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Abstract

The problem of estimating the state of discrete-time linear
systems when uncertainties affect the system matrices is ad-
dressed. A quadratic cost function is considered, involving a
finite number of recent measurements and a prediction vec-
tor. This leads to state the estimation problem in the form of
a regularized least-squares one with uncertain data. The opti-
mal solution (involving on-line scalar minimization) together
with a suitable closed-form approximation are given. For both
the resulting receding-horizon estimators convergence results
are derived and an operating procedure to select the design pa-
rameters is proposed.

1 Introduction

Receding-horizon estimation has been the objective of numer-
ous investigations since the appearance of the pioneering work
[1] (see, also, [2, 3]). The interest for such a method stems from
the capability of dealing with a limited amount of data, instead
of using all the information available from the beginning.

Various methods have been proposed to perform receding-
horizon estimation. A possible approach consists in con-
structing sliding-window estimators that provide maximum-
likelihood or minimum-variance state estimates by assuming
that the system and measurement noises are white and Gaus-
sian distributed (see, among others, [4]). Alternative methods
are based on the idea of estimating the state of the system by
minimizing a least-squares cost function according to a sliding-
window strategy, where the noises are regarded as unknown
disturbances (see, among others, [5, 6, 7]).

Recent investigations mainly focused on least-squares meth-
ods that allow one to account for boundedness of both state
and noises by applying on-line optimization [8]. The develop-
ment of viable design procedures has been considered in [9].
However, despite the vast literature on the subject, no result on
robustness in receding-horizon estimation is known to these au-
thors. This has motivated our efforts of addressing robustness
with respect to system uncertainty for the receding-horizon es-
timator proposed in [9]. Such a goal has been obtained by us-
ing recent results (see [10]) that are well-suited to treating the

problem in our estimation framework.

In this paper, we address a receding-horizon estimation prob-
lem for discrete-time linear systems, affected by a bounded sys-
tem uncertainty. We shall follow the approach originally stated
in [11], where a guaranteed performance receding-horizon es-
timator was proposed for a quite general setting, making use of
on-line optimization or resorting to approximate neural strate-
gies. The linear case was treated in [9], where a solution in
closed form was given when no uncertainties affect the sys-
tem matrices. The proposed technique consists in minimizing
a sliding-window quadratic cost function that is made up of two
contributions. The first contribution is a weighted term penal-
izing the distance of the current estimated state from its predic-
tion (both computed at the beginning of the sliding window);
the second is the usual prediction error computed on the basis
of the last measures. In the presence of uncertainty, estimation
can be accomplished by minimizing a worst-case cost on line,
according to [10].

We conclude this section with some notations we use through-
out this paper. Given a generic, symmetric, positive definite
matrixP , let us denote byσ(P ) and σ̄(P ) the minimum and
maximum eigenvalues ofP , respectively. Given a generic ma-
trix M , M ′ and M† indicate the matrix transpose and the

pseudoinverse ofM , respectively. Furthermore,‖M‖max
4
=

‖M‖ = [σ̄(M ′M)]1/2 and ‖M‖min
4
= [σ(M ′M)]1/2 . Given

a generic vectorv , ‖v‖ denotes the Euclidean norm ofv , and,
given a positive definite matrixP , ‖v‖P denotes the weighted

norm of v , ‖v‖P
4
= (v′Pv)1/2 . For a generic time-variant

vector vt , vt
t−N

4
= col (vt−N , vt−N+1, . . . , vt) .

For the sake of brevity, the proofs of some of the results pre-
sented in the paper will be omitted.

2 Receding-horizon estimation for uncertain
discrete-time linear systems

Let us consider an uncertain linear dynamic system described
by the following discrete-time equations

xt+1 = (A + δA) xt + ξt (1a)

yt = (C + δC) xt + ηt (1b)

where t = 0, 1, . . . is the time instant,xt ∈ Rn is the state
vector (the initial statex0 is unknown),ξt ∈ Ξ ⊂ Rn is the



system noise vector,yt ∈ Rp is the vector of the measures, and
ηt ∈ H ⊂ Rp is the measurement noise vector. The matrices
δA and δC represent uncertainties in the knowledge of the
system, and are supposed to belong to the known compact sets
A and C , respectively.

We assume the statistics of the random variables
x0, ξ0, ξ1, . . . η0, η1, . . . to be unknown, and consider
them as deterministic variables of an unknown kind. More-
over, we assume our estimates to be based on data obtained in
the recent past, or, equivalently, we assume the estimator to be
a finite-memory one. Then we define the information vector as

IN
t

4
= col (yt−N , . . . , yt, ut−N , . . . , ut−1) ,

t = N, N + 1, . . . .

We shall follow the receding-horizon strategy described in [11]
for quite a general setting and specialized in [9] for linear sys-
tems with no uncertainties. More specifically, at any stage
t = N,N + 1, . . ., the objective is to find estimates of the state
vectors xt−N , . . . , xt on the basis of the information vector
IN
t and of a prediction̄xt−N of the statext−N . Let us de-

note by x̂t−N,t, . . . , x̂t,t the estimates ofxt−N , . . . , xt , re-
spectively, to be made at staget. As we have assumed the
statistics ofx0, ξ0, ξ1, . . . , η0, η1, . . . to be unknown, a nat-
ural criterion to derive the estimator consists in resorting to a
least-squares approach. Towards this end, we introduce the fol-
lowing loss function

Jt = ‖ x̂t−N,t − x̄t−N ‖2M

+
t∑

i=t−N

‖ yi − (C + δC) x̂i,t ‖2 (2)

where the first term, weighted by the positive definite matrix
M , expresses our belief in the prediction̄xt−N as compared
with the observation model. The matrixM is assumed to be
positive definite and can be viewed as an extension of the scalar
positive weightµ in [11] and [9], which was considered as a
design parameter. Of course, resorting to a matrixM gives
us many more degrees of freedom in the estimator design. A
constructive procedure to select the matrixM will be given
in the following (see Proposition 3). We assume that at stages
t = N + 1, N + 2, . . . the prediction x̄t−N is determined
via the state equation of the nominal system by the estimate
x̂t−N−1,t−1 , that is, x̄t−N = A x̂t−N−1,t−1 . The vector̄x0

denotes an a priori prediction ofx0.

A notable simplification of the estimation scheme can be ob-
tained by definingx̂t−N+1,t, . . . , x̂t,t as estimates generated
by the first estimatêxt−N,t through the state equation (1a),
that is,

x̂i+1,t = (A + δA) x̂i,t , i = t−N, . . . , t− 1 . (3)

By applying (3) repeatedly, we obtain that, at staget , the
cost Jt is a function of x̂t−N,t , δA , and δC , that is, Jt =
Jt (x̂t−N,t, δA, δC) .

As to the uncertainty in the system matrices, we shall follow a
minimax approach, then, at any staget = N, N + 1, . . . , the
following problem has to be solved:

Problem Et For a given pair(x̄◦t−N , IN
t ) , find the optimal

estimate

x̂◦t−N,t = arg min
x̂t−N,t

max
δA∈A ; δC∈C

Jt (x̂t−N,t, δA, δC) . (4)

The optimal predictions are determined as

x̄◦0 = x̄0

x̄◦t−N = A x̂◦t−N−1,t−1 , t = N + 1, N + 2, . . . . (5)

Now, in order to find an explicit solution for ProblemEt, we
shall reformulate it as a regularized least-squares problem with
uncertain data. Towards this goal, let us define the following
matrices:

FN
4
=




C
C A
...
C AN


 , FN

4
=




(C + δC)
(C + δC) (A + δA)
...
(C + δC) (A + δA)N


 .

Using the definition ofFN , it is possible to rewrite cost (2) as

Jt = ‖ x̂t−N,t − x̄t−N ‖2M +
∥∥yt

t−N −FN x̂t−N,t

∥∥2
. (6)

Owing to the compactness of the setsA and C , a positive
definite matrixΓ exists such that

(FN − FN )′ (FN − FN ) ≤ Γ , ∀δA ∈ A , ∀δC ∈ C . (7)

A trivial choice for the matrixΓ is given byΓ = γ2I where

γ = max
δA∈A ; δC∈C

‖FN − FN‖ .

We can now state the following proposition.

Proposition 1 Given a positive definite matrixΓ satisfying
(7), ∀δA ∈ A and ∀δC ∈ C there exists a suitable matrix
S such that:

‖S‖ ≤ 1 , FN − FN = S Γ1/2

where Γ1/2 is the unique positive definite square root of the
matrix Γ .

If we rewrite cost (6) as

Jt = ‖ x̂t−N,t − x̄t−N ‖2M
+

∥∥FN x̂t−N,t + (FN −FN ) x̂t−N,t − yt
t−N

∥∥2
,

and, by exploiting the results of Proposition 1, we replace
FN − FN with S Γ1/2, we can formulate the following alter-
native version of ProblemEt.



Problem E′
t For a given pair (x̄◦t−N , IN

t ) , find the optimal
estimate

x̂◦t−N,t = arg min
x̂t−N,t

max
‖S‖≤1

J ′t (x̂t−N,t, S)

where

J ′t (x̂t−N,t, S)
4
=

∥∥ x̂t−N,t − x̄◦t−N

∥∥2

M

+
∥∥∥FN x̂t−N,t + S Γ1/2x̂t−N,t − yt

t−N

∥∥∥
2

.

With a little abuse of notation, we denote bŷx◦t−N,t the so-
lutions of both ProblemEt and ProblemE′

t . A similar
consideration holds for the optimal predictionsx̄◦t−N , t =
N, N + 1, . . . . The latter are determined as

x̄◦0 = x̄0

x̄◦t−N = A x̂◦t−N−1,t−1 , t = N + 1, N + 2, . . . .

Whereas on the one hand Proposition 1 ensures that every ma-
trix FN − FN can be represented asSΓ1/2 with a suitable
choice of the contraction matrixS , on the other hand, in gen-
eral, not every matrix of the formSΓ1/2 corresponds to an ad-
missible matrixFN−FN . Hence ProblemE′

t turns out to be a
conservative reformulation of ProblemEt. However, choosing
a suitable matrixΓ (e.g., by means of numerical simulations),
it is possible to greatly reduce this element of conservativity.
Furthermore, using the results shown in [10], it is possible to
give a semi-explicit solution to ProblemE′

t. More specifically,
we can state the following theorem.

Theorem 1 ProblemE′
t has a unique solution given by

x̂◦t−N,t =
(
M̂t + F ′N L̂tFN

)−1 (
M x̄◦t−N + F ′N L̂t yt

t−N

)

(8)
where

M̂t
4
= M + λ◦t Γ , L̂t

4
= I + [(λ◦t − 1)I]† ,

and the scalar parameterλ◦t is the unique solution of the one-
dimensional optimization problem

λ◦t = arg min
λ≥1

{
‖xt(λ)‖2M +

∥∥xt(λ)− x̄◦t−N

∥∥2

Γ

+
∥∥F ′Nx(λ)− (

yt
t−N − FN x̄◦t−N

)∥∥2

L̂(λ)

}
(9)

where

xt(λ)
4
=

(
M̂(λ) + F ′N L̂(λ)FN

)−1

×
[
F ′N L̂(λ)

(
yt

t−N − FN x̄◦t−N

)− λ◦Γ x̄◦t−N

]
,

M̂(λ)
4
= M + λΓ , L̂(λ)

4
= I + [(λ− 1)I]† .

As to the minimization in (9), if we exclude the boundary point
λ = 1 , we can explicitly solve the pseudo-inverse operation in
the definition ofL̂t , that is,

L̂t =
λ◦t

λ◦t − 1
I ,

and hence we can rewrite the solution of ProblemE′
t in a more

compact expression:

x̂◦t−N,t =
(

M + λ◦t Γ +
λ◦t

λ◦t − 1
F ′NFN

)−1

×
(

Mx̄◦t−N +
λ◦t

λ◦t − 1
F ′Nyt

t−N

)
. (10)

In general the proposed filter is nonlinear and time-variant, be-
cause of the dependence on the scalar parameterλ◦t , that has
to be determined on line by means of a constrained line search.
If, for some reasons (e.g., lack of computational time in the
sampling period), this is not feasible, following [12], one can
obtain a reasonable approximation of the optimal solution by
assigning to the scalar parameterλ◦t a fixed value1 + α . The
scalar parameterα can be suitably tuned off line by means of
numerical simulations. This leads to an approximated solution
of ProblemE′

t given by:

x̂◦t−N,t =
(

M + (1 + α)Γ +
1 + α

α
F ′NFN

)−1

×
(

Mx̄◦t−N +
1 + α

α
F ′Nyt

t−N

)
. (11)

3 Stability of the estimator

In order to analyze the stability of the proposed estimation
scheme, we shall first prove the exponential convergence both
for the sub-optimal filter (11) and for the optimal one (10) when
no noise acts on the system and measurement equations. Then
we shall prove the (simple) stability in the noisy case. Let us
consider the noiseless uncertain model of the form

xt+1 = (A + δA) xt (12a)

yt = (C + δC) xt . (12b)

In the following, for the sake of brevity, we shall use the fol-
lowing definition:

Φ(λ)
4
=

(
M + λΓ +

λ

λ− 1
F ′NFN

)
.

First, we assume that the scalar weightλ◦t is set equal to a fixed
value1+α , hence we consider the approximate estimator (11).

Theorem 2 Suppose that

(i) system (12a) is quadratically stable, that is, there exists a
positive definite matrixP such that

(A + δA)′ P (A + δA)− P < 0 , ∀δA ∈ A ,



(ii) the matrixΦ(1 + α)−1
MA is asymptotically stable,

then estimator (11) is an exponential observer for system (12).

Proof: If we consider the estimation erroret−N , defined as

et−N
4
= xt−N − x̂◦t−N,t , we have

et−N = xt−N − Φ(1 + α)−1

(
Mx̄◦t−N +

1 + α

α
F ′Nyt

t−N

)

= Φ(1 + α)−1

[
Φ(1 + α)xt−N

−
(

Mx̄◦t−N +
1 + α

α
F ′Nyt

t−N

)]
.

Owing to the fact thatyt
t−N = FNxt−N , we obtain

et−N = Φ(1 + α)−1
[
M

(
xt−N − x̄◦t−N

)
+ (1 + α)Γxt−N

+
1 + α

α
F ′NFNxt−N − 1 + α

α
F ′NFNxt−N

]

= Φ(1 + α)−1
[
MAet−N−1 + MδAxt−N−1

+(1 + α)Γxt−N +
1 + α

α
F ′N (FN −FN )xt−N

]
.

Condition (ii) implies that a Lyapunov matrixPe exists such
that
[
Φ (1 + α)−1

MA
]′

Pe

[
Φ(1 + α)−1

MA
]
−Pe < 0 . (13)

By applying the operator‖ · ‖Pe to the error dynamics we ob-
tain

‖et−N‖Pe
≤

∥∥∥Φ(1 + α)−1
MA

∥∥∥
Pe

‖et−N−1‖Pe

+
∥∥∥Φ (1 + α)−1

MδA
∥∥∥

Pe

‖xt−N−1‖Pe

+
( ∥∥∥(1 + α)Φ (1 + α)−1 Γ

∥∥∥
Pe

+
∥∥∥∥

1 + α

α
Φ(1 + α)−1

F ′N (FN −FN )
∥∥∥∥

Pe

)
‖xt−N‖Pe

.

For the sake of brevity, let us define the following quantities:

ϕP
4
= ‖Φ(1 + α)−1

MA‖Pe ,

c1
4
= max

δA∈A
‖Φ(1 + α)−1

MδA‖Pe ,

c2
4
= (1 + α)‖Φ(1 + α)−1Γ‖Pe ,

c3
4
=

1 + α

α
max

δA∈A ; δC∈C

∥∥∥Φ (1 + α)−1
F ′N (FN −FN )

∥∥∥
Pe

.

Clearly, we haveϕP < 1 and, owing to the compactness of
the setsA and C , c1 < +∞ , c2 < +∞ , and c3 < +∞ . If
we define

aP
4
= max

δA∈A
‖A + δA‖P , (14)

then we have
‖xt‖P ≤ at

P ‖x0‖P .

It is worth noting that condition (i) ensures thataP < 1 , hence
‖xt‖P converges exponentially to zero. As

‖xt−N‖Pe
≤ [σ(Pe)/σ(P )]1/2 ‖xt−N‖P ,

the Pe-norm of the estimation error turns out to be bounded as

‖et−N‖Pe
≤ ζt−N

where the sequenceζt−N , defined as

ζt−N = ϕP ζt−N−1 + [σ(Pe)/σ(P )]1/2

× (c1 + c2aP + c3aP ) ‖x0‖P at−N−1
P ,

converges exponentially to zero, sinceϕP < 1 and the second
term converges exponentially to zero.

The following proposition provides an operating procedure to
verify condition (i).

Proposition 2 Suppose that the setA , of all the admissible
uncertainties on the system matrixA , is given by

A 4
= {δA : δA′δA ≤ ΓA , ΓA > 0} . (15)

Then system (12a) is quadratically stable if and only if there
exist a positive definite matrixP and a scalar weightα ≥ 0
such that [

A′PA− P + αΓA A′P
PA P − αI

]
< 0 . (16)

Note that equation (15) gives a reasonable characterization of
a compact set. More specifically, it is always possible to find a
matrix ΓA such thatδA′δA ≤ ΓA , ∀δA ∈ A . In this case, a
trivial choice isΓA = γ2

A where

γA
4
= max

δA∈A
‖δA‖ .

Condition (16) is a Linear Matrix Inequality (LMI) inα and
P and, hence, it is possible to verify its feasibility by means of
efficient numerical routine (see [13] for details).

As to condition (ii) of Theorem 2, the following proposition
can be formulated.

Proposition 3 Suppose that the weight matrixM is given by

M =

{
(
Y −1 −X−1

)
X

[
(1 + α)Γ +

1 + α

α
F ′NFN

]−1
}

(17)
whereX and Y are two positive definite matrices such that

[
X A′Y
Y A X

]
> 0 , X − Y > 0 . (18)

Then the matrixΦ(1 + α)−1
MA is asymptotically stable.



Since conditions (18) are LMI inX and Y , Proposition 3
gives an operating procedure to choose the weight matrixM .

Now, in order to address the stability issue of the time-variant
estimator given by (10), we need the following assumption:

A1.The pair(A,C) is completely observable inN steps.

We can state the following theorem.

Theorem 3 Suppose that Assumption A1 is satisfied and that

(i) system (12a) is quadratically stable,

(ii) the weight matrixM is such that

σ̄(M) ≤ σ(M) + f∗

a
(19)

where

a
4
= ‖A‖ , f∗

4
=

fmin√
γmin

(
√

γmin + fmin)2 ,

γmin
4
= σ(Γ) , f2

min
4
= σ (F ′NFN ) ,

then estimator (10) is an exponential observer for system (12).

Proof: The error dynamics associated with the estimator (10)
is given by

et−N = Φ(λ◦t )
−1

[
MAet−N−1 + MδAxt−N−1

+λ◦t Γxt−N +
λ◦t

λ◦t − 1
F ′N (FN −FN )xt−N

]
. (20)

If we apply the norm operator to equation (20), we obtain

‖et−N‖ ≤
∥∥∥Φ(λ◦t )

−1
MA

∥∥∥ ‖et−N−1‖

+
∥∥∥Φ(λ◦t )

−1
MδA

∥∥∥ ‖xt−N−1‖

+
( ∥∥∥λ◦t Φ(λ◦t )

−1 Γ
∥∥∥

+
∥∥∥ λ◦t

λ◦t − 1
Φ (λ◦t )

−1
F ′N (FN −FN )

∥∥∥
)
‖xt−N‖ .

Clearly, we have

‖Φ(λ◦t )
−1

MA‖ ≤ ‖Φ (λ◦t )
−1 ‖‖M‖‖A‖

=
1

σ [Φ (λ◦t )]
σ̄(M) a .

Moreover, the quantityσ [Φ (λ◦t )] is bounded below as

σ [Φ (λ◦t )] ≥ σ(M) + λ◦t σ(Γ) +
λ◦t

λ◦t − 1
σ(F ′NFN )

= σ(M) + λ◦t γmin +
λ◦t

λ◦t − 1
f2
min ,

and, since the functionf(λ◦t ) , defined as

f(λ◦t )
4
= λ◦t γmin +

λ◦t
λ◦t − 1

f2
min ,

has a global minimumf∗ = f(λ∗) in λ∗
4
= 1 + fmin/

√
γmin

in the interval(1,+∞) , we have

σ [Φ (λ◦t )] ≥ σ(M) + f∗ ,

and, hence,

‖Φ(λ◦t )
−1

MA‖ ≤ σ̄(M) a

σ(M) + f∗
. (21)

Let us now define

d1
4
= sup

λ◦t≥1 ; δA∈A
‖Φ(λ◦t )

−1
MδA‖ ,

d2
4
= sup

λ◦t≥1
‖λ◦t Φ (λ◦t )

−1 Γ‖ ,

d3
4
= sup

λ◦t≥1 ; δA∈A ; δC∈C

∥∥∥∥
λ◦t

λ◦t − 1
Φ (λ◦t )

−1
F ′N (FN −FN )

∥∥∥∥.

Clearly, equation (21) impliesd1 < +∞ . As to the constant
d2 , we have

d2 ≤ ‖Γ‖ sup
λ◦t≥1

λ◦t ‖Φ(λ◦t )
−1 ‖

≤ ‖Γ‖ sup
λ◦t≥1

λ◦t
σ(M) + λ◦t γmin + λ◦t

λ◦t−1f2
min

≤ ‖Γ‖/γmin < +∞ .

In a similar way, it is possible to see that

d3 ≤ max
δA∈A ; δC∈C

‖F ′N (FN −FN )‖

× sup
λ◦t≥1

{
λ◦t

λ◦t − 1
‖Φ(λ◦t )

−1 ‖
}

≤ 1/f2
min max

δA∈A ; δC∈C
‖F ′N (FN −FN )‖ < +∞ .

Therefore, the norm of the estimation error is bounded above
by the sequenceζt−N , defined as

ζt−N =
σ̄(M) a

σ(M) + f∗
ζt−N−1

+1/σ(P )1/2 (d1 + d2aP + d3aP ) ‖x0‖P at−N−1
P ,

which converges exponentially to zero provided that condition
(19) is satisfied.

Note that condition (19) can be easily satisfied for any value
of a . More specifically, ifa ≤ 1 , for every choice of the pa-
rameterσ(M) it is always possible to choosēσ(M) such that
σ̄(M) ≥ σ(M) and condition (19) is verified. Instead, when



a > 1 , the region of the plane(σ(M), σ̄(M)) in which condi-
tion (19) is satisfied is the triangle of vertices(0, 0) , (0, f∗/a),
and (f∗/(1− a), f∗/(1− a)) .

Let us now consider the noisy system (1) and let us suppose that
the disturbances acting on the state and measurement equations
are norm-bounded. More specifically, we make the following
assumption:

A2.Ξ and H are compact sets.

Then, owing to the exponential convergence of the estimator
(11), the following theorem can be stated.

Theorem 4 Suppose that Assumption A2 is satisfied and that

(i) system (12a) is quadratically stable,

(ii) the matrixΦ(1 + α)−1
MA is asymptotically stable,

then estimator (11) applied to system (1) provides a bounded
estimation error.

A similar behavior can be shown for the estimator (10). More
specifically the following theorem can be stated.

Theorem 5 Suppose that Assumptions A1 and A2 are satisfied
and that

(i) system (12a) is quadratically stable,

(ii) the weight matrixM satisfies condition (19),

then estimator (10) applied to system (1) provides a bounded
estimation error.

4 Conclusions

A receding-horizon method for estimating the state of uncer-
tain discrete-time linear systems have been presented. The
proposed technique relies on the minimization of a worst-case
quadratic cost function. The latter involves a weighted term
penalizing the distance of the current estimated state from its
prediction (both computed at the beginning of the sliding win-
dow) and the usual prediction error computed on the basis of
the last measures.

The estimation problem has been reduced to a regularized least-
squares minimization with uncertain data, and the optimal solu-
tion has been provided, involving on-line scalar minimization.
Moreover, a suitable closed-form approximate solution have
been given. For both the optimal and approximate receding-
horizon estimators, conditions for the exponential convergence

have been stated when no noise acts on the system and mea-
surement equations, and operating procedures to choose the de-
sign parameters have been proposed, based on a linear matrix
inequality. Finally, the boundedness of the estimation error has
been proved in the noisy case.
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