take an arbitrary δ > 0 such that B̄δ(x∗) :=
{x ∈ X : |x − x∗| ≤ δ} ⊂ U . We have (see the proof of
Proposition 1)

sup
x ∈ B̄δ(x∗)
|u| ≤ L

|F (x, u)| = F ∗ < ∞,

sup
x ∈ B̄δ(x∗)
|u| ≤ L

|w(x, u)| = D∗ < ∞.

Put

T ∗ = min
{

δ

F ∗ ,
ε

D∗

}
.

For any t ∈ [0, T ∗) we have

Rt,L(x∗) ⊂ A
U,

∣∣∫ w
∣∣<ε

(x∗),

therefore

intRt,L(x∗) ⊂ intA
U,

∣∣∫ w
∣∣<ε

(x∗).

The proof is complete. •

Proposition 2 shows that the local w-uniform accessibility
property follows from a version of the local accessibility
property widely studied in the literature [9, 11, 2]. In par-
ticular, the local w-uniform accessibility can be checked
by calculating rank of the corresponding Lie algebra. Let
L be the Lie algebra generated by the set of vector fields
Fu := {F (·, u), u ∈ U}. Using standard line of reason-
ing [9, 11, 2], one can easily prove the following conse-
quence of Propositon 2.

Corollary 1. The system (1) is locally w-uniform accessible
in the state x∗ ∈ X if

rankL(x∗) = n.

3 Main results

Our main result is presented by the following theorem.

Theorem 2. Suppose the system (1) is dissipative at some
state x∗ ∈ X with respect to supply rate w(x, u) and the
following properties are satisfied:

i) the system (1) is locally w-uniformly reachable at x∗;

ii) each set C (Ωi(x∗)), i = 1, 2, . . . is w-uniformly con-
trollable to Ωi(x∗), and each set Ωi(x∗), i = 1, 2, . . ., is
w-uniformly reachable from C (Ωi−1(x∗)).

iii) the system (1) is locally w-uniformly accessible on the
set

Ω∗(x∗) :=
⋃

i=0,1,2,...

((∂Ωi(x∗) ∩ C (Ωi(x∗))) ∪ ((∂C (Ωi(x∗)) ∩ Ωi+1(x∗)))) .

Then there exists a continuous virtual storage function
defined on the set W(x∗).

Proof. For each state x ∈ R(x∗) = Ω1(x∗) define a func-
tion V as follows:

V (x) = inf
t ≥ 0, u ∈ U [0,t)

x∗ ,
φ (t, x∗, u) = x

t∫

0

w (φ(s, x∗, u), u(s)) ds (9)

Thus defined function V is called the required supply [14,
5]. Taking into account the dissipativity property and
assumption ii), we see that

−β(x∗) ≤ V (x) ≤ K1 − β(x∗)

on the set Ω1(x∗) for some K1 < ∞. By construction,
the set Ω1(x∗) is connected, and by i) it is open. Also,
the function V is continuous on the set Ω1(x∗) (see for
example [10]).

Consider now the set C (Ω1(x∗)). This set is clearly open
and connected. For each x ∈ C (Ω1(x∗)) \ Ω1(x∗) define
V (x) by the formula

V (x) = sup
t ≥ 0, u ∈ U [0,t)

x ,
x̃ ∈ Ω1(x∗),

φ (t, x, u) = x̃,


V (x̃) −

t∫

0

w (φ(s, x, u), u(s)) ds


 .

Due to ii), we see that

−β(x∗) − K2 ≤ V (x) ≤ K1 + K2 − β(x∗)

on the set C (Ω1(x∗)) for some K2 < +∞. To show that
defined in this way the function V satisfies the dissipation
inequality (2), take any point x0 ∈ C (Ω1(x∗)). Take an
arbitrary û ∈ U [0,t1)

x0 , t1 > 0 and suppose φ (t1, x0, û) =



x1 ∈ C (Ω1(x∗)) \ Ω1(x∗). Then

V (x0) = sup
t ≥ 0, u ∈ U [0,t)

x0 ,
φ (t, x0, u) ∈ Ω1(x∗),

(V (φ (t, x0, u))

−
t∫
0

w (φ(s, x0, u), u(s)) ds

)

≥ −
t1∫
0

w (φ(s, x0, û), û(s)) ds

+ sup
t ≥ 0, u ∈ U [0,t)

x1 ,
φ (t, x1, u) ∈ Ω1(x∗),

(V (φ (t, x1, u))

−
t∫
0

w (φ(s, x1, u), u(s)) ds

)

= −
t1∫
0

w (φ(s, x0, û), û(s)) ds + V (x1).

Otherwise, suppose φ (t1, x0, û) = x1 ∈ Ω1(x∗), then

V (x0) = sup
t ≥ 0, u ∈ U [0,t)

x0 ,
φ (t, x0, u) ∈ Ω1(x∗),

(V (φ (t, x0, u))

−
t∫
0

w (φ(s, x0, u), u(s)) ds

)

≥ V (x1) −
t1∫
0

w (φ(s, x0, û), û(s)) ds.

Now we claim that under the conditions of the theorem
the function V is continuous on the set C (Ω1(x∗)). Indeed,
continuity of V on the set int (C (Ω1(x∗)) \ Ω1(x∗)) clearly
follows from the continuity of V on the set Ω1(x∗) and
continuity of w(x, u). To prove continuity of V on the
set ∂Ω1(x∗) ∩ C (Ω1(x∗)), take any point x0 ∈ ∂Ω1(x∗) ∩
C (Ω1(x∗)) and fix ε > 0. It is easy to see using standard
continuous dependence arguments that there exists δ > 0
such that for any x ∈ C (Ω1(x∗)) \ Ω1(x∗), |x − x0| < δ
we have |V (x) − V (x0)| < ε. On the other hand, take
an arbitrary x ∈ Ω1(x∗) sufficiently close to x0. Suppose
û ∈ U [0,t̂)

x0 is an arbitrary control such that φ
(
t̂, x0, û

)
∈

Ω1(x∗) and

V
(
φ

(
t̂, x0, û

))
−

t̂∫

0

w (φ(s, x0, û), û(s)) ds ≥ V (x0) −
ε

3
.

If x is sufficiently close to x0, then we have φ
(
t̂, x, û

)
∈

Ω1(x∗),

∣∣V
(
φ

(
t̂, x, û

))
− V

(
φ

(
t̂, x0, û

))∣∣ ≤ ε

3
,

and
∣∣∣∣∣∣∣

t̂∫

0

w (φ(s, x0, û), û(s)) ds −
t̂∫

0

w (φ(s, x, û), û(s))

∣∣∣∣∣∣∣
≤ ε

3
.

Combining the above formulas with the dissipation in-
equality

V
(
φ

(
t̂, x, û

))
≤ V (x) +

t̂∫

0

w (φ(s, x, û), û(s)) ,

we see that
V (x) ≥ V (x0) − ε. (10)

To prove the inequality opposite to (10), take a suf-
ficiently small open neighborhood Υ(x0) of the point
x0 such that for any x1, x2 ∈ Υ(x0)

⋂
Ω1(x∗) we have

|V (x1) − V (x2)| < ε/2. By the assumption iii), there ex-
ists a nonempty open subset Υ0 ⊂ Υ(x0) with the follow-
ing property: for any state ξ ∈ Υ0 there exists a control
u ∈ U [0,t)

x0 , t ≥ 0 such that φ(t, x0, u) = ξ, and
∣∣∣∣∣∣

t∫

0

w (φ(s, x0, u), u(s)) ds

∣∣∣∣∣∣
<

ε

2
.

First, we claim that

Υ0

⋂
Ω1(x∗) 6= ∅. (11)

Indeed, if Υ0

⋂
Ω1(x∗) = ∅, then Υ0 ⊂ int (X \ Ωi(x∗)).

Then for any state x̃0 ∈ Ω1(x∗) sufficiently close to x0,
we have φ (t, x̃0, u) ∈ Υ0 ⊂ int (X \ Ωi(x∗)), which con-
tradicts the fact that Ωi(x∗) is invariant with respect
to trajectories of the controlled system. Now, take any
point x1 ∈ Υ0

⋂
Ω1(x∗). By definition of Υ0 we have

V (x1) ≤ V (x0) + ε/2. Therefore, by definition of Υ(x0)
for any x ∈ Υ(x0)

⋂
Ω1(x∗) we have

V (x0) ≥ V (x) − ε. (12)

Combining (10) and (12), we get that the function V is
continuous on the set ∂Ω1(x∗) ∩ C (Ω1(x∗)). Therefore, it
is continuous on C (Ω1(x∗)).

Consider now the set Ω2(x∗) := R (C (Ω1(x∗))). Define an
extension of the function V on the set Ω2(x∗) \ C (Ω1(x∗))
as follows

V (x) = inf
x̃ ∈ Ω1(x∗),

t ≥ 0,

u ∈ U [0,t)
x̃ ,

φ (t, x̃, u) = x,


V (x̃) +

t∫

0

w (φ(s, x, u), u(s)) ds


 .

By ii) we see that thus defined function V is uniformly
bounded on the set Ω2(x∗). Using the same line of rea-
soning as above, one can prove that V is continuous on
the set Ω2(x∗) and satisfies the dissipation inequality (2)
along the trajectories of the system.

Thus we have proven that the function V is a continuous
virtual storage function defined on the set Ω2(x∗). Con-
tinuing this line of reasoning, one can extend V to the sets



Ω3, Ω4, . . . etc. Taking into account formula (7), we get
the result of Theorem. •

Corollary 2. Under the assumptions of theorem 2, for any
set Ωi(x∗), i = 1, 2, . . ., there exists a continuous storage
function defined on Ωi(x∗).

Proof. By construction of Theorem 1, the continuous vir-
tual storage function V is uniformly bounded on each set
Ωi(x∗), i = 1, 2, . . .. Therefore, for any i ∈ {1, 2, . . .} the
function V can be made nonnegative on Ωi(x∗) simply by
adding an appropriate constant.•

4 Concluding Remarks

In this paper we have shown that if a nonlinear system of
the general form (1) is dissipative in the state x∗ and lo-
cally w-uniformly reachable from the same state x∗, then
under additional assumptions ii), iii) of Theorem 1 there
exists a continuous virtual storage function defined on the
set of points weakly accessible from x∗. By construction,
this function is bounded from below on each set Ωi(x∗),
i = 1, 2, . . ., therefore it can be made nonnegative on each
such a set simply by adding an appropriate positive con-
stant. We also show that most of our assumptions follow
from the well-studied controllability type properties and
can be checked by the similar tests. The development of
analogous conditions for existence of more regular (for ex-
ample, smooth) storage functions should be a topic for
future research.
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