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Abstract

In this paper, one method of robust control based on sliding
mode and fuzzy logic techniques is presented. It combines
hierarchical control with high gain approach for multivariable
and nonlinear systems; in order to eliminate chattering in
presence of disturbances. Simulation results are presented to
illustrate the applicability of the approach

1 Introduction

A simple and good technique of robust control is the sliding
mode one (Utkin, 1992; Utkin, et al., 1999), since it is
composed of two clear steps: selection of the sliding surface,
such that the sliding mode equation on this surface is robust
in presence of disturbances, and design of a discontinuous
control which stabilizes the projection motion of the closed
loop system on the sliding surface subspace.

It is known that the sliding mode motion is invariant with
respect to disturbance, which satisfies the matching condition
(Drajenovic, 1969). There are two cases for controlling
systems with unmatching condition: measured disturbances,
and, unmeasured ones. For the second case, the problem can
be solved using high gain control, but it can produce the
“chattering” (Utkin, et al., 1999) or oscillations on the sliding
surface due to the imperfections in the control devices.

In this paper we propose a new control scheme using
combination of the sliding mode control, block control
(Luk'yanov, 1998) and fuzzy logic control (Driankov, et al.,
1996) techniques to eliminate the chattering in the closed-
loop system with both the matched and unmatched unknown
perturbations. Note the sliding mode fuzzy logic controller
was investigated for the system with matched perturbations in
(Palm, et al., 1997; Alexik and Vittek, 1994; Scibile and
Kouvaritakis, 2001; Wong, et al., 2001; Ha, et al., 2001;
Kaynak, et al., 2001)

2 Control Method

Consider a single input single output system (SISO) nonlinear
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system subject to a disturbances
x =f(x) +b(x)u+g(x)w €))
y=h(x) @

where X =(x,,..,x,)" is the state vector, u is the control
input, y is the output, w represents an external disturbance
which is unknown but bounded, f(x) and hb(x) are
sufficiently smooth and bounded functions,

unknown but bounded function, and f(0)=0 .

g(x) is an

We assume that there exists a nonlinear transformation that
reduces the system (1) to the so-called Block Controllable
Form with disturbances (Luk'yanov, 1998):

xp = f1 () by (xp)x, + gy (x)w

X =f,(x)+b;(X)x; +g,(X)w, i=2.,n-1 (3)

X, = f,(X)+b,(X)u+g,X)w

y=x 4)

b0,  f(X)
sufficiently smooth and bounded functions.

with X, = (x, ,...,xl.)T s and b, (ii ) are

If the disturbance w satisfies the matching condition
(Drajenovic, 1969), that is, there is a scalar function A(x)

such that
g(x)=b(x)A(x) (%)

then it is easy to show that g,(x;)=0 and g,(X,)=0,
i=2,.,n—1 in (3), and therefore, sliding mode motion is
invariant with respect to external disturbance. The aim of this
paper is to design a discontinuous control that provides
robustness, with not chattering, to the closed-loop system for
the unmatched disturbances case, i.e. w does not satisfy the
matching condition (5). In this case there is g,(X,)#0,

i =2,..,n—1. The control procedure consists of the following:
Suppose that the output y requires to follow the reference

signal r. Using the block control technique (Luk'yanov, 1998)
we introduce the following recursive transformation:



zy=x—r=D(x;,r) (6a)
2y = fi(x))+ b (x))xy —F+ky (x) =)= D, (X,,T,) (6b)
23 =Dy (X5.00%;5 + f5(X5) + ky @ (X5.15) = D3 (X5,13) (6¢)
Ziay = BiX)N 0 + [i(X) H D, (X1 = Oy (X))

i=3,..,n (6d)

where z:(zl,...,zn)T is a new variables vector, k; >0,

NT - =
r, =,y =W, YY) b =k, b, The

transformation (6a)-(6d) reduces the system (3) to the
following desired form:

2y =—kyz; +z, + g (z))w (7a)
z;==kiz;+z; + g, (Z)w, i=2,.,r-1 (7b)
¢y =1, (@) +b, (@u+g, (2w (7¢)

where z; =(z,,....z;)", f,(z) is a continuous and bounded
function, and l;n = Enflbn .

In order to generate sliding mode in (7a)-(7¢) a natural choice
of the switching function is s=2z, (6d). Then the desired

dynamics of the closed-loop system for the case of unknown
w, can be selected as

s =—k,sign(s)+g,(@)w, k,>0 (8)

n

From (7¢) and (8) a discontinuous control strategy can be
obtained of the following form:

u= —knl;n’l(z)sign(s) +u,,(z) )
where Ugy (z) is the equivalent control calculated from s =0

in the absence of the disturbance as u, =-b,"(z)f,(z)-

In order to derive the stability condition, we use a positive

definite function ¥(s)= %sz . Then from

V <[k, - g,(2)wl]s|
we can obtain

k, > |§n (z)w| (10)

Under this condition the state converges to the surface s=0
and the sliding mode motion occurs on this surface in a finite

time. This motion is described by the following (n—1)"
order system:

zy =—kjzy +z, + g (z))w (11a)
z; =—k;z; +z; +g;(z;)w, i=2,.,n=2 (11b)
Z.n—l = _kn—lzn—l + gn—l (En—l )W (1 1C)

The following assumption on the bounds of the unknown
terms in (7a)-(7c), is stated:

A1) There exist positive constants g;; and d; such that

‘gl(zl)w‘sqll‘zl‘+dl (122)
‘gz(iz)M3422‘22‘*'/‘1‘121‘21‘*'012 (12b)
183 (Z3)M < q33|23 ]+ k| 25|+ kP 1|20 + s (12¢)
‘gi(ii)M < qi,i‘zi‘ +z;;11k_§'i7‘i)qi,j Zj‘+dia

i=4,..,n-1. (124d)
To achieve the robustness property with respect to unknown
but bounded uncertainty, the controller gains % ,...,k,_; have

to be chosen hierarchically high. Thus, since g,(z;)w in
(12a) does not depend on k;, the value of this coefficient can
be chosen so high that the term k,z; in (l1la) will be

dominate. By block linearization procedure, the term
g,(z,)w in (12b) depends on %, but not on k,,...,k

r=1-

Then for fixed k;, the appropriate choice of k, wvalue

provides the domination of term k,z, in the second block of
(11b), and so on.

In order to establish the required hierarchy of the control
gains which ensures stability of the sliding mode motion
(11a)-(11c), we choose a Lyapunov function candidate V" for
the system (11a)-(11c) as a sum of Lyapunov function
candidates for the each block of (11a)-(11c), namely
r-1
V= V;

. b
i=1 !

=12
_221’

Vi i=1,..,n-1
and let us calculate the derivatives Vl , i=L...,r—1 step by

step from the first block to the last block of (11a)-(11c).
At the first step, differentiating the Lyapunov function
candidate ¥, :%zf along the trajectories of (11a) and using
assumption A1, namely (12a), we get
Vi=—kzi +2,2, + 2,8, (z))w
= _‘Zl‘ [(kl —911)‘21‘ —‘22‘ _dl]

d
ki —q1
Therefore, the state ultimately enter the domain in subspace
(z,,z,) defined by

L L . 1
which is negative in the region |z,| > p |2,| +
1 =91

‘21‘30512‘22‘+ﬂ12 (13)
where the parameters o, and B, defined as
ary =k —qi1)™" and By =apd,
are positive if the following condition holds:
ki > gy (14)

At the second step, following similar lines to those taken for
the first block, the derivative ¥, of the Lyapunov function

candidate ¥, =1z, calculated along the trajectories of the



second block of (11b), under conditions (12a), (128b) and
(14), is given by
Vz = —kzzf +2,[2, +8,(2,,2,)W]
< _|Z2| [ (k, —q22)|Z2|—|Z3|—qu21 |Zl|_d2:|
< _|Zz||: (ky — g, _k1%1a12)|22|_|Zs|_k1%1ﬂ12 _dz]

which is negative if
(ky =g, _kﬂ21a12)|22| _|23|_kﬂ21ﬂ12 -d,>0.

Hence, the state ultimately enter the domain in the subspace
(z1,2,,25) defined by

‘Zz‘ < 0‘23‘23‘+ﬁ23
and consequently

21| < aps|z5]+ B
where the scalar parameters o3, 353 o3 and B3 defined
as

-1
aoy = (ks — g0 — k1921012 ), Baz = a3 (k1qaiBia +d3) .
o3 =003 and i3 =oyaBa3 + P2

are positive if the values of &; and k, satisfy the following
inequalities

ky>qy and ky >qpn +kiga1002 (15)

Proceeding in the same fashion for the i block of the
system (1la)-(11c), then the convergence domain in the
subspace (2,2, 2;_2,2;_1,2;), 18

|Zl| <o |Zi| + :31,1‘
|22| S a,, |zi|+ﬂ27i

(16)
111|Z|+ﬂ1 1i

|Zz 1|

where a;; =a; ;0 ,;,

-1

(@i-j)
( 41 z/ 1k, qi—l,jaj,i—l) >

ﬂj,i =a;; 1P+ B, J=le,i-1.

At the next step, taking again the derivative of the Lyapunov

function V; = fz along the trajectories of the i block of

(11a)-(11c¢), and using (12a)-(12d), we obtain
V; =—kz} +z,[z,, + 8.2z, )W]
iz e[zl g+ XK g, 2 |+ )

Using now (16), we can majorize V, as

V< _|Zi|[(ki 4 _2?11 kf('iij)quaji)|zr|

(@i=j) (17)
jlk./ qt/ j,—d‘}

l+l

From this equation it follows that
(18)

‘Zi‘ < ai,i+l‘zi+1‘ +Biin

where the parameters
(i) -
- i-j
O i+l —(ki —4qii Z i1 k] z,jo‘j,i)

=1 (i—j .
and B; ;4 :ai,i+l(zj:1 k; J)qi,jﬁj’i —d,-), i=4,.,n-1
are positive if the condition
-1 (= 2
ki>q;; +Zj:1k§ Vg o

holds. Substitution of (18) in (16) gives the following set of
inequalities for the subspace (2,25 ,...,2, 9,2 1>Z;>Zj41)

(20)

|Zl| Soy, |Z |+ﬁ1,+1
|22| Qi |Z |+ﬂz i+l
(21)
|Zi—1| SO |Zi| + ﬂi—l,iﬂ
|Zi| Sy |Zi+1|+ ﬂi,Hl

where
=1,.

qji+l =a;;0 and B =B +Bj,

Li,i=4,.,n—1.

ii+1

At the last step we have the domain of convergence in the
subspace  (zy,z;,...,2,;) defined by the following

inequalities:
‘Zl‘ <, ‘Z,H‘ +PBints>i=lo,n=2.

These expressions are used to evaluate the derivative of the

Lyapunov function candidate V,_, :%zil along the
trajectories of (11c¢), that is
Vi :_kn Znt + 2,181 (B Z, )W

n—=l-j
k Zn 1 anl (qn 1,n-1 + Z/ 1 k/ qr—l,j |Zj| +dn—1)
r=2 2
(n=1-j)
< _(knfl 4 Zle k/‘ qrfl,/a/',nfl) |Zn71|
r=2 ;
(n=1-j)
+( = k/' qr—l,jﬂj,n—l + dr—l) Zya

If k,_, is chosen such that the condition

1-
kn 1290 1,n— l+z/ lkj(ﬂ j)qnfl,jaj,nfl (22)

holds, then we obtain

=

Vi + Bucin2V 0

=-2a,_
with positive

— n=2, (n-1-j)
_knfl G n-1,n-1 _Z/ 1kj qnfl,ja

Jan—1

and

n=2y (n-1-j)
n 1= Z/ 1kj anfl,jﬂj,nfl +dnfl



By the Comparison Lemma (Khalil, 1996), we have

2, O] 7o el 1) ey (23)
h, = h dn_ =P
where 7,1 ;-1 _‘Zn—l (tO )‘ Ny, a0 n-1 — . Thus
n—1
lim sup ‘z,,_l (t)‘ <h,, (24)
t—00

Therefore, using the obtained upper (23) and ultimate (24)
bounds on the solution z,_; (), and the inequalities (21), and

going back, from the (n=1)" block to the first block of

(11a)-(11c), we can find step-by-step upper estimations and
ultimate bounds on the solutions z,_, (¢), z,_3(t),..., z;(¢).

In order to reduce the effect of the unknown disturbances
action in (8), that is, ensure inequalities (15), (20) and (22) for
given bounds (12a)-(12d), and, respectively, increase the
region of the sliding mode stability (10), it is needed to
increase the value of the controller gain %, in (9).

This high gain, however, can produce “chattering” due to
some imperfections in the control devices. To solve this
problem we propose to adjust the value of the gain £,

depending on the value of s and the distance d, defined as

1
2 2
d, :(zl +~~~+zn4ﬁ

It can be done by using the fuzzy logic scheme. For the case
of a bounded control, the value of k&, begins with

k,=k and then, as s tends to zero, the value of £,

n
n,max

decreases smoothly up to k, =k avoiding “chattering”.

n,min »
As
(z1, ..., Zn1s S)l)
K max
[z
k(n-zmaxﬂ >
A
K-2ymins” L = an,min
Z(n-2), e
Kn-1).max Ka-1),min

Fig 1: Evolution of s and &

A schematic diagram of evolution of s and k, is shown in

Figure 1. The block diagram of the closed-loop system with
block transformation and sliding mode fuzzy logic controller
(SMFLCgc) is presented in the Figure 2.

The diagram consists of the following parts:

Block Control part. This block transforms state x in the new
coordinate z

Tsc: X — z, such that z = T (X)

where the map T is defined by (6a)-(6d), and computes the
value of the following distances:

1

2 2 )
s=z, and dz(zl +-~+zn,1)2.

Slope Change block: Using fuzzy logic, the gains k,---,k

n-1

are modified by this block when the sliding surface s =0 is
reached. Opposed to k, changes, the gains k,,---,k,_; (slope
gains) are incremented from minimal to maximal values,

resulting on an increasing of the sliding mode motion rate in
(11) and of the stability region.

Fuzzy Controller block: This block uses two inputs: In;= s
and /n,=d, instead of all state x, and it determines the gain &,

depending on the magnitude of the inputs such that to satisfy
the stability condition (10). The block consists of the
following parts:

Normalization Input part scales (normalizes) inputs such that
the sliding surface is reached in a smooth and fast way.

Fuzzification part transforms the crisp input values in
fuzzified values

F: In— Lin suchthat F(In;) = LIn(i, j)

where In; € In is a crisp input value defined on the discourse
universe In, and Lin(i, j) is a corresponding fuzzified input
value also named as membership degree.

Inference Mechanism part uses the following type rule:

Rule m: If (Lin(1, j) and Lin(2, k)) Then CR(j, k)=Cout(l)

where CR(j, k) is the corresponding value in the rule
consequent, and COut(l) is the I-th central value of the output
set.

Defuzzification part based on the weighted mean

CrispNormalized Fuzzified

Coni

Defuzzified
Fuzzy  Controller

Controller
Output;

troller ITW I11put

Input
Normalization

=
S
2
<
=
]
N
=
=

Slope Change

v v
Mechanism

Rule-Base

Conclu.fions 0[tput

Defuzzification
Conditioning

Block Control

Fuzzy Controller

System Model

Figure 2. Block Diagram



defuzzification method (Driankov, et al., 1996) produces a
scalar value k4 calculated as

ne, ne:
iimnz( j>k) CR(j, k)
j=1 k=1

= ’ ne; ne,

> Lant(j, k)

Jj=1 k=1

(25

kq

where LAnt(j, k)= min(Lin(1, j), LIn(2,k))
quantification of the active rule, and ne; for i=1,2, is the fuzzy
set size.

is the premise

normalized fuzzy
(scale),

Denormalization _part multiplicities
controller output with denormalization factor
k, =k, - scale, such that the system (8) stays stable.

Output Conditioning block: This block verifies the constrains
on the control in order to preserve stability conditions, and
control limitation. Finally, the control u is obtained.

Figure 3 shows the gain &, (25) computation for hypothetical
inputs (I/n; and In,).

3 Stepper Motor Control

In this section, we apply the proposed scheme to control a
permanent magnet stepper motor. Its mathematical model is
given by

do

4w

dt

do 1 . .

o = j[_K’”l” sin(N,0)+K i, cos(N,0)—B,w—1,]

di 1 20
d: :z[—Ria ~-K,, cos(N,0)+u,]

di

ﬁ = %[—Rib +K,, cos(N,0)+u,)]

where, € is the angular position; @ is the shaft speed; i,
and i, are is the currents in phases 4 and B respectively; u,
and u, are is the voltages in phases 4 and B, respectively; J

is the moment of inertia; R and L are the resistance and
inductance in each of the phase windings, N, is the number

of rotor teeth, K,,. Is the motor torque constant, B, is the

viscous friction and 7; presents the loud torque perturbation.

Selecting the following state variables, x; = 0, x, = o,
Xy =1i,, x4 =i,, the system (26) is represented as block
controllable system consisting of tree blocks, and subject to
unknown disturbance , 7; =w; .

[%] :_[xz]

[5‘2 ] [_azxz +b,(x)x; —b,(x))x, ] —d,w

X _ —a;x; — by (x))x, b |
x, —a,x, +¢,b,(x)x, N u,

@7

A

COutyy-=---Pg---)--
In;
COutyy-----1
w5y [N
ﬂ]’z(lnl):z s
iﬂz,4:(1”z): In: i
H,,(In,)  COutyy COut,s
Figure 3 Fuzzy Gain ky
B K
where a, =—, b, (x)=—"cos(N,.0),
2 J 1( ) J ( r )
by(x)=—"sin(N,.O),d=—, ay=a,=—, ¢, =—.
2( ]) J ( r ) 1 7 3 4 I 1 I

Suppose that the output y=1x is required to follow the

reference signal x,,,,. Following the block transformation

procedure, first we define the tracking error as
Z] =X = Xy, and
Z) =Xy =X (28)
Then a desired dynamics for z, is introduced as
zy=—kiz, +z,. (29)
Solving (28) and (29) for z,, we obtain
Zy = kX + X =k Xy = X
Then
zy = (ky —ay)xy +by (x))x3 =by (x)x4
_kl).clref _)'C-lrcf/" —d,w, (30)
From this equation and the desired dynamics
zy =—kyzy + 25 —d,w (30)

we have
zy = f3(x1, %) + b (x))x3 = by (x;)xy + (1)
where z, is a new variable, f3 =k kyx, +(k;, +k, —az)x2 ,
P(t) = —kikyx,,0 —(ky +ky ))'cl,ef — X, - In order to have a

nonsingular transformation we introduce a new variable z,

z4 ==by (X)) x5 =Dy (x))xy

such that the matrix g ={ b(x) b, (xl)} has full rank.
2
=b,(x)) —b(x)
In order to obtain the control action, first we define the
switching functions as



I:S]:l_lif}(x“xzq"' b (x))
] 0 =b, (x,)

Then the projection motion on

{ﬁ}: f3(%) ThB F]}{?aq
A T B

where x = (x;,X,,x3,%,)"; j3 (x) and f4 (x) are continuous

—b:(x) {xs} [co(t)}

+
=b,(x,) | *s 0
the subspace s,,s, is
governed by

functions. The control strategy is selected of the form

Yil_ gt kssign(sy)
U ? kysign(s;)

and the sliding mode stability conditions are
boks >|f3(x)+¢(0) and by, >|f4(x)].

Under these conditions the state converges to the sliding
manifold s; =0,s, =0, and when this manifold is reached

the sliding mode motion is described by the second order
system with unknown nonvanishing perturbation

zy=—kz; + z,

zy =—kyzy +Wy.
In order to reduce the disturbances influence, we apply the

described in the section 2 sliding mode fuzzy logic control
scheme for adjusting of the controller gains k;, k,, k; and

k, suchthat k3 <u, and k,; <u, with u; >0.

4 Simulation Results

In this section, simulation results are presented for the
Permanent Magnet Stepper Motor with parameters:
L=10mH , R=84Q, J =3.6x107° Nms? / rad ,
k, =0.05Vs/rad, N, =50, B=1x10"* Nms/rad . The
maximal supplied voltage is u, =2 V. In all Figures it is
shown the behavior of the state (x;,x,,x3,x,) as well as
new state (z,,z,,z3,2,), and the gains k; i=1,2,3, the control

u, and disturbance w; =7;.

Figure 4 displays Block Control Tracking (BCT) with Fuzzy
Logic (FL) results using the proposed approach, where
smooth variation of k, gain is observed, and the chattering is

reduced.
5 Conclusions

As it can be seen, the proposed scheme performance is very
encouraging. Simulations assume that the disturbance
cannotbe measured, which is an extreme situation. However,
the proposed hierarchical sliding mode control approach with
the fuzzy logic control, improves the system behavior,
reducing chattering and guaranteeing stability.

—21[]_ 4000

states X
%
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gains K

2000

time (s) time (s)

—u
05 —w

O MY —~ARAM— A
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S

Output control U (v)

-1 -1
0 1 2 0 1 2

time (s) time (s)

Figure 4: BCT with FLC and disturbances
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