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1. Introduction

During the last decade, a considerable amount of atten-
tion has been payed to stability and control of continuous-
time linear systems with delays (see e.g. [?], [?], [?], [?]-
[?] and the references therein). Delay-independent and,
less conservative, delay-dependent sufficient stability con-
ditions in terms of Riccati or linear matrix inequalities
(LMIs) have been derived by using Lyapunov-Krasovskii
functionals or Lyapunov-Razumikhin functions. Delay-
dependent conditions are based on different model trans-
formations. The most recent one, a descriptor repre-
sentation of the system [?]-[?], minimizes the overdesign
that stems from the model transformation used. The
conservatism that stems from the bounding of the cross-
terms in the derivation of the derivative of the Lyapunov-
Krasovskii functional has also been significantly reduced
in the past few years. An important result that improves
the standard bounding technique of e.g. [?] has been pro-
posed in [?].

Less attention has been drawn to the corresponding
results for discrete-time delay systems [?], [?], [?], [?], [?].
This is mainly due to the fact that such systems can be
transformed into augmented systems without delay. This
augmentation of the system is, however, inappropriate
for systems with unknown delays or systems with time-
varying delays (such systems appear e.g. in the field of
communication networks).

Delay-dependent conditions for stability of discrete-
time systems have been obtained in [?], for the case of
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time-varying delays. The LMI conditions there are convex
in the upper-bound of the delay h̄. For h̄ = 1, these LMIs
coincide with the well-known delay-independent condi-
tions in the case of constant delays (see e.g. [?]) and they
are therefore very conservative. Delay-dependent condi-
tions for the case of constant delays have been obtained
in [?] via a model transformation that is similar to the
one in [?].

In the present paper we derive the discrete counterpart
of stability criteria of [?]. We apply a descriptor model
transformation to a linear discrete time-delay system. We
further develop the Lyapunov-Krasovskii method for lin-
ear discrete-time systems with delay and obtain stability
criteria for both, constant and time-varying delays. In the
case of time-varying delays, additional delay-independent
conditions are derived that are based on the Razumikhin
approach. Two simple examples are given that show that
our conditions are less conservative than those that have
appeared in the literature.

2. Problem Statement

We consider the following unforced discrete-time state-
delayed system

(1)
xk+1 = (A+H∆kE)xk + (A1+H∆kE1)xk−hk

,

xk = φk, −h̄ ≤ k ≤ 0

where xk ∈ Rn is the state vector, hk is a positive number
representing the delay, hk ≤ h̄ and A, A1, H, E and
E1 are constant matrices of appropriate dimensions and
∆k ∈ Rr1×r2 is a time-varying uncertain matrix that has
the form ∆k = diag{∆1,k, ..., ∆m,k}, where

(2) ∆T
k ∆k ≤ I, i = 1, ...,m.

For simplicity we consider the case of a single delay. The
results may be easily generalized to the case of multiple
delays. It is assumed that the eigenvalues of A + A1 are
all of absolute value less than 1.

We address the following problems.

• Problem 1: For hk = h that is an unknown
constant satisfying

(3) 0 ≤ hk ≤ h̄

find whether the system is asymptotically stable
for all ∆k satisfying (??).

1



2

• Problem 2: Find a stability test for all time-
varying hk that satisfy (??) and ∆k satisfying
(??).

3. Delay-Dependent and Delay-Independent

Stability

We consider in this section the nominal case where
H = 0. The case with norm-bounded uncertainty in the
system dynamics is treated in Section 4.

3.1. Descriptor model transformation. Denoting

(4) yk = xk+1 − xk

the system (??) can be represented, in the case where
H = 0, by the following descriptor form:

[
xk+1

0

]
=

[
yk+xk

−yk+Axk−xk+A1xk−hk

]
.

Since xk−hk
= xk −

∑k−1
j=k−hk

yj it follows that

(5a-c)

Ex̄k+1 =

[
In In

A+A1 − In −In

]
x̄k

−
[

0
A1

]
∑k−1

j=k−hk
yj ,

E = {In, 0}, and x̄k
∆=

[
xk

yk

]
,

where

(6)
x0 = φ0, y0 = (A− I)φ0 −A1φ−h0 ,

yk = φk+1 − φk, k = −h̄, ...,−1.

Thus, if xk is a solution of (??), then {xk, yk}, where yk is
defined by (??), is a solution of (??), (??) and vise versa.

3.2. Lyapunov-Krasovskii method for discrete sys-
tems with delays.

Lemma 1. If there exist positive numbers α, β and a
continuous functional

Vk = V (xk−h̄, ..., xk, yk−h̄, ..., yk−1)

such that
(7a,b)

0 ≤ Vk ≤
β max{maxj∈[k−h̄,k] |xj |2, maxj∈[k−h̄,k−1] |yj |2},
Vk+1 − Vk ≤ −α|xk|2,

for xk and yk satisfying (??), then (??) is asymptotically
stable.

Proof. From (??b) it follows that

k∑

j=0

(Vj+1 − Vj) = Vk+1 − V0 ≤ −α

k∑

j=0

|xj |2.

Therefore, for xk and yk satisfying (??) we have
(8)
|xk|2 ≤

∑k
j=0 |xj |2 ≤ 1

αV0

≤ β
α max{maxj∈[−h̄,0] |xj |2, maxj∈[−h̄,−1] |yj |2}, ∀k ≥ 0.

Let xk be a solution of (??) and yk be defined by (??),
then {xk, yk} satisfies (??), (??) and thus (??). Eq.
(??) implies that |xk|2 is small enough for small enough
‖φ‖2 ∆= maxj∈[−h̄,0] |φ−j |2. Moreover,

∑∞
j=0 |xj |2 < ∞

and, hence, |xj |2 → 0 for j → 0. ¤

3.3. The case of constant delay. Denoting:

(9a,b) P =

[
P1 P2

PT
2 P3

]
and E = diag{In, 0}

we consider the following Lyapunov-Krasovskii functional:

(10a) Vk = V1, k + V2, k + V3, k

where

(10b-d)
V1, k = xT

k P1xk = x̄T
k EPEx̄k, 0 < P1

V2, k =
∑−1

m=−h̄

∑k−1
j=k+m yT

j Ryj , 0 < R

V3, k =
∑k−1

j=k−h xT
k Sxk, 0 < S

Note that V1, k corresponds to necessary and sufficient
conditions for the stability of discrete descriptor systems
without delay [?], V2, k is typical for delay-dependent cri-
teria, while V3, k corresponds to delay-independent stabil-
ity conditions [?].

We obtain the following:

Theorem 1. Consider the system (??) with the constant
time delay that satisfies (??) and H = 0. This system is
asymptotically stable if there exist P = PT , Z ∈ R2n×2n,
S, R ∈ Rn×n and Y ∈ R2n×n that satisfy the following
LMIs.

(11a) Γ(h̄) ∆=




Φ Y −AT P

[
0

A1

]

∗ −S+
[
0 AT

1

]
P

[
0

A1

]




<0

(11b,c)

[
Z Y

Y T R

]
≥0 and

[
I 0

]
P

[
I

0

]
>0
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where

Φ = AT PA−EPE+

[
S 0
0 h̄R

]
+̄hZ+Y

[
I 0

]
+

[
I

0

]
Y T

A =

[
I I

A−I −I

]
.

Proof: We find when Vk+1 − Vk is strictly negative.

V1, k+1−V1, k =
[

xT
k+1 0

]
EPE

[
xk+1

0

]

−
[

xT
k 0

]
EPE

[
xk

0

]

=
[

xT
k+1 0

]
P

[
xk+1

0

]
−x̄T

k EPEx̄k

=
{

x̄T
k ĀT − (

∑k−1
j=k−h yT

j )
[

0 AT
1

]}
P

×
{
Āx̄k−

[
0

A1

]
∑k−1

j=k−h yj

}
−x̄T

k EPEx̄k

(12a) = x̄T
k

[ĀT P Ā−EPE
]
x̄k+µk+ηk

where

(12)

Ā=

[
I I

A+A1−I −I

]
,

µk =(xT
k −xT

k−h)
[

0 AT
1

]
P

[
0

A1

]
(xk−xk−h)

ηk =−2
∑k−1

j=k−hx̄
T
k ĀTP

[
0

A1

]
yj

(13)
V2, k+1−V2, k = h̄yT

k Ryk −
∑k−1

j=k−h̄ yT
j Ryj

= x̄T
k

[
0 0
0 h̄R

]
x̄k−

∑k−1
j=k−h̄ yT

j Ryj

(14)
V3, k+1−V3, k =xT

k Sxk−xT
k−hSxk−h

= x̄T
k

[
S 0
0 0

]
x̄k−xT

k−hSxk−h

and thus
(15)

Vk+1−Vk = x̄T
k Γ1x̄k−xT

k−hSxk−h−
k−1∑

j=k−h̄

yT
j Ryj +µk+ηk

where

Γ1 = ĀT P Ā−EPE+

[
S 0
0 h̄R

]
.

By [?], for any a ∈ Rn, b ∈ R2n, N ∈ R2n×n, R ∈
Rn×n, Y ∈ Rn×2n, Z ∈ R2n×2n, the following holds
(16)

−2bTNa ≤
[

b

a

]T [
Z Y −N

Y T −N T R

][
b

a

]
,

[
Z Y

Y T R

]
≥0.

Applying the latter to ηk, where N = ĀT P

[
0

A1

]
, a =

yj and b = x̄k, we obtain the following:

ηk≤
∑k−1

j=k−h

[
x̄T

k yT
j

]



Z Y

−ĀT P

[
0

A1

]

∗ R




[
x̄k

yj

]
.

Hence,
(17)

ηk ≤
∑k−1

j=k−h̄ yT
j Ryj +h̄x̄T

k Zx̄k+2x̄T
k

[
Y −ĀT P

[
0

A1

]]
xk

−2x̄T
k

[
Y −ĀT P

[
0

A1

]]
xk−h

and one obtains

Vk+1 − Vk ≤ ξT
k Γ(h̄)ξk

where ξk = col{x̄k, xk−h}.
The LMI Γ(h̄) < 0 together with (??b,c), guarantees

that Vk ≥ 0 and Vk+1 − Vk < 0, ∀ 0≤k. The asymptotic
stability of the system (??) is thus guaranteed by Lemma
1. ¤

The result of Theorem 1 depends on the delay bound
h̄. The corresponding criterion for asymptotic stability
which is delay-independent can be readily derived as a
special case of Theorem 1. Choosing Z = ρI2n, R = ρIn

and Y = ρ
[

0 In

]
, where ρ is a positive scalar and

letting ρ tend to zero we obtain the following.

Corollary 1. The system (??) with H = 0 and with
constant delay is asymptotically stable independently of
the delay if there exist P = PT ∈ R2n×2n and S ∈ Rn×n
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that satisfy the following LMIs.
(18)


ATPA−EPE+

[
S 0
0 0

]
AT P

[
0

A1

]

∗ −S+
[
0 AT

1

]
P

[
0

A1

]




<0

[
I 0

]
P

[
I

0

]
>0.

The results of this section have been derived for the
case where h is a constant that satisfies (??) (Problem 1
). The case where the delay is time-varying (Problem 2 )
is treated next.

3.4. Delay-dependent stability in the case of time-
varying delay. We treat in this section the case where
the delay h is bounded by (??) but is time-varying. Simi-
larly to the derivation of Theorem 1 we apply the Lyapunov-
Krasovskii of (??a) with V3,k = 0. Unlike the continuous
case, the conditions for time-varying delays are also ob-
tained by applying the bounding of (??) (in the contin-
uous case the conservative version of (??) with Y = N
is used). In the case of nonsingular A1 we readily obtain
the following.

Corollary 2. Consider the system (??) with H = 0 and
with time-varying delay that satisfies (??). Assume that
A1 is nonsingular. This system is asymptotically stable if
there exist P = PT ∈ R2n×2n and R ∈ Rn×n that satisfy
the LMIs (??), where S = 0.

Note that in the case of time-varying delay the condi-
tions of Corollary 2 imply that P3 < 0.

In the case of general (probably singular) A1, modify-
ing derivations of Corollary 2 by choosing the Lyapunov-
Krasovskii of (??a) with V3,k = 0 and with

V2,k =
−1∑

m=−h̄

k−1∑

j=k+m

yT
j AT

1 RA1yj , 0 < R,

we obtain the following

Corollary 3. Consider the system (??) with H = 0 and
with time-varying delay that satisfies (??). This system
is asymptotically stable if there exist P = PT ∈ R2n×2n

and R ∈ Rn×n that satisfy (??b,c) and the following LMI

(19)




Ψ Y −AT P

[
0
In

]

∗
[
0 In

]
P

[
0
In

]




<0.

where

Ψ = ĀT P Ā − EPE +

[
0 0
0 h̄AT

1 RA1

]
+h̄Z

+Y
[

A1 0
]
+

[
AT

1

0

]
Y T

3.5. Delay-independent conditions in the case of
time-varying delays. As in the continuous-time situa-
tion, this case is treated adopting the Lyapunov-Razumikhin
approach (see [?]).

Theorem 2. Consider the system (??), where H = 0,
with time-varying delay that satisfies (??). This system
is asymptotically stable if there exist 0 < P ∈ Rn×n and
scalars α ∈ (0, 1) and q > 1 that satisfy the following
LMI:

(20) Γ̄ind
∆=

[
AT PA− αP AT PA1

∗ AT
1 PA1 − 1−α

q P

]
< 0.

Proof: Choosing the Lyapunov-Razumikhin function
Vk = xT

k Pxk and assuming that for some q > 1

Vk−i ≤ qVk, −h̄ ≤ i ≤ −1, k ≥ 0,

we find:

Vk+1 − Vk = (xT
k AT + xk−hk

AT
1 )P (Axk + A1xk−hk

)
−xT

k Pxk = xT
k (AT PA− αP )xk + 2xT

k−hk
AT

1 PAxk

+xT
k−hk

AT
1 PA1xk−hk

−(1− α)xT
k Pxk ≤ [xT

k xT
k−hk

]Γ̄ind

[
xk

xk−hk

]

and thus due to (??) Vk+1 − Vk < 0, which implies the
asymptotic stability of (??) (see [?]). ¤

4. Robust stability

We treat the uncertain case, where in (??) H 6= 0 and
[E E1] is not zero. Since Γ(h̄) in (??a) can be written as

Γ(h̄) = Γ0(h̄) +MT PM,

where Γ0 is the part of Γ that does not depend on A or
A1 and

M =

[
A

[
0

−A1

]]
,
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we replace A in A with A + H∆kE and A1 with A1 +
H∆kE1 and obtain, applying Theorem 1 to the uncertain
system (??)-(??), that the stability of the system is guar-
anteed if there exist P = PT , Z ∈ R2n×2n, S, R ∈ Rn×n

and Y ∈ R2n×n that satisfy (??b,c) and the following
inequality for all 0 ≥ k:

(21a) Γ0 + (MT +ẼT ∆T
k H̃T )P (M+H̃∆kẼ) < 0

where

(21b,c) Ẽ =
[
E 0 E1

]
and H̃ =

[
0
H

]
.

It is well known that the following holds true for any two
real matrices α and β of the appropriate dimensions and
for ∆k that satisfies (??)(see e.g. [?]).

(22a) α∆kβ + βT ∆T
k αT ≤ αD−1αT + βT Dβ

where

(22b) D = diag{d1I, ..., dmI} > 0.

Choosing α = MT PH̃ and β = Ẽ and requiring P3 to be
negative-definite, we apply (??a,b) to (??a) and obtain
the following.

Theorem 3. Consider the system (??) with the constant
delay that satisfies (??) and with ∆k that satisfies (??).
This system is asymptotically stable if there exist P =
PT , Z ∈ R2n×2n, S, R ∈ Rn×n, Y ∈ R2n×n and D of
the structure (??b) that satisfy (??b,c) and the following
LMIs.

(23a,b)




Γ(h̄) MT PH̃ ẼT D

∗ −D 0
∗ ∗ −D


 < 0, P3 < 0.

The corresponding criteria for robust stability in the
delay-independent (constant and time-varying delay) and
delay-dependent (time-varying delay) cases may be de-
rived similarly.

5. Examples

Example 1: We consider the system (??) where:
(24)

A =

[
0.8 0
0 0.97

]
, A1 =

[
−0.1 0
−0.1 −0.1

]
and H = 0.

Assuming that h is constant, we seek the maximum value
of h̄ for which the asymptotic stability of the system is
guaranteed. We compare three methods: The criterion of

[?], Theorem 1 in [?] and Theorem 1 above. It is found
that the method of [?] does not provide a solution even
for h̄ = 1.The maximum value of h̄, achievable by the
method of [?], is 12, whereas a value of h̄ = 16 was ob-
tained by applying Theorem 1 of the present paper.Using
augmentation it is found that the system considered is
asymptotically stable for all h ≤ 18. The criterion of
Corollary 1 did not provide a solution, so that no delay-
independent solution has been found. Allowing h to be
time-varying we apply Corollary 2. We obtain that as-
ymptotic stability is guaranteed for all h ≤ 8.

Treating next the case where the system parameters
are uncertain with A and A1 given in (??) and with H =
diag{0.1, 0.2}, E = I2 and E1 = 0.5I2, where m = 1
and r1 = r2 = 2, we apply Theorem 3 and obtain that
the system (??) with constant delays is stable for all ∆k

that satisfy (??) if h ≤ 5. This is achieved by taking
D = 159.3I2.

Example 2 [?]: We consider the system (??) where

A =

[
0 0.5

0.5 0.2

]
, A1 =

[
−0.4 0

0 0

]
and H = 0.

In the case of constant delay, this system is delay-independently
stable by the conditions of [?] and by Corollary 1 of
the present paper. In the case of time-varying delay,
by conditions of [?] the system is asymptotically stable
for 0 < hk ≤ 2. By Theorem 2, it is verified that also
in the case of time-varying delay the system is delay-
independently stable. This is achieved by taking α = 0.5
and q = 1.01.

6. Conclusions

Delay-dependent criteria have been derived for deter-
mining the asymptotic stability of discrete-time systems
with uncertain delay and norm-bounded uncertainties. It
is the first time that the descriptor model transformation
is applied in the discrete-time case and, similar to the cor-
responding continuous-time case, the resulting criteria are
most efficient. The approach that is adopted in this pa-
per allows for considering the case of time-varying delays
that cannot be treated by using augmentation techniques.
A delay-independent condition for the case where the de-
lay is time-varying is also obtained which is based on the
Lyapunov-Razumikhin approach.
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