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Abstract 

In this paper, one method of robust control based on sliding 
mode and fuzzy logic techniques is presented. It combines 
hierarchical control with high gain approach for multivariable 
and nonlinear systems; in order to eliminate chattering in 
presence of disturbances. Simulation results are presented to 
illustrate the applicability of the approach 

1 Introduction 

A simple and good technique of robust control is the sliding 
mode one (Utkin, 1992; Utkin, et al., 1999), since it is 
composed of two clear steps: selection of the sliding surface, 
such that the sliding mode equation on this surface is robust 
in presence of disturbances, and design of a discontinuous 
control which stabilizes the projection motion of the closed 
loop system on the sliding surface subspace. 

It is known that the sliding mode motion is invariant with 
respect to disturbance, which satisfies the matching condition 
(Drajenovic, 1969). There are two cases for controlling 
systems with unmatching condition: measured disturbances, 
and, unmeasured ones. For the second case, the problem can 
be solved using high gain control, but it can produce the 
“chattering” (Utkin, et al., 1999) or oscillations on the sliding 
surface due to the imperfections in the control devices.  

In this paper we propose a new control scheme using 
combination of the sliding mode control, block control 
(Luk'yanov, 1998) and fuzzy logic control (Driankov, et al., 
1996) techniques to eliminate the chattering in the closed-
loop system with both the matched and unmatched unknown 
perturbations. Note the sliding mode fuzzy  logic controller 
was investigated for the system with matched perturbations in 
(Palm, et al., 1997; Alexík and Vittek, 1994; Scibile and  
Kouvaritakis, 2001; Wong, et al., 2001; Ha, et al., 2001; 
Kaynak, et al., 2001) 

2 Control Method 

Consider a single input single output system (SISO) nonlinear  
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system subject to a disturbances  

w)(u)()( xgxbxfx ++=                                    (1) 
)(xhy =                                                          (2) 

where T
nxx ),...,( 1=x  is the state vector, u is the control 

input, y is the output, w  represents an external disturbance 
which is unknown but bounded, )(xf  and )(xb  are 
sufficiently smooth and bounded functions, )(xg is an 
unknown but bounded function, and 0)0( =f . 

We assume that there exists a nonlinear transformation that 
reduces the system (1) to the so-called Block Controllable 
Form with disturbances (Luk'yanov, 1998): 
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with 1( ,..., )T
i ix x=x , 0≠ib , ( )i if x  and ( )i ib x are 

sufficiently smooth and bounded functions. 

If the disturbance w satisfies the matching condition 
(Drajenovic, 1969), that is, there is a scalar function )(xλ  
such that  

)()()( xxbxg λ=                                    (5) 

then it is easy to show that 0)( 11 =xg  and ( ) 0,i ig =x  
2, ..., 1i n= −  in (3), and therefore, sliding mode motion is 

invariant with respect to external disturbance. The aim of this 
paper is to design a discontinuous control that provides 
robustness, with not chattering, to the closed-loop system for 
the unmatched disturbances case, i.e. w does not satisfy the 
matching condition (5). In this case there is ( ) 0,i ig ≠x  

2, ..., 1i n= − . The control procedure consists of the following: 

Suppose that the output y requires to follow the reference 
signal r. Using the block control technique (Luk'yanov, 1998) 
we introduce the following recursive transformation: 

 

 



     

),( 1111 rxrxz Φ≡−=                                                        (6a) 
),()()()( 22211211112 rxΦ≡−+−+= rxkrxxbxfz         (6b) 

),(),()(),( 3332222223223 rxrxxx Φ≡Φ++= kfxtbz   (6c) 

),(),()()( 11111 +++++ Φ≡Φ++= iiiiiiiiiiiii kfxbz rxrxxx  
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where T
nzz ),...,( 1=z  is a new variables vector, 0>ik , 

Trr ),( )1(
2 =r , ),...,,( )1()1( Ti

i rrr −=r , iii bbb 1−= . The 
transformation (6a)-(6d) reduces the system (3) to the 
following desired form: 
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1,...,2,)(1 −=++−= + riwgzzkz iiiiii z          (7b) 
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where T
ii zz ),...,( 1=z , )(znf  is a continuous and bounded 

function, and nnn bbb 1−= . 

In order to generate sliding mode in (7a)-(7c) a natural choice 
of the switching function is nzs =  (6d). Then the desired 
dynamics of the closed-loop system for the case of unknown 
w, can be selected as 

wgssignks nn )()( z+−= ,     0>nk                     (8) 

From (7c) and (8) a discontinuous control strategy can be 
obtained of the following form: 

1( ) ( ) ( )n n equ k b sign s u−= − +z z                                (9) 

where )(zequ  is the equivalent control calculated from 0=s  

in the absence of the disturbance as 1( ) ( )eq n nu b f−= − z z . 
In order to derive the stability condition, we use a positive 

definite function ( ) 2

2
1 ssV = . Then from 

                 [ ( ) ]n nV k g w s≤ − − z  

we can obtain 

( )n nk g w≥ z                                                        (10) 

Under this condition the state converges to the surface 0=s  
and the sliding mode motion occurs on this surface in a finite 
time. This motion is described by the following thn )1( −  
order system: 
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The following assumption on the bounds of the unknown 
terms in (7a)-(7c), is stated: 

A1) There exist positive constants ijq  and id  such that 
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To achieve the robustness property with respect to unknown 
but bounded uncertainty, the controller gains 1k ,…, 1−nk  have 
to be chosen hierarchically high. Thus, since wzg )( 11  in 
(12a) does not depend on 1k , the value of this coefficient can 
be chosen so high that the term 11zk  in (11a) will be 
dominate. By block linearization procedure, the term 

wg )( 22 z  in (12b) depends on 1k  but not on 2k ,…, 1−rk . 
Then for fixed 1k , the appropriate choice of 2k  value 
provides the domination of term 22 zk  in the second block of 
(11b), and so on. 

In order to establish the required hierarchy of the control 
gains which ensures stability of the sliding mode motion 
(11a)-(11c), we choose a Lyapunov function candidate V for 
the system (11a)-(11c) as a sum of Lyapunov function 
candidates for the each block of (11a)-(11c), namely 
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and let us calculate the derivatives iV , 1,...,1 −= ri  step by 
step from the first block to the last block of (11a)-(11c).  

At the first step, differentiating the Lyapunov function 
candidate 2

12
1

1 zV =  along the trajectories of (11a) and using 
assumption A1, namely (12a), we get 
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Therefore, the state ultimately enter the domain in subspace 
),( 21 zz  defined by  

122121 βα +≤ zz                                 (13) 

where the parameters 12α  and 12β  defined as 

( ) 1
11112

−−=α qk  and 11212 dα=β  

are positive if the following condition holds: 

111 qk >                                       (14) 

At the second step, following similar lines to those taken for 
the first block, the derivative 2V  of the Lyapunov function 
candidate 21

2 22V z=  calculated along the trajectories of the 



     

second block of (11b), under conditions (12a), (128b) and 
(14), is given by 
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which is negative if 
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Hence, the state ultimately enter the domain in the subspace 
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inequalities  
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At the next step, taking again the derivative of the Lyapunov 
function 2

2
1

ii zV =  along the trajectories of the thi  block of 
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From this equation it follows that 
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holds.  Substitution of (18) in (16) gives the following set of 
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where 1,,1, ++ αα=α iiijij  and ijiiijij ,1,,1, β+βα=β ++ , 
ij ,...,1= , 1,...,4 −= ni . 

At the last step we have the domain of convergence in the 
subspace ),...,,( 121 −nzzz  defined by the following 
inequalities: 
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By the Comparison Lemma (Khalil, 1996), we have  
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Therefore, using the obtained upper (23) and ultimate (24) 
bounds on the solution )(1 tzn− , and the inequalities (21), and 

going back, from the ( thn )1−  block to the first block of 
(11a)-(11c), we can find step-by-step upper estimations and 
ultimate bounds on the solutions )(,...),(),( 132 tztztz nn −− . 

In order to reduce the effect of the unknown disturbances 
action in (8), that is, ensure inequalities (15), (20) and (22) for 
given bounds (12a)-(12d), and, respectively, increase the 
region of the sliding mode stability (10), it is needed to 
increase the value of the controller gain nk  in (9). 

This high gain, however, can produce “chattering” due to 
some imperfections in the control devices. To solve this 
problem we propose to adjust the value of the gain nk  
depending on the value  of s and the distance nd  defined as 
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1

2
1

2
1 −++= nn zzd  

It can be done by using the fuzzy logic scheme. For the case 
of a bounded control, the value of  nk  begins with 

max,nn kk =  and then, as s tends to zero, the value of nk  
decreases smoothly up to min,nn kk = , avoiding “chattering”.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A schematic diagram of evolution of s and nk  is shown in 
Figure 1. The block diagram of the closed-loop system with 
block transformation and sliding mode fuzzy logic controller 
(SMFLCBC) is presented in the Figure 2. 

The diagram consists of the following parts: 

Block Control part. This block transforms state x in the new 
coordinate z 

                 TBC : x → z , such that z = TBC (x) 

where the map BCT  is defined by (6a)-(6d), and computes the 
value of the following distances: 

                nzs =  and ( )2
1

2
1

2
1 −++= nzzd . 

Slope Change block: Using fuzzy logic, the gains 11 ,, −nkk  
are modified by this block when the sliding surface 0=s  is 
reached. Opposed to nk  changes, the gains 11 ,, −nkk  (slope 
gains) are incremented from minimal to maximal values, 
resulting on an increasing of the sliding mode motion rate in 
(11) and of the stability region. 

Fuzzy Controller block: This block uses two inputs: In1= s 
and In2=d, instead of all state x, and it determines the gain nk  
depending on the magnitude of the inputs such that to satisfy 
the stability condition (10). The block consists of the 
following parts: 

Normalization Input part scales (normalizes) inputs such that 
the sliding surface is reached in a smooth and fast way. 

Fuzzification part transforms the crisp input values in 
fuzzified values 

                LInInF →:   such that ),()( jiLInInF i =  

where Ini ∈ In is a crisp input value defined on the discourse 
universe In, and Lin(i, j) is a corresponding fuzzified input 
value also named as membership degree. 

Inference Mechanism part uses the following type rule: 

     Rule m:  If (Lin(1, j) and Lin(2, k))  Then  CR(j, k)=Cout(l) 

where CR(j, k) is the corresponding value in the rule 
consequent, and COut(l) is the l-th central value of the output 
set. 

Defuzzification part based on the weighted mean 
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Fig 1: Evolution of s and k 
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Figure 2. Block Diagram 



     

defuzzification method (Driankov, et al., 1996) produces a 
scalar value kd calculated as 

( ) ( )

( )∑∑

∑∑

= =

= ==
1 2

1 2

1 1

1 1

,

,,

ne

j

ne

k

ne

j

ne

k
d

kjLAnt

kjCRkjLAnt

k                          (25) 

where ( ) ( ) ( )( )kLInjLInkjLAnt ,2,,1min, =  is the premise 
quantification of the active rule, and nei for i=1,2, is the fuzzy 
set size. 

Denormalization part multiplicities normalized fuzzy 
controller output with denormalization factor (scale), 

scalekk dn ⋅= , such that the system (8) stays stable. 

Output Conditioning block: This block verifies the constrains 
on the control in order to preserve stability conditions, and 
control limitation. Finally, the control u is obtained. 

Figure 3 shows the gain kd (25) computation for hypothetical 
inputs (In1 and In2). 

3 Stepper Motor Control 

In this section, we apply the proposed scheme to control a 
permanent magnet stepper motor. Its mathematical model is 
given by 
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where, θ  is the angular position; ω  is the shaft speed; ai  
and bi  are is the currents in phases A and B respectively; au  
and bu  are is the voltages in phases A and B, respectively;  J 
is the moment of inertia; R and L are the resistance and 
inductance in each of the phase windings, rN  is the number 
of rotor teeth, mK . Is the motor torque constant, vB  is the 
viscous friction and lτ  presents the loud torque perturbation. 

Selecting the following state variables, x1 = θ , x2 = ω, 
bix =3 , aix =4 , the system (26) is represented as block 

controllable system consisting of tree blocks, and subject to 
unknown disturbance , 1wl =τ . 
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Suppose that the output 1  y x= is required to follow the 
reference signal refx1 . Following the block transformation 
procedure, first we define the tracking error as 

refxxz 111 −= , and 

refxxz 121 −= .                                   (28) 

Then a desired dynamics for 1z  is introduced as 

2111 zzkz +−= .                                   (29) 

Solving (28) and (29) for z2, we obtain 
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From this equation and the desired dynamics 

123222 wdzzkz −+−=                            (30) 

we have 

)()()(),( 4123112133 txxbxxbxxfz ϕ+−+=  

where 3z  is a new variable, ( ) 22211213 xakkxkkf −++= , 
( ) refrefref xxkkxkkt 1121121)( −+−−=ϕ . In order to have a 

nonsingular transformation we introduce a new variable 4z  

4113124 )()( xxbxxbz −−=  

such that the matrix 1 1 2 1
2

2 1 1 1

( ) ( )
( ) ( )

b x b x
b x b x

− 
=  − − 

B  has full rank.  

In order to obtain the control action, first we define the 
switching functions as 
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Figure 3 Fuzzy Gain kd 
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Then the projection motion on the subspace 1s , 2s  is 
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where Txxxx ),,,( 4321=x ; )(3 xf and )(4 xf  are continuous 
functions. The control strategy is selected of the form  
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and the sliding mode stability conditions are 

)()(330 tfkb ϕ+> x  and )(440 xfkb > . 

Under these conditions the state converges to the sliding 
manifold 01 =s , 02 =s , and when this manifold is reached 
the sliding mode motion is described by the second order 
system with unknown nonvanishing perturbation 

2111 zzkz +−=  

1222 wzkz +−= . 

In order to reduce the disturbances influence, we apply the 
described in the section 2 sliding mode fuzzy logic control 
scheme for adjusting of the controller gains 21, kk , 3k  and 

4k  such that 03 uk ≤  and 04 uk ≤  with 00 >u . 

4 Simulation Results 

In this section, simulation results are presented for the 
Permanent Magnet Stepper Motor with parameters: 

mHL 10= , Ω= 4.8R , radNmsJ /106.3 26−×= , 

radVskm /05.0= , 50=rN , radNmsB /101 4−×= . The 
maximal supplied voltage is Vu 20 = . In all Figures it is 
shown the behavior of the state ),,,( 4321 xxxx  as well as 
new state ),,,( 4321 zzzz , and the gains ki i=1,2,3, the control 
u, and disturbance lw τ=1 .  

Figure 4 displays Block Control Tracking (BCT) with Fuzzy 
Logic (FL) results using the proposed approach, where 
smooth variation of ik  gain is observed, and the chattering is 
reduced. 

5 Conclusions 

As it can be seen, the proposed scheme performance is very 
encouraging. Simulations assume that the disturbance 
cannotbe measured, which is an extreme situation. However, 
the proposed hierarchical sliding mode control approach with 
the fuzzy logic control, improves the system behavior, 
reducing chattering and guaranteeing stability. 
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Figure 4: BCT with FLC and disturbances 
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