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Keywords: non-common Lyapunov matrices, linear matrixn this paper, we show another simple and easy proof for these
inequalities, redundant descriptor form, slowly time-varyingesults using descriptor form. Furthermore, we give analysis

systems, regli synthesis. and synthesis method for slowly time varying systems that have
real rational uncertainties, based on the technique used in our
Abstract proof.

R | bil vsis and I hesi he notation is standard. The notation{iM} stands foM +
ecently, new stability analysis and controller synthesis metfyr diag{M_,M,,...., M} is the block diagonal matrix dl,

ods based on non-common Lyapunov matrices are proposgd. "y |G(3) | is Heo NOrm of G(s). i, (G) stands for

In this paper, we give another simple and easy proof for thetﬂg .s.tructured singular value of a matxfor given class of
using redundant descriptor form. Furthermore, we pmpos%ﬁcertaintw

sufficient condition for stability of slowly time-varying systems
that have real rational uncertainties using the technique in the
proof. The proposed condition is not more conservative than Former results

former methods and the quadratic stability. The followings are the result of Ebihara et al. and Shimomura

_ et al., respectively.
1 Introduction

Recently, with the development of effective computationdemma 1 [5] For a continuous linear dynamical system;
method for linear matrix inequality (LMI) conditions, a lot of

analysis and synthesis methods are proposed in LMI's. LMI's X(t) = AX(t) ()
can describe difficult problems such as multi objective syn- ] .

thesis, synthesis for parameter dependent systems and sdféhfollowing statements are equivalent.

However, there is a problem called “common Lyapunov ma-

trix” in these synthesis methods based on LMI's. For examplel. The system (1) is stable.

the Lyapunov matrix foH., performance analysis of a system ._ .

is not equivalent to that far, analysis of the same system. It 2. (Lyapunov stability) There exisi > 0 such thatAX +
is clear that we should prepare two Lyapunov matrices for less XAT < 0holds.

conservative synthesis of the./H, mixed problem. How- ) ) )
ever, it is difficult to choose Lyapunov matrices independently3: There exisk >0, F; andF, such that the following matrix
for the mixed synthesis based on LMI's, because the change nequality holds.
of variable is required for multi objective synthesis in many X X AL
cases. This means that there is a gap of conservativeness be- [ % o } +He{{ 7I§ } [F R ]}

tween analysis and synthesis. 0 )
For this problem, Oliveira et al.[1, 2] proposed new analysis = @)
and synthesis methods using hon-common Lyapunov matrices i i i
for discrete time systems. For continuous time systems, Pead: 1nere exisX >0 and G such that the following matrix
celle et al.[3], Apkarian et al.[4], Shimomura et al.[6], Ebihara nequality holds.
et al.[5] proposed new methods, independently. These results X _x A_ 1|
are applicable to multi objective synthesis and give less conser- { X 0 ] +He{[ | 2 } G[ — ]}
vative controllers.

<0 )



Lemma 2 [6] The system (1) is stable if and only if there exist/sing Schur complement, we have the following matrix in-
€ >0, X > 0andV such that the following matrix inequality equality.
holds.
20X, +He{(A—al)X;;}  (A—al)X,, ]
<0 (12
Xoo(A—al)T —2BX,, (12)

{2 )é]—FHe{['IA}V[I el |} <0 (4)

Letting Xy, = X;;, we have the following inequality;

The goal of this paper is to give another simple and easy proof

. . 20X, +He{(A—al)X}
of these results using redundant descriptor form.

Xoo(A—al)T + B (X3 —X5y)

A—al)Xpp+ B(Xyy — X
3 Another proof based on descriptor form ( ) 2_22[5(( 11~ %) }<0 (13)

In this section, we give another simple and easy proof for thigs equivalent to the matrix inequality (5)1
former results (Lemma 1, 2) using descriptor form.

- » Theorem 1 is equivalent to the result of Ebihara et al.[5] when
3.1 Stability condition a = 3 andf = —1, and is equivalent to the result of Shimo-
Jpuraetal.[6], whemr =0, B =1, X, = -V andX,, = €X;, =
—&V, (¢ is a minute positive scalar). Note that we can take
and as specified values without loss of generality. Eq.(5) is
also necessary and sufficient condition for stability when we

20X, BXy © Hef A_ al (X %, 1} fix a.a}ndB to be certain values. It implies that Eq.(5) is LMI
BXy, 0 21 722 condition and computable.

<0 (5)

Theorem 1 The system (1) is stable if and only if there exi
Xi1 >0, X5, X5, @ @nd  # 0 such that the following matrix
inequality holds.

3.2 State feedback synthesis

Proof (Sufficiency) Letx,(t) bex,(t) = x(t), we have the fol- Now, we consider the following system;
lowing descriptor system that is equivalent to the system (1). )
X(t) = Axt)+Byu(t) (14)
= [ X(t) } A { X(t) ] ut) = Kx(t) (15)
E| . =A 6
| (1) © - ) |

Letting X,, = £X,4, (€ is a minute positive scalar) in Theorem
1, it enables us to synthesize state feedback gain in the same

a I 0 al A-al
(7)  way as the former methods.

el o o A=l M

A descriptor system (6) is stable if there exiXtsuch that the
following matrix inequality holds [9].

Theorem 2 There exists stabilizing state feedback gHinif
there existX;; > 0, X,;, Y, a, B # 0 and € such that the fol-
lowing matrix inequality holds;

He{AX} <0 (8)
EX=(EX)>0 9 A—al B
(EX)2 ©) He{{ —Bl szl Xy |+ OUMY ey ]}
Here, (1,2)-block ofX must be 0 because of the structureof 2a%,, BX
and Eq.(9). Then we have the followiXg BX 1 011 } <0 (16)
11
- Xy O When there exist the above variables such that (16) holds, the
X: , Xy >0 (10)
X1 X2 stabilizing state feedback gafais given byK :=Y X *.

SubstitutingA and Eq. (10) for the matrix inequality (8), we

obtain the matrix inequality (5). As we have shown in the proof of the necessity of Theorem 1,

X5, can be taken to be a minute matrix without loss of gener-
[Necessity] There exisK;; > 0, a, B and minute matrix, ality and this fact does not make the gap of conservativeness
X5, = XJ,, (such thaBX,, > 0 holds) such that the following between analysis condition and synthesis condition. The pa-
matrix inequality holds, if the system (1) is stable. rametersy andf can be taken to be certain values without loss
of generality. However, the optimal value ofis unknown in
HelA +(A—al A—al)T <0 11) 9eneral. Th|s implies that the synthe§|s .method requires line
SRy} ( )2[3 Xz )’ < ) search as in the former methods (Wteis fixed, Eqg. (16) be-
1in this paper, “minute matrix” implies that the matrix whose spectral radilg0mes LMI _Cond|t|0n)- Note that this problem demands a lot
is minute. of computation.




3.3 H norm condition Z(t) = Cx(t)+ Dw(t) (25)

(t)
We can also explain the former results for the performance w(t) = A(t.)z(t), A e (26)
problem using descriptor form. Now, we consider thenorm % = A{diag{ry(t)l,ryt1,-ry)1} |
i}

condition for the following systerts(s) := C(sl — A)~*B+D.
g SySterls) = Clel A B ol <1, || <o @)
X = Ax+Bw a7
= Cx+Dw (18) Note that this system has real rational uncertainties. It is diffi-

We h the followina d int N that i val tcult to deal the uncertainties without conservativeness. When
€ have the Tollowing descriptor system that IS equivalent (p _ g e problem is reali analysis. It is well known that

the system (17), (18), whose coefficient matrices are defineqi ¢ is 1o effective method to calculate the exact valug of
the same way as in the proof of Theorem 1. for the system

EX = AX+Bw (19)
z = Cx+Dw (20) Theorem 4 The system (24)-(27) is stable if there exist
R Bl - Xi1(r) >0, X (r), (r :=[ry(t),rp(t),---,ry()]), a and B # 0
B=|,|:C= [0 C | (21)  such that the following matrix inequality holds.
For the descriptor system, we apply the followiHg norm A—al BA Xor(NT KXoy ()T T
condition. He{| —BI 0 Xoo(NT X[}
R A a aa c —1+DA| [ Xo5(r)T  Xgg(r
Lemma 3 [9] For a descriptor systent(s) := C(sk — A)B+ 20X d
2 : : 11(N) = g Xa(r)  BXp(r) 0
D, ||G(9)[l» < 1 holds if there existX such that n Xy (1) 0 0| <08
0 0 0

He{AX} B (CX)T i )
BT -1 D' |<0EX=(EX)T>0 (22
CX D —I Proof We can obtain the following equivalent descriptor sys-

tem using the same way as in the previous section.

holds.
I R X(t) X(t)
Substituting theA, B, C, D andE for Eq. (22), we obtain the E| %) | = A % (t) (29)
following condition that is equivalent to the results of Ebihara 2(t) z(t)
et al. and Shimomura et al.
A BA(t)
Theorem 3 ||G(s)||» < 1 holds if there exisK;; > 0, X,, and E :=diag{E,0}, A(t) := 0 (30)
X5, such that [0 C ]| —1+DA(t)
A—al A time-varying descriptor systeRk = AX is stable if there ex-
—Bl ists X(t) such that the following matrix inequality holds.
He{ g (X1 X 0 0]} ® g quatlty
C He{A(t)X(t)} — E{E)Z(t)} <0, EX(t) = (EX(t))" >0
dt
2aX,, BX,; B 0 (31)
n BXT” 0 0 OT <0 (23) The same way as the previous section, we have the following
B 0 -1 D X(t).
0 0 D -l
hold y Xi1(1) 0 0
0las. X(t):= | Xa(t) Xoot) Xoa(t) |, Xpa(t) >0 (32)
Xg1(t)  Xgo(t)  Xgs(t)

For other performance conditions (e.&l, norm condition),
we can also obtain non-common Lyapunov type conditions, Byibstituting Eqg. (30) and Eq. (32) for Eqg. (31) and replacing
using the descriptor system (19)—(21) and substituting them ﬁqr(t) with Xij (r), we obtain the matrix inequality (28]

the performance conditions for descriptor form in LMI term.

Using the descriptor system (29), (30) and Eq. (19)—(21), we
4 Analysis and synthesis for slowly time varying can obtain thé., gain (sufficient) condition for the system with
systems real rational uncertainty.

In this section, we consider the stability analysis for the follow'\—IOte tth‘.at;h; (iogd'tt'of? (2?) contoints nI(t)t the rgtl?nzl telrtnk:s of

ing slowly time varying linear dynamical system. uncertaintie ( ). utatine ferms (t). Itis easier to ealthe
affine uncertainties than the rational ones. Actually, with the

X(t) = Axt)+Bw(t) (24) restriction for the variables as in [7, 8], the condition becomes



convex and we can obtain computable sufficient conditions Qorollary 1 The slowly time varying system (24)—(27) with
is enough to check LMI conditions at all verticestandv;). D = 0 is stable if there existX;;(r) > 0, X,;(r) and X,,(r)
Furthermore, ilD = 0, we can prove that the proposed methosuch that the following matrix inequality holds.

is not more conservative than the quadratic stability.

~ e | ATEET | [xaln) i) )
Theorem 5 There exists a time invariant matriX such that d
(28) holds, if the system (24)—(27) with= 0 is quadratically 4| 204 (1) = X (r)  BXy(r) ] <0 (38)
stable (i.e. stable fov; = +). BXq4(r) 0

Proof There exist,, > 0, a, 8, minute matricesX,, = X7, WhenD =0, the_system has not rational unqertainties b_ut only
(BX,, > 0) andXy; > 0 such that the following matrix inequal_af'flne uncertainties. It is easy to dgal the affine uncertainty and
ity holds, when the system (24)~(27) with= 0 is quadrati- there are less conservative analy_szls methods. However, we can
cally stable. show that the proposed method is not more conservative than
the methods based on Corollary 1.

1
(A—al + BAC)EXZZ(A— al +BAC)T

1
+BA§X33AT BT +He{(A+BAC)X,,} <0 (33)

Theorem 6 For the slowly time varying system (24)—(25) with
D =0, there isX(r) such that (28) holds, if there exixi, (r),
X51(r) andX,,(r) such that the matrix inequality (38) holds.

Using Schur complement, we have the following matrix in- o . .
g P g Proof When the matrix inequality (38) holds, there exists

lity. .
equaty X11(r), X54(r), X55(r) and Xg4(r) > 0 such that the following
(A—al +BAC)Xy, 0 BAXg, matrix inequality holds.
He| ((A—al +BAC)X,,)T —BX 0
( 0 e P X 20%y4(r) = §Xqa(r) +BAZXg3(NATB - BXy4(r)
33 BXy4(r) 0
20X, 0 0
sl 0T 0 0lco @ el ATEETN | 0 X0 <0 (@9
0 0 0
Letting Xy, andX,, to be g;lljr;?itfchur complement, we have the following matrix in-
Xg1 1= CXy3, Xgp 1= CX,p, (35) BAXg4(r)
we have the following matrix inequalit ") 0 <0 (40)
9 qualty. [ Xg3(ATB 0] —2Xg4(r)
H E&A‘_ all ))z<11 +§AA>2<31T _B§11 BA3<33 Here, (x) means the left hand side of the matrix inequality (38).
€| (A= al)Xp+ BAXgp) T —BXop LettingX;,(r) andX;,(r) to be
Cxll - X31 Cx22 - X32 _X33
2aXy; BXyy 0 X31(r) :=CXo(r), Xgp(r) 1= CXop(r), (41)
X 0 0|<0 36
* 3011 0 0 (36) we have the following matrix inequality.
T
It is equivalent to the following matrix inequality. A—al BA le(r)l X31(r)1
He{| —pI 0 Xoo(r)" Xgp(r) }
A-al BATry g c -l 0 Xg(n)'
_ 11 722
Hef pr o0 { X31 Xgp Xgg }} 2aXy(r) = 3%44(r)  BXy(r) O
c - + BX;4(r) 0 0]<0 (42
2a%; BX;, O 0 0 o
+| B%, 0 o0]|<o0 @7) |
0 0 0
O Note that this result shows that the extension of the system di-

mension used in Theorem 4 does not increase the conservative-
WhenD = 0, it is also applicable (actually computable) foF€SS-

stability analysis of the slowly time varying systems using thﬂestrictingxn(r), X,(r) @andX,s(r) as
former methods (Theorem 1, Lemma 1, 2) with ma#isub-
stituted byA + BAC. Xor(r) Xop(r) Xog(N)] = [Xp1 X5 &%  (43)



in Theorem 4 (Note thaX,, is time invariant and nonsingular.),Now, we propose that less conservativesynthesis condition
the proposed method can be used to synthesize state feedbaahkg redundant descriptor form.

gain (both constant matrix gain and gain scheduling). From the . s T T CTIT .
proof of Theorem 6, we may fig, — 0. This implies that the Eetdescnptorvanable._ [x',x",z']", we have the following

synthesis method becomes LMI and computable (howeverdlscnptor system that is equivalent to the closed loop system
. vith G¢(s) andA.
needs line search fa,).

X 0 A+ByK BA X
5 State feedbacku-synthesis diag{1,0,0} | x | = | | —1 0 X
z 0 C+DWK —I1+DA z
In this section, we consider the static state feedasynthesis (52)
problem for the following closed loop system wi@k(s) := Using the stability condition for descriptor systems, we have
(C+DyK)(sl — (A+ByK))'B+D andA. the following stability condition.
X = Ax+Bw+Byu (44)
z = Cx+Dw+Dyu (45) 0 A+BK BA
w = Az (46) He{| | —I 0
u = Kx (47) 0 C+D)K —1+A
W = Az AcU (48) Xpu(r) 0 0
o ; Xoq(r)  Xoo(r) Xoq(r) |} <0 (53)
U = {diag{rl,rol,---,ryl} || <1 (49) 21 22 23
(dglnbrelenrd TN < 1) Xaalr) Xoll) Xeol1)
For this problem, we proposed the following analysis and syn- . i
thesis conditions. To reduce the condition to LMI, we restrig,, (r), X,,(r) and
X,4(r) as follows,
Lemma.4 (real u analysis) [8] When K is .given, [ Xoq (1) Xoo(r)  Xos(r) ] - [ V gV &V ] (54)
My (Ge(jw)) < 1, Vw € [0,] holds if and only if there
existX;,(r) > 0, X,,(r), X,,(r) such that and use the change of variab¥;= KV. Then we have the
following LMI condition (with plain search parametey and
He{ (A+BuK)X;4(r) — BAX;, (1) &,).
(C+ DyK)Xy4(r) + (I = DA)X5 (r)
I_BDAAXZ)%U) } <0, VAU (50) Theorem7By using the state feedbacku = Kx,
(I = DA)Xy(r) Hy (Ge(jw)) < 1, Yw € [0,0] holds, if there exisK;;(r) > 0,
holds. X5(r)'s,V, g ande, such that
0 AV+ByY BA
Lemma5 (real u synthesis) [8] By using the state feedbackHe{ | | -V 0
u=Kx, 4, (Ge(jw)) <1, Vw € [0, ] holds, if there exisX,, > 0 CV+Dyr —1+4A
0, X5,(r), X55(r), W such that X,4(r) 0 0
el AX,, + BIW — BAY, (1) y | Xsll &l |}<0,vAeU (55)
CXy1+ DyW + (1 — DA) Xy (1) 51(r) Xgo(r)  X5(r)

—BAX;,(r)
(I = DA)Xp,(r)

holds. If this condition is satisfied, the state feedback dfain

} }<OvAeU 1) which achievess, (Ge(j) < 1, Ve € [0,09] is given byK —
—1

holds. If this condition is satisfied, the state feedback d¢fain
which achievegy (G¢(jw)) < 1, Yw € [0, ] is given byK =

foll' By pre- and post-multiplying
I A+B)K O 56
Note that the analysis condition (Lemma 4) gives necessary and 0 C+DyK 1 (56)

sufficient condition. However, synthesis condition (Lemma 5) .
is sufficient condition because we fixed the maXjx to reduce and its transpose to Eq. (55), respectively, we have
the condition to LMI using the change of variabif,= KX, ;.

This implies that the synthesis condition has some conservaHe{ A+BuK BA ] { X14(r) 0 } <0 (57)
tiveness. CH+DuK —1+DA | [ X5(r) Xg3(r)

It is known that the closed loop system witla(s) andvA € U By replacingXs, (r) andXs4(r) with X, (r) andX,,(r), respec-
is stable if and only ifu, (G¢(jw)) < 1, Vw € [0,0] holds. tively, Eq. (57) implies Eq. (50). This shows that the LMI



condition (55) of Theorem 7 allow us to use the parameter deeferences

pendent Lyapnov matriX,,(r) for state feedback synthesis. 1]
Note that Theorem 7 is a special case of Theorem 4. We can
prove that Theorem 7 is not more conservative than Lemma 5
using the same way as in the previous section. However, it is
omitted for sake of space. (2]

6 Another proof for discrete time systems

The new analysis and synthesis approach for discrete time s
tems was proposed by Oliveira et al[1, 2]. In this section, we
give another proof for the result for discrete time systems using
descriptor form.

(4]

Lemma 6 [1, 2] For the discrete time system;

X(k+1) = Ax(k) (58)

the following statements are equivalent.

1. There exist® > 0 such that—-P+ ATPA < 0 holds.

2. There exisP > 0 and G such that the following matrix
inequality holds.

ATGT

-p
{ GA P-G-G' (59)

<o

Proof (sufficient condition based on descriptor form)
Letting x,(k) be x,(k) = Ax(k), we have the following
descriptor system that is equivalent to the system (58).

(7]

~ [ x(k+1) ]_A{ x(K) ]
| ot =44 g
A I 0| & 0 |
E—[o o}’A—[A —J (61)
Letting Lyapunov matrix candidatebe
. [9]
P:{; g},P>O (62)

and substituting it for the following stability condition for dis-
crete time systents{(k+ 1) = AX(k),

—ETPE+ATPA< 0 (63)

we obtain (59)0

7 Conclusion

We have given another simple and easy proof for non-common
Lyapunov type stability condition and its application (state
feedback synthesis]., performance condition) based on de-
scriptor form. Using the technique in the proof, we derived
a new stability condition for slowly time varying systems that
have real rational uncertainty. For the system vilth- O, the
proposed method is not more conservative than former methods
and the quadratic stability. Furthermore, a new static feedback
u synthesis method has been given.

M. C. Oliveira, J. Bernussou, and J. C. Geromel: A
New Discrete-time Robust Stability Condition; Systems
& Control Letters, Vol.37, pp.261-265 (1999)

M. C. Oliveira, J. C. Geromel and J. Bernussou: Extended
H, andH, norm characterizations and controller param-

eterizations for discrete-time systems; International Jour-
nal of Control, Vol.75, No.9, pp.666-679 (2002)

Y8] D. Peaucelle and D. Arzelier: New LMI-based conditions

for robust H, performance analysis; Proc. 19th American
Control Conference, pp.317-321 (2000)

P. Apkarian, H. D. Tuan and J. Bernussou: Continuous-
Time Analysis, Eigenstructure Assignment, dtgdSyn-
thesis With Enhanced Linear Matrix Inequalities (LMI)
Characterizations; IEEE Trans. AC, Vol.46, No.12,
pp.1941-1946 (2001)

[5] V. Ebihara and T. Hagiwara: New Dilated LMI Character-

izations for Continuous-Time Control Design and Robust
Multiobjective Control; Proc. American Control Confer-
ence, pp.47-52 (2002)

[6] T. Shimomura, M. Takahashi and T. Fujii: Extended-

Space Control Design with Parameter-Dependent Lya-
punov Functions; Proc. IEEE CDC, WeP02-1, pp.2157-
2162 (2001)

G. Chen and T. Sugie: An upper bound of mu based on
the parameter dependent multipliers; Proc. 16th Ameri-
can Control Conference, pp.2604-2608 (1997)

G. Chen and T. Sugie: Mu-Analysis and Synthesis of
State Feedback System based on Multipliers and LMI’s;
Proc. 17th American Control Conference, pp.537-541
(1998)

I. Masubuchi, Y. Kamitane, A. Ohara and N. Sudd;,
control for descriptor systems: matrix inequalities ap-
proach Automatica, Vol.33, No.4, pp.669-673 (1997)



	Session Index
	Author Index



