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Abstract 

The robust stability problem for uncertain linear delay-
differential systems of neutral type is investigated.  The 
norm-bounded uncertainty appears in all system matrices. 
A new delay-dependent stability criterion is derived.  The 
criterion is formulated in the form of a linear matrix 
inequality (LMI). Numerical examples show that the 
criterion is much less conservative than those in the 
literature. 
 

1 Introduction 

The problems of stability and stabilization of delay-
differential systems of neutral type have received 
considerable attention in the last two decades, see for 
example, [12, 18, 22].  The practical examples of neutral 
delay-differential systems include the distributed networks 
containing lossless transmission lines [2], and population 
ecology [15].  Many stability conditions are based on a 
matrix measure and a matrix norm [13, 17] or a simple 
Lyapunov functional [21, 23].  Although it is easy to check 
these conditions, the conditions required the matrix 
measure to be negative or the parameters to be tuned.  The 
results are usually more conservative.  Recently, a linear 
matrix inequality (LMI) technique [1] has been employed 
to investigate the stability of neutral systems and less 
conservative criteria have been obtained, see for example, 
[4, 9, 10, 11, 16, 20, 19]. 
 

In this paper, the robust stability of  neutral  systems  under 

norm-bounded uncertainties in all system matrices is 
studied by using decomposition technique of discrete-delay 
term matrix. A delay-dependent criterion that is formulated 
in terms of an LMI is obtained.  Numerical examples show 
that the results obtained in this paper are less conservative 
than some existing results in the literature. 
 

Notation: For a symmetric matrix W , "W � 0" denotes 
that W  is positive definite matrix.  Let I be an identity 
matrix of appropriate dimension.   stands 

for the set of continuous  valued functions on [  
and let  be a segment of system 
trajectory defined as ,  and 
denotes 
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. Use ([� ���  to stand for either the 
Euclidean vector norm or the induced matrix 2-norm and 
denote  as the maximum singular value of the 
matrix 

max ( )W�

W . 
 

2. Problem statement 
 

Consider the uncertain linear neutral delay-differential 
system 

[ ( ) ( ) ( )] ( ) ( ) ( ) ( )d x t C t x t h A t x t B t x t h
dt

� � � � �

]

   (1) 

( ) ( )x � � �� , � �                  (2) �� [ ,h  0

where  is the state, h  is the constant time-
delay,  is a continuous vector valued initial function, 

,  and C t  are  uncertain 

( ) nx t ��
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� 0
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matrices, not known completely, except that they are 
within a compact set  which we will refer to as the 
uncertainty set 

�

� � 3( ),  ( ),  ( ) n nA t B t C t �

��� �  for all t  [0, )� �

 

Throughout this paper, we assume that 
 

A1. The system  is asymptotically 
stable. 

( ) ( ) ( ) 0x t C t x t h� � �

 

In this paper, we will attempt to formulate a practically 
computable criterion to check the stability of system 
described by (1)-(2). 

 

3. Main results 
 

In order to improve the delay bound, similar to the retarded 
system [6], decompose the matrix ( )B t  as 1( )B t B�  

2 ( )B t� , where 1B  is a constant matrix.  System (1) can be 
rewritten as in the following form 

1[ ( ) ( ) ( ) ( ) ]
t

t h

d x t C t x t h B x d
dt

� �
�

� � � �  

1 2[ ( ) ] ( ) ( ) ( )A t B x t B t x t h� � � �                     (3) 

Define the operator � �  as :  ([ ,0], )n nh� �� �

1( ) ( ) ( ) ( )
t

t t h
x x t C t x t h B x d� �

�
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Remark 1. The nominal systems of systems (1) and (3) are 

( ) ( ) ( ) ( )x t Cx t h Ax t Bx t h� � � � �� �             (4) 

and 

1[ ( ) ( ) ( ) ]
t

t h

d x t Cx t h B x d
dt

� �
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� � � �  

� �1 2( ) ( )A B x t B x t h� � � �                           (5) 

respectively. The corresponding operator �  

 for system (5) is 
nominal :

([ ,0], )nh� ���
n

�

nominal 1( ) ( ) ( )
t

t t h
x x t Cx t h B x d� �

�

� � � � ��  

It is easy to prove that assuming that the operator �  
is stable, the asymptotic stability of system (4) is 
equivalent to that of system (5). Therefore, no additional 

dynamics in the sense defined in [7, 8] appear in system 
(5) compared with system (4). 

nominal

 

In fact, it is obvious that the asymptotic stability of system 
(5) implies that of system (4).  In the following we will 
show that the asymptotic stability of system (4) also 
implies that of system (5).  The characteristic functions of 
systems (4) and (5) are 

( ) det( )hs hsf s sI sCe A Be� �

� � � �  

and  
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By the asymptotic stability of system (4), we have 

( ) 0f s �  for � �  Re 0s

Simple computation to obtain 
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( )f s�  

Then 

( ) 0g s �  for � �  Re 0s

Noting that the operator �  is stable, system (5) is 
asymptotically stable according to [12]. 

nominal

 

For the stability of the considered system, we can conclude 
that 
 

Proposition 1.  Under A1 and given a scalar 0h � , 
system described by (1) and (2) is asymptotically stable for 
any constant time-delay  satisfying h 0 h h� �

n
 if the 

operator  is stable and there exist n  matrices � � P � 0, 
R � 0 and W � 0 such that the LMI (6), as shown at the 
bottom of the last page of the paper, holds, where 

11 1 1( ) [ ( ) ] [ ( ) ]Tt A t B P P A t B hR� � � � � � � �W

t

 

12 1 2( ) [ ( ) ] ( ) ( )Tt A t B PC t PB� � � �  

22 2 2( ) ( ) ( ) ( ) ( )T Tt W B t PC t C t PB t� � � �  
 

Proof.  See the full version of the paper [11]. 



Remark 2. The operator  is stable if � ( )tx x t��  

 is asymptotically 

stable.  A sufficient condition is that the inequality 
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t

t h
C t x t h B x

�
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1( ) 1 1C t h B �� � � �

0� �

�

 holds for a sufficiently small 
.  If one uses the sufficient condition to replace the 

fact that the operator  is stable, the assumption A1 is 
also implied by the condition.  In this case, the assumption 
A1 is not necessarily needed.  
 

Remark 3. If , through some simple variable 
changes one can easily obtain that system (1)-(2) is 
asymptotically stable if 

1 0B �
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small  and there exist n  matrices , W  
satisfying the following LMI 
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which does not include any information on the time-delay. 
Therefore, the corresponding criterion is independent of 
delay. 
 

Remark 4. To compare our result with that in [16], we 
now consider the stability of nominal system (4).  For this 
case, let 1B B� , .  In light of Proposition 1, system 
(4) is asymptotically stable for any constant time-delay h  
satisfying 

2 0B �

0 h� �

�

h
n

 if the operator  is stable and 
there exist n  matrices 

nominal�

P � 0, R � 0 and W � 0 such 
that 
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  (7) 

with 

(1,1) ( ) ( )TA B P P A B hR W� � � � � ��  

By Theorem 1 in [16], system (4) is asymptotically stable 
if there exist n  matrices n� P � 0 and R � 0 such that 

1C h B� �  

and  

( ) ( ) ( 1)TA B P P A B h R� � � � �  

                     1( ) (T Th A B PBR B P A B�

� � � )

01( ) ( )T TA B PCR C P A B�

� � � �              (8) 

According to Remark 1 in [16],  in (8) can be replaced 
by 

h
h , then rewrite (8) in the following LMI 

(1,1) ( ) ( )
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with 
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If , then (7) reduces to (9).  Noting that R and W in 
(7) are two free variables, (7) is less restrictive than (9). 

W R�

 

Now we consider the norm bounded uncertainty described 
by 

( ) ( )A t A A t� �� ,  ( ) ( )B t B B t� �� ,    (10) ( ) ( )C t C C t� ��

where 

[ ( ) ( ) ( )] ( )[ a b cA t B t C t LF t E E E� � � � ]     (11) 

where  is an unknown real and possibly time-
varying matrix with Lebesgue measurable elements 
satisfying 

( ) p qF t �

��

� max ( ( ))F t �1                          (12) 

and L , Ea  and Eb  are known real constant matrices which 
characterize how the uncertainty enters the nominal 
matrices A and B. 
 

Let 1 2B B B� � , then 2 2( ) ( )B t B B t� � � .  Now we state 
the following result. 
 

Proposition 2.  Under A1 and given a scalar 0h � , the 
system described by (1) and (2), with uncertainty described 
by (10) to (12) is asymptotically stable for any constant 
time-delay  satisfying h 0 h h� �

n
 if the operator � is 

stable and there exist  matrices , Y ,  
and a scalar  such that the LMI (13), as shown at the 
bottom of the last page of the paper, holds, where 

n� 0X � 0� 0Z �

0��

11 1 1( ) ( )T T
a aA B X X A B hY Z E E�� � � � � � � � �  

12 1 2( )T T
a bA B XC XB E E�� � � � �  

22 2 2
T T T T

b b c cZ B XC C XB E E E E�� � � � � �  

Proof.  See the full version of the paper [11]. 
 



Remark 5. The efficiency of Proposition 2 depends on the 
decomposition of matrix B. The matrix B1

( ) �
 was chosen 

such that the operator � is stable and  is "more 
stable" than matrix . The decomposition idea was first 
introduced by Goubet-Batholomeus et al. [6] for the 
retarded case.  Now we consider how to decompose the 
matrix B. For the case that the matrix B is decomposed as 

1A t B
( )A t

1 2B B B� � , where 1B I�� � , 2 1B B� �

0�

B  and . 
First we choose the initial value  by solving the 
following optimization problem 

0� �

   minimize  �

   subject to 

          0� �

( ) 1 1C t h� �� � � �  (for sufficiently small � ) 0�

          
( ) ( )

0
T T

a a
T

A I P P A I E E PL

L P I
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��

�� ��

�
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Use this decomposion to solve the LMI (13) by employing 
Matlab LMI Toolbox [5].  If it is feasible, increase  
(such as ) and then resolve the LMI 
(13) and 

�

1 0.0001n n� �
�

� �

( ) 1C t h�� � � 1� �  until for some  the 

LMI (13) is not feasible or 

0� �

( ) 1h�� � � 1� �C t

0� �

 is not 

satisfied. For each , there is a corresponding h . 
From these h ’s, find the largest one maxh . The 
corresponding 1B I�� �  is the ‘optimal’ choice. For non-
diagonal decomposition, it’s more complicated but the idea 
is the same. 
 

Concerning how to solve the LMI (13), a Matlab m-
function is written which automatically generates the LMI 
(13) and then solves this LMI using LMI Solver FEASP in 
LMI toolbox [5].  The inputs to the function are system 
matrices and the time-delay. The function returns whether 
the LMI is feasible.  If feasible, it also gives matrices 

, ,  and scalar  as outputs. 0X � 0Y � 0Z � 0� �

 

4.  Examples 
 

To illustrate the stability criterion, the following examples 
are presented. 
 

Example 1.  Consider the following uncertain linear 
retarded system [3] 

 

( ) [ ( )] ( ) [ ( )] ( )x t A A t x t B B t x t� � � � � � �� h      (14) 

where 

A �

�

�

L
NM

O
QP

2 0
0 0 9. ,  B �

�

� �

L
NM

O
QP

1 0
1 1

and  and ��A t( ) B t( ) are unknown matrices satisfying 
( ) 0A t� .2�  and ( ) 0.2B t� � , .  The above system 

is of the form of (10) to (13) with C C , 
�t

( ) 0t� � �

0.2L I�  and a bE E I� cE �� , . 0

By the criterion in [3], system (14) is robustly stable for 
any h satisfying 0 0 . Using the stability 
criterion in this paper, decomposing matrix B as 

� �h .4437

1
0.21 0
0.96 0.09

B
�� �

� � �� �� �
,  2

0.79 0
0.04 0.91

B
�� �

� � �� �� �

the maximum value of maxh  for the system to have 
guaranteed robust stability is max 2.1186�h  which gives 

maxh  more than four times the result in [3].  Therefore, for 
this example, the robust stability criterion in this paper 
gives a less conservative result than that in [3].  Other 
results surveyed by de Souza and Li [3] are much more 
conservative. 
 

Example 2. Consider the following uncertain linear 
neutral delay-differential system 

          { ( ) [ ( )] ( )}d x t C C t x t h
dt

� � � �  

[ ( )] ( ) [ ( )] ( )A A t x t B B t x t h� � � � � � �             (15) 

where matrices A and B are the same as Example 1 and 

C
c

c
�

L
NM
O
QP

0
0

, 0  1� �c

and , �A t( ) �B t( ) and  are unknown matrices 
satisfying 

( )C t�

� �A t( ) � , � �B t( ) �  and ( )C t �� �  . 
The considered system is of the form of (10) to (13) with 

�t

L I��  and a b cE E E� � I� . 

Decompose the matrix B as 

1
0 0
0 0.38

B
� �

� � ��� �
,  2

1 0
1 0.62

B
�� �

� � �� �� �

For , the maximum value � � 0 2. maxh  is listed in the 
following table for various parameter c. As c increases, 

maxh  decreases. 



c 0.00 0.10 0.20 

maxh  1.3248 1.2070 1.0414 

c 0.30 0.40 0.50 

maxh  0.8404 0.6139 0.3646 

 

For , we now consider the effect of uncertainty 
bound  on the maximum time-delay for stability 

c � 0 10.
� maxh . 

The following table illustrates the numerical results for 
different . We can see that � maxh  decreases as �  
increases. 

�  0.00 0.10 0.20 0.30 

maxh  2.2526 1.7680 1.2070 0.4782 

 

Example 3.  Consider the following uncertain linear 
neutral delay-differential system [17] 

          { ( ) [ ( )] ( )}d x t C C t x t h
dt

� � � �  

[ ( )] ( ) [ ( )] ( )A A t x t B B t x t h� � � � � � �             (16) 

where 

2 1
1 1

A
�� �

� � �� �� �
, , ,  

1 1
1 2

B
� �� �

� � ��� �

0 0
0 0

C
� �

� � �
� �

1

2

( ) 0
0 (

a t
A

a t
� �

� � � �
� �)

1

2

( ) 0
0 (

b t
B

b t
� �

� � � �
� �

, , 
)

1

2

0
0
c

C
c

� �
� � � �

� �
 

where ( ) 0.2ia t � , ( ) 0.2ib t � , 0.2ic �  for i , 
.  The above system is of the form of (10) to (13) with 

1,2�

�t
0.2L I�  and a b cE E E� � � I

�
�
�

. 

By the criterion in [17], system (16) is robustly stable for 
any h satisfying .  Decomposing the matrix 
B as 

0 0.2257h� �

1
0.75 0.25

0.20 0.55
B

� �� �
� � ��� �

,  2
0.25 0.75

0.80 1.45
B

� ��
� � ��

and using the criterion in this paper, the maximum value of 
maxh  for the system to have guaranteed robust stability is 

maxh 0.6447� . 

It is clear that for this example, the stability criterion in this 
paper gives a less conservative result than that in [17]. 

 

Example 4. Consider the following uncertain linear 
neutral delay-differential system [16] 

( ) ( ) ( ) ( )x t Cx t h Ax t Bx t h� � � � �� �        (17) 

where 

0.9 0.2
0.1 0.9

A
�� �

� � ��� �
, 

1.1 0.2
0.1 1.1

B
� �� �

� � �� �� �
, C

0.2 0
0.2 0.1
�� �

�� ��� �
 

Decomposing the matrix B as 

1
0.41 0.04
0.07 0.31

B
�� �

� � �� �� �
,  2

0.69 0.24
0.03 0.79

B
� �� �

� � �� �� �

and using the criterion in this paper, the maximum value of 
maxh  for the system to be asymptotically stable is 

maxh 1.6991�

0 h� �

. By the criteria in [16] and [4], system (17) 
is asymptotically stable for any h satisfying 0 0 , 
and , respectively.  It is clear that for this 
example, the stability criterion in this paper gives a much 
less conservative result than these in [16, 4]. 

.3
74

h� �

0.

 

5. Conclusion  
 

The stability problem for uncertain neutral delay-
differential systems has been addressed. A stability 
criterion has been derived. Numerical examples have 
shown significant improvements over some existing 
results. 
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