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ized least-squares, linear systems. In this paper, we address a receding-horizon estimation prob-

lem for discrete-time linear systems, affected by a bounded sys-
Abstract tem uncertainty. We shall follow the approach originally stated
Th bl f estimati h £ di . i in [11], where a guaranteed performance receding-horizon es-
€ pro ek:n 0 estlmgtlrjg t ; Statﬁ 0 |screte—t|me Ne/Mmator was proposed for a quite general setting, making use of
systems when uncertainties affect the system matrices Is 8ff:line optimization or resorting to approximate neural strate-
dressed. A quadratic cost function is considered, involvVing @&, The linear case was treated in [9], where a solution in
finite n_umber of recent measu_rem_ents and a prediction Vefosed form was given when no uncertainties affect the sys-
tor. Thl's .Iea(;jls o state the est|ma.t|ﬁn proble_m ('jn the_lf_(r)]rm fgm matrices. The proposed technique consists in minimizing
a regularized least-squares one with uncertain data. The Oﬁté]iding—window quadratic cost function that is made up of two
m.al solut.|on (involving on-line sca!ar mlnlmlzat!on) togethe ontributions. The first contribution is a weighted term penal-
with a su@able C'Os.eo"fom? approx_lmatlon are given. For bo ng the distance of the current estimated state from its predic-
the resulting receding-horizon estimators convergence resylts, (both computed at the beginning of the sliding window):

are derlve_d ek odperatlng procedure to select the des'gntﬂg'second is the usual prediction error computed on the basis
rameters is proposed. of the last measures. In the presence of uncertainty, estimation

can be accomplished by minimizing a worst-case cost on line,
1 Introduction according to [10].

Receding-horizon estimation has been the objective of num¥éfe conclude this section with some notations we use through-
ous investigations since the appearance of the pioneering wBHk this paper. Given a generic, symmetric, positive definite
[1] (see, also, [2, 3]). The interest for such a method stems fréR@trix P, let us denote by (P) and ¢(P) the minimum and

the capability of dealing with a limited amount of data, instead®aximum eigenvalues d?, respectively. Given a generic ma-
of using all the information available from the beginning. ~ trix M, M’ and M indicate the matrix transpose an(ithe
Various methods have been proposed to perform recedill?S?UdO'nvers’e o/, respeciively. Iiurthermorqu\/[”max -
horizon estimation. A possible approach consists in cohd/|| = [F(M'M)]'/? and | M||uwin = [c(M'M)]"/? . Given
structing sliding-window estimators that provide maximum@ generic vector, ||lv|| denotes the Euclidean norm of and,
likelihood or minimum-variance state estimates by assumigéyen a positive definite matri¥’, |[v||» denotes the weighted
that the system and measurement noises are white and Gagsm of v, v/ 2 (v/Pv)'/2 . For a generic time-variant
sian distributed (see, among others, [4]). Alternative metho ctor v, vt < 2 col (v v v)

are based on the idea of estimating the state of the system by =~ ' ¢~V NG TN e T
minimizing a least-squares cost function according to a slidinger the sake of brevity, the proofs of some of the results pre-
window strategy, where the noises are regarded as unkncsemted in the paper will be omitted.

disturbances (see, among others, [5, 6, 7]).

Recent investigations mainly focused on least-squares meh- Receding-horizon estimation for uncertain

ods that allow one to account for boundedness of both state discrete-time linear systems

and noises by applying on-line optimization [8]. The develop- . o ) .
ment of viable design procedures has been considered in @It us consujer an uncert_aln I|near_dynam|c system described
However, despite the vast literature on the subject, no resulththe following discrete-time equations

robustness in receding-horizon estimation is known to these au- Tes1 = (A+06A) z +& (1a)

thors. This has motivated our efforts of addressing robustness

with respect to system uncertainty for the receding-horizon es- Y (€ +0C) @ +m (1b)

timator proposed in [9]. Such a goal has been obtained by Were ¢t = 0,1, ... is the time instantz, € R" is the state

ing recent results (see [10]) that are well-suited to treating thector (the initial stater, is unknown),&, € = C R" is the



system noise vectoy; € RP? is the vector of the measures, and\s to the uncertainty in the system matrices, we shall follow a
n: € H C RP is the measurement noise vector. The matricesinimax approach, then, at any stage= N, N + 1,..., the

0A and 0C represent uncertainties in the knowledge of thellowing problem has to be solved:

system, and are supposed to belong to the known compact sets

A and C, respectively. Problem E; For a given pair(z{_y,IY), find the optimal
o . _estimate

We assume the statistics of the random variables

zo, &0, §15--- Moy M, ... to be unknown, and consider 37 ., = arg min max  J; (#_n4,04,5C) . (4)

them as deterministic variables of an unknown kind. More- ’ Bi-ni OAEA;0CEC

over, we assume our estimates to be based on data obtained in O

the recent past, or, equivalently, we assume the estimator to be
a finite-memory one. Then we define the information vector a$ie optimal predictions are determined as

A o -
N & T = T
LY =col (Yt—Ny- - s Yty Ut— Ny ey Ut—1) 0 0

t=N,N+1,.... iy = A¥_y_q41, t=N+1LN+2,....(5

We shall follow the receding-horizon strategy described in [14OW: in order to find an explicit solution for Problef, we

for quite a general setting and specialized in [9] for linear sy&nall reformulate it as a regularized least-squares problem with
tems with no uncertainties. More specifically, at any Stawcertam data. Towards this goal, let us define the following

t = N,N +1,..., the objective is to find estimates of the statg'atrces:

vectorsz;_n,...,x; on the basis of the information vector C (C +60)

IN and of a predictionz; _y of the statex; . Let us de- CA (C+6C) (A+64)
note by ;_n¢,...,2:, the estimates ofe;_n,...,z:, re-  Fy 2 . Fn 2 )

spectively, to be made at stage As we have assumed the : :

statistics of zg, &, &1, .., N0, 71, ... to be unknown, a nat- C AN (C+30) (A+sA)N

ural criterion to derive the estimator consists in resorting to a .

least-squares approach. Towards this end, we introduce the Ksing the definition of7y , itis possible to rewrite cost (2) as

lowing loss function . - .
wingd Hnet Jp = Tt—Nit — Lt—N H?w + Hyi_N - FNxt—N,tHQ . (6)
~ — 2
Joo = NB-ne =T~ [y Owing to the compactness of the sets and C, a positive
¢ o definite matrixI" exists such that
+ > Ny —(C+6C) &y | )
P—— (Fn —Fn) (Fx —Fn) <T, Y6Ac A,VéCecC. (7)

where the first term, weighted by the positive definite matrix trivial choice for the matrixI" is given by’ = 421 where
M , expresses our belief in the predictian_y as compared

with the observation model. The matrix/ is assumed to be V= amex |Fn — Fn| -
positive definite and can be viewed as an extension of the scalar eAsoCe

positive weighty in [11] and [9], which was considered as aye can now state the following proposition.
design parameter. Of course, resorting to a mafvix gives

us many more degrees of freedom in the_estlr_nator d_es'gn'ly?bposition 1 Given a positive definite matriX’ satisfying
constructive procedure to select the matfix will be given (7), ¥6A € A and V6C € C there exists a suitable matrix

in the following (see Proposition 3). We assume that at stages | ch that:
t = N+ 1,N + 2,... the predictionZ;_ 5 is determined '
Yia the state equgtion of the n9minal system by the estimate ISI<1 , Fn-—Fy= ST1/2
Tt N—-1,t—1, that is, TN = A:ct_N_l,t_l . The vectorz
denotes an a priori prediction of). where I''/2 is the unique positive definite square root of the
o L atrix I".
A notable simplification of the estimation scheme can be og]—
tained by definingZ;_n41.4,...,%+: as estimates generated ]
by the first estimate®,_ ., through the state equation (1a)!f We rewrite cost (6) as
that is, N - 2
Joo o= | Tt—Njt — Lt—N HM
Bip1e=(A+6A) 2y , i=t—N,...,t—1. (3) + || FnEi—ng + (FN — Fn) &N — y£7N||2 ,

By applying (3) repeatedly, we obtain that, at stagethe and, by exploiting the results of Proposition 1, we replace
cost J; is a function of #;_n;, 64, and 6C, thatis, J; = Fy — Fy with ST'/2, we can formulate the following alter-
Ji (B_n 4, 04A,6C). native version of Problent;.



Problem Ej For a given pair (z;_,, ;") find the optimal As to the minimization in (9), if we exclude the boundary point

estimate A =1, we can explicitly solve the pseudo-inverse operation in
the definition of L, , that is,
&y _n,=arg min max J; (Z;_n4,9)
’ N [|S]1<1 ’ i NS s
t = Yo ) )
where Af—1

/(A JAN and hence we can rewrite the solution of ProblEfrin a more
Ji(Tt-n, S) =

itht—jffNHz .
’ M compact expression:

2
+ HFN-%t—N,t + SF1/2§7t—N,t - yf—NH . A7 -
~0 _ M 4+ \°T _t PR
5 Ty N ( tAL A+ A—1° N N)

[e]

A
x| Mz5_ 5 + —L—Fpyyt ) . (10
With a little abuse of notation, we denote by  , the so- ( PN -1 NN (10)

lutions of both ProblemFE; and ProblemE;. A similar

consideration holds for the optimal predictioa$_,, , ¢t = Ingeneral the proposed filter is nonlinear and time-variant, be-

N,N +1,.... The latter are determined as cause of the dependence on the scalar paramétethat has
L to be determined on line by means of a constrained line search.
Lo = To If, for some reasons (e.g., lack of computational time in the
T N=A% N g4, t=N+1LN+2,... . sampling period), this is not feasible, following [12], one can

obtain a reasonable approximation of the optimal solution by
Whereas on the one hand Proposition 1 ensures that every A#§igning to the scalar parameté a fixed valuel +«. The
trix Fy — Fy can be represented &&'1/2 with a suitable Scalar parameten can be suitably tuned off line by means of
eral, not every matrix of the forn§T"1/2 corresponds to an ad-Of ProblemE; given by:
missible matrix 7y — Fiy . Hence Problen; turns out to be a

-1
conservative reformulation of Problefy. However, choosing BN = <M +(1+a)l + 1+ aFJ’VFN>
a suitable matrixI” (e.g., by means of numerical simulations), ’ @
it is possible to greatly reduce this element of conservativity. Mz 1+ &t 11
Furthermore, using the results shown in [10], it is possible to x TNt — NN | (11)
give a semi-explicit solution to Problef,. More specifically,
we can state the following theorem. 3 Stability of the estimator
Theorem 1 ProblemE! has a unique solution given by In order to analyze the stability of the proposed estimation

scheme, we shall first prove the exponential convergence both

—1 . . .
0 (v - ~o - for the sub-optimal filter (11) and for the optimal one (10) when
&y = (M + FeLoPy)  (ME_y + Fie Loyl : .
t-Nt ( ¢ NEEN =N N StY-N no noise acts on the system and measurement equations. Then

h ®) we shall prove the (simple) stability in the noisy case. Let us
where consider the noiseless uncertain model of the form
A ° = o t
M, =M + )\tF , Ly=T+ [()‘t - l)ﬂ ’ Tt+1 = (A + 5A) Tt (126\)
and the scalar parametek? is the unique solution of the one- ye = (C+60) z¢. (12b)

dimensional optimization problem . .
P P In the following, for the sake of brevity, we shall use the fol-

o . 2 Y 2 lowing definition:

¢ = angin { eI, + e () - 25}
- A A
() 2 <M + AT + ——F} FN> .
o 2 _ 1 N

+ HFJ/vx()\) - (yLN - FNxth)HL()\) } 9 A-1
First, we assume that the scalar weiglitis set equal to a fixed
where value 1+« , hence we consider the approximate estimator (11).

£ 2 (310 + Fjvﬁ()\)FN)_l

x |F L) (yh_n — FNT_y) — AT Z° ,
{ VL) (i = FNTiy) t_N} (i) system (12a) is quadratically stable, that is, there exists a
MONEMEAT, LNET+[(N—DI. positive definite matrixP such that

0 (A+0A) P(A+5A)—P <0, VSAcA,

Theorem 2 Suppose that



(i) the matrix® (1 + Oz)_l M A is asymptotically stable, It is worth noting that condition (i) ensures that < 1, hence
|lz¢||p converges exponentially to zero. As
then estimator (11) is an exponential observer for system (12). 1/2
lze—nlp, < [2(P)/a(P)] llze-x]p .

Proof. If we consider the estimation errar;_ , defined as the P.-norm of the estimation error turns out to be bounded as
e N SN — 7y, we have

llet—nllp, < G-n

1 .
Ty — B(1+a)"! (M@J_N n +CYF]/Vyt ) where the sequencg_ n , defined as

€t—N o t—N
L G-n = erGon-+ [o(P)/a(P)?
= 2i+a) [(I)(l +e)on x (c1 + c2ap + czap) ||950HPG§D_N_1 )
5 I+a_, converges exponentially to zero, singg < 1 and the second
—( Mz y+——Fnyn ) |- ;
e term converges exponentially to zero.
Owing to the fact that)! = Fnz:—n , We obtain O

er-n = O(1+a)”! [M (#i-n —7{_n) + 1+ )Tz:—n  The following proposition provides an operating procedure to

1 1 verify condition (i).
+aFI/VFN.’L‘t,N— +aF]/V.7:Nxt,N
. Proposition 2 Suppose that the sefl, of all the admissible
= (1 +a) {MAet*Nfl + MoAv—N—1 uncertainties on the system matri, is given by
1+«
+(1+ o)l n + TFJIV (Fn — Fn) xt—N:| : A2 {SA : ASA<T,, T4 >0} . (15)
Condition (ii) implies that a Lyapunov matri®. exists such Then system (12a) is quadratically stable if and only if there
that exist a positive definite matri® and a scalar weighix > 0
, such that
[@(1+a)" MA| P [@(1+0a) MA| - P <0. (13) APA-Prals AP ], .
_ _ PA P—al '
By applying the operatoff - || p, to the error dynamics we ob-
tain =
let-nllp, < H<I> (1+a)™! MA‘ ler—n—1llp Note that equation (15) gives a reasonable characterization of
Pe a compact set. More specifically, it is always possible to find a
+ ’(b (1+a)™" M6AH lz:—n—1llp matrix I'4 suchthatdA’6A <T4, V6A € A. Inthis case, a
P, e

trivial choice isT' 4 = v4 where

+ H1+a<1> 1—|—oz_1I“
<( Je(d+a) T va £ max [|5A]| .
SAeA

1+«

®(1+a) ' Fy (Fy — Fn)

:

) lze-~llp, - Condition (16) is a Linear Matrix Inequality (LMI) irx and
Pe P and, hence, it is possible to verify its feasibility by means of
For the sake of brevity, let us define the following quantities: efficient numerical routine (see [13] for details).

A 1 As to condition (ii) of Theorem 2, the following proposition
pp = 21 +a)" MA|p. , can be formulated.
1 2 max |®(1+a) " MSA|p,
sAcA Proposition 3 Suppose that the weight matrix is given by
e = (1+a)|®(1+a)'Tp, -1
o Al "©(1+a)_1F, (Fy - F )H M:{(Y—l—X—l)X[(1+a)r+1+aF}\,FN]
87 T4 saediscec NN TN “

(7)
Clearly, we havepp < 1 and, owing to the compactness ofvhere X and Y are two positive definite matrices such that
the setsA and(C, ¢; < +00, ¢3 < 400, andcz < +oo. If ,
) X AY
we define >0, X-Y>0. (18)
A YA X
ap = max ||[A+0A|p, (14)
SA€A

. 1 . .
then we have Then the matrix® (1 + )~ M A is asymptotically stable.

[zellp < apllzollp - O



Since conditions (18) are LMI inX and Y, Proposition 3 and, since the functiorf(\{) , defined as
gives an operating procedure to choose the weight matfix

S
. oy . . . [e] [e]
Now, in order to address the stability issue of the time-variant FO9) & A Yomin + No —17min

estimator given by (10), we need the following assumption:

- . A
has a global minimunmy™* = f(A\*) in A* =1+ fuin/vYmin
Al.The pair (A, C) is completely observable iV steps. i, the interval (1,400), we h;\,e) /

We can state the following theorem. a[®(A)] = a(M)+ f*,

and, hence,
Theorem 3 Suppose that Assumption Al is satisfied and that

on— o(M)a
| . | o) arag < 2ADe 21)
(i) system (12a) is quadratically stable, a(M)+f
(i) the weight matrix)/ is such that Let us now define
A -1
+ f* di = su D (A7) " MHA|,
sar) < ZAD T a9 T e P G0 Al
dy = sup [A2® (AT,
where 2 A;’Zpl H t ( t) H
a2lAl, A (S f) . 42 sw 000 B (B - £
v/ Vmin Ao>1;64eA;0cec |[Af — 1
4 2 4
Ymin = (1), foin = @ (FNFN) Clearly, equation (21) impliegl; < +oco. As to the constant
ds , we have
then estimator (10) is an exponential observer for system (12). .
d < [T sup AR A7)l
Proof. The error dynamics associated with the estimator (10) o \©
is given by < |||l sup L
A?Zl Q(M) + )\t’Ymm + /\0 1f1311n
eron = B [MAet,N,1 + MoAz n- < I/ Aumin < 400 -

O

ATz N + )\o - F’ (Fy — Fn)xi_n| . (20) Inasimilar way, it is possible to see that
If we apply the norm operator to equation (20), we obtain ds < aAeA Seec [Fy (Fy = Pl
et < [|@ ) M fler——] * o oo
+ Hq) (A7) _1 M(SAH 2ty < Yl JAGA Soec [F (Fy = F)ll < +o0.
( ( FH Therefore, the norm of the estimation error is bounded above

by the sequence,;_y , defined as

@ ()" Fy (i = ) ||l wl

_ 1 _
Gt-N = (U(];{)rakat—N—l

Clearly, we have

on—1 on—1 +1/O’( ) (d1+d2ap+d3ap)”l'0Hpat N-1 s
[@ A7) MA| < [[ @A) [IM][IA
1 ~ which converges exponentially to zero provided that condition
= soeeMa: (19) is satisfied.
Moreover, the quantity [ ()9)] is bounded below as -
° ° ¢ / Note that condition (19) can be easily satisfied for any value
()] > a(M)+No() + —L—a(FNF
e[®()] = a(M)+Ne(l) + Ao — 1g( ) of a. More specifically, ifa < 1, for every choice of the pa-
>\° ) rametera(M) itis always possible to choosg( M) such that

= (M) + A{%min + Ao — 1 /min > (M) > o(M) and condition (19) is verified. Instead, when



a > 1, the region of the planéa (M), 5(M)) inwhich condi- have been stated when no noise acts on the system and mea-

tion (19) is satisfied is the triangle of verticés, 0) , (0, f*/a), surementequations, and operating procedures to choose the de-

and (f*/(1 —a), f*/(1 —a)). sign parameters have been proposed, based on a linear matrix

Let us now consider the noisy system (1) and let us suppose |Hgfquallty. Flnally, the'boundedness of the estimation error has
; . een proved in the noisy case.

the disturbances acting on the state and measurement equations

are norm-bounded. More specifically, we make the following
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