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Abstract

In this paper, a new ratio control architecture is proposed. It
aims at achieving high performances in both setpoint follow-
ing and load rejection specifications. A tuning procedure is
given in order to set all the parameters in the control scheme,
so that the design effort required by the user is kept at a min-
imum level. Simulation results show the effectiveness of the
methodology.

1 Introduction

Proportional-Integral-Derivative (PID) controllers are the con-
trollers most adopted in industry due to the good cost/benefit
ratio they are able to provide for a wide range of processes.
Often, they are employed as basis of more complex control
schemes where couplings between simple control systems are
exploited. An example is ratio control, which consists of keep-
ing a constant ratio between two process variables. This is ac-
tually required in many applications, such as chemical dosing,
water treatment, chlorination, mixing vessels, waste incinera-
tors. For example, in combustion systems the air-to-fuel ratio
has to be controlled to obtain an high efficiency, and in blend-
ing processes a selected ratio of different flows has to be main-
tained to keep a constant product composition.
In the last sixty years, a major effort has been provided by re-
searchers to develop useful techniques for the implementation
of the basic PID algorithm (tuning and automatic tuning meth-
ods) and of additional functionalities such as anti-windup, gain
scheduling, adaptive control and so on [1]. Recently, this ef-
fort has been further motivated by the increase of the compu-
tational capability which is available in modern single-station
industrial controllers and Distributed Control Systems (DCS).
Conversely, the design of methodologies for the implementa-
tion of the above mentioned basic couplings has been much
overlooked.
A notable exception in this context is the work of Hägglund
[2] in which a new ratio control structure (the so-called ‘Blend
station’) is proposed. Obviously, to be suitable for industrial
settings, in addition to the achievement of high performances,
the ease of understanding and of use of new techniques is a ma-
jor requirement.
In this paper, a new ratio control architecture is proposed. The

idea is somewhat similar to the one explained in [2], but, con-
versely to the Blend station, it aims at achieving good setpoint
following and load rejection performances at the same time. A
tuning procedure for the overall control scheme is devised in
order to avoid any additional design effort from the user.
The paper is organised as follows. In Section 2 a short intro-
duction of ratio control is provided. In Section 3 the new ratio
control architecture is proposed. The tuning procedure is re-
vealed in Section 4. Simulation results are presented in Section
5 and conclusions are drawn in Section 6.

2 Overview of ratio control

The aim of a ratio control system is to keep the ratio between
the values of two process variables y1 and y2 equal to a con-
stant value a, in order to meet some higher-level requirements,
despite possible setpoint changes and load disturbances that
might occur on the process.
For this purpose, the control scheme shown in Figure 1 is usu-
ally implemented. Each variable is controlled by two separate
controllers C1 and C2 (typically of PI type) and the output y1

of the first process is multiplied by a and adopted as the set-
point of the closed-loop control system of the second process,
i.e. it is r2(t) = ay1(t) [3]. In this way, at the steady-state,
provided that the gain of the second loop is equal to unity (note
that this condition is normally verified by the presence of the
integral part in the controller) the requirement

y2(t)

y1(t)
= a

is satisfied.
The main disadvantage of this scheme is related to the tran-
sient response to a change in the set-point r1, as the output y2

is necessarily delayed with respect to y1, due to the closed-
loop dynamics of the second loop. In general, the second loop
is chosen as the one with the fastest dynamics. However, in or-
der to keep the ratio at the desired value, it is often necessary to
detune the first loop and therefore the obtained performances
in the setpoint following task and in the rejection of the load
disturbance d1 decrease.
A possible alternative scheme is the one shown in Figure 2. In
this case, provided that the two closed-loop systems have the
same dynamics, high performances can be achieved in the set-
point following task, but obviously, a disturbance acting on the
first process causes a large error in the ratio value. For this rea-
son, this approach is generally not adopted in practical cases.
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Figure 1: The typical ratio control scheme.

To overcome the drawback of the scheme of Figure 1,
Hägglund proposed an alternative architecture, named the
Blend station [2]. This is shown in Figure 3. The main fea-
ture of the scheme is that the value of the set-point r2 depends
both on the value of the process output y1 and on the value of
the set-point r1, according to the expression

r2(t) = a(γr1(t) + (1− γ)y1(t)). (1)

Note that γ is a constant parameter that weights the relative in-
fluence of the set-point r1 on r2 with respect to y1 (for γ = 0
the classical scheme of Figure 1 is obtained). The value of γ
can be selected as the ratio of the time constants of the two
closed-loop systems (or, if they are not available, as the ratio
of the integral time constants of the two controllers) or, alter-
natively, by applying a suitable adaptive procedure, i.e. by ap-
plying the following formula [2]:

dγ

dt
=

S

Ta

(ay1 − y2) (2)

where S ∈ {−1, 0, 1} is a sign parameter that takes into ac-
count if the set-point step is positive or negative. In [2] it is
suggested to select the value of the adaptation rate Ta as a fac-
tor times the longest integral time of the two loops. Note that,
for the two PI controllers, explicit tuning rules to be adopted
in this context are not given and that the method affects perfor-
mances when load disturbances d1 occurs. Thus, it is suggested
to set γ = 0 during periods of constant set-point r1.

3 The new ratio control architecture

The ratio control architecture proposed in this paper is shown
in Figure 4. The new block F (s), used twice, plays a key role
in the approach. The transfer function F (s) is determined in
such way that the transfer function from r1 to y1 is the same
of the transfer function from r1 to y2 scaled by a. After trivial
calculations, it results:

F (s) =
C1(s)P1(s)

C2(s)P2(s)
. (3)

As it is common practice in industrial environments, both the
processes are assumed to have a first order plus dead time
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Figure 2: An alternative ratio control scheme.

P
r y1

1 1 1C

P
r y2

2 2 2C

γ
BS

d1

d2

Figure 3: The ratio control scheme using the Blend station.

(FOPDT) dynamics, i.e. they are modelled according to the
following transfer functions:

P1(s) =
K1

T1s + 1
e−L1s

P2(s) =
K2

T2s + 1
e−L2s.

(4)

Further, according again with the industrial practice, the two
controllers are of PI type, i.e. we have:

C1(s) = Kp1

(

1 +
1

Ti1s

)

C2(s) = Kp2

(

1 +
1

Ti2s

)

.

(5)

Taking into account the expression of F (s) (3) and those of the
processes and of the controllers (4) and (5), it turns out that, in
order for the system F (s) to be causal, it must be L1 ≥ L2.
This relation gives a guideline on how to select the first loop,
i.e. the first loop has to be selected as the one with the process
with the largest dead time.
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Figure 4: The new ratio control architecture.

zeros − 1
Ti1

, − 1
T2

poles − 1
Ti2

, − 1
T1

gain K1Kp1Ti2

K2Kp2Ti1

Table 1: Zeros, poles, and gain of transfer function F (s).

For the purpose of tuning the overall control system (see
Section 4), it is worth to determine the zeros, the poles and the
gain of the transfer function F (s). They are reported in Table 1.

Remark 1. It is worth noting that the new architecture aims
at balancing the two classic approaches described in Section 2
(see Figures 1 and 2). Apparently, with respect to the approach
shown in Figure 1, achieving the desired ratio during the whole
transient setpoint response is paid by a decreasing in the per-
formances when a load disturbance occurs in the first process.
However, this can be avoided by a suitable tuning, as explained
in Section 4.

4 Tuning

It is assumed that an estimate of the FOPDT transfer functions
of the two processes is available (for example it can be obtained
by the well-known area method [1]). As already mentioned in
Section 3, the first loop has to be selected as the one with the
largest dead time. Then, as the new architecture guarantees that
the desired ratio is obtained along the whole transient response
when a setpoint change is required (provided that the two pro-
cesses have actually a FOPDT dynamics), the selection of the
parameters of the two controllers has to be done according to
the following intuitive guidelines:

• the parameters of C2(s) have to be chosen in order to pro-
vide the best rejection of a load disturbance d2;

• the parameters of C1(s) have to be chosen in order to pro-

vide the best rejection of a load disturbance d1;

• the parameters of C1(s) and C2(s) have to be chosen in
order to have a frequency response of F (s) as low as pos-
sible (see Remark 1). In this way, the reference r2 of the
second loop is determined mainly by output y1 of the first
loop instead of the reference r1 of the first loop (note that
the transfer function from y1 and r2 is a(1−F (s))). Thus,
a high performance on the desired ratio is obtained when
a load disturbance is acting on the first process.

In order to achieve the mentioned goals, the following proce-
dure can be adopted.
First, the PI controller C1 is tuned according to the method pro-
posed in [4], which is devoted to obtain a desired specification
on the load disturbance rejection task. In this context, it it con-
venient to chose the value of the time constant of the desired
transfer function between the load disturbance d1 and the pro-
cess output y1 equal to the value of the time constant T1 of the
process. In this way, in addition to a good degree of robust-
ness, a low value of the ratio Kp1/Ti1 is achieved [4], which is
important in order to ensure a low frequency response of F (s)
(see Table 1). Note also that, by choosing the process time
constant as the desired time constant of the load disturbance to
process output transfer function, the method employed aims at
cancelling the process pole, i.e. it results Ti1 = T1.
Subsequently, the PI controller C2 is tuned by first imposing
again a pole-zero cancellation in the second loop, i.e. by set-
ting Ti2 = T2. This is done in order to obtain a Bode plot of
the transfer function F (s) that is flat, i.e. the value of |F (jω)|
is the same for the whole range of frequencies (see Table 1). In
other words, with the previous choices, we have simply

F (s) = Ke−(L1−L2)s (6)

where

K =
K1Kp1Ti2

K2Kp2Ti1
. (7)

Then, parameter Kp2 is selected by following basically the
same idea described in [5]. Thus, in order to have good
load disturbance rejection performances, Kp2 is fixed, after
solving an optimization problem, as the maximum value that
guarantees that the closed-loop system is stable and that the
largest value Ms of the sensitivity function is constrained. In
general, typical values of Ms are chosen in the range 1.2-2.0,
in order to ensure a sufficient damping of the closed-loop
system. However, taking into account that in this case the
setpoint response is not of concern, as it is equal to the one
of the first loop, due to the ratio control architecture, it is
convenient to choose a higher value of Ms, i.e. Ms = 2.5,
in order to obtain a higher value of Kp2 and therefore a
lower value of the gain of F (s). It has to be noted that the
chosen value of Ms = 2.5 is still sensible, as a higher value is
generally obtain by applying the well-known Ziegler-Nichols
tuning formula [1].

Remark 2. It is worth stressing that the proposed control ar-
chitecture (i.e. the scheme shown in Figure 4) can be adopted



with any value of the parameters of the two controllers C1 and
C2, achieving in any case the desired ratio in the presence of a
setpoint change. Thus, the user might retain its know-how in
tuning the two controllers, without impairing the effectiveness
of the methodology. For example, detuning the controller of
the first loop implies that when a load disturbance occurs on
the first process, a slower rejection is obtained, but the desired
ratio is kept better during the transient. Further, an available
more accurate model of the processes can be fully exploited.

5 Simulation results

Two illustrative examples are shown in order to demonstrate
the effectiveness of the devised methodology. For the sake of
clarity, in both examples the desired ratio a is set equal to one.

5.1 Example 1

Consider the following two FOPDT systems:

P1(s) =
1

4s + 1
e−3s

P2(s) =
1

6s + 1
e−2s.

(8)

By applying the proposed method and the proposed tuning pro-
cedure, it results: Kp1 = 0.57, Ti1 = 4, Kp2 = 2.58, Ti2 = 6.
Consequently, we obtain

F (s) = 0.33e−s.

Then, a unit step has been applied to the setpoint signal at time
t = 0 s and then to the load disturbance signals d1 and d2 at
time t = 40 s and t = 90 s respectively. The two process out-
puts are shown in Figure 5, whilst the reference signal r2 of the
second closed-loop system is plotted in Figure 6. It appears that
a perfect ratio control is achieved in the presence of a set-point
change, as expected, but performances are very satisfactory as
well even in the presence of load disturbances.
For the sake of comparison, results obtained by the classic ra-
tio control scheme (see Figure 1) are reported in Figures 7 and
8 (note that the PI controllers have been tuned as for the new
method). It appears that the worst performance obtained for
the set-point change is not counterbalanced by a better perfor-
mance in the presence of load disturbances.

5.2 Example 2

As a second example, two systems that are not of first order are
considered:

P1(s) =
1

(s + 1)4

P2(s) =
1

(s + 1)2
e−s.

(9)

An estimate of a FOPDT transfer function has been obtained
by means of the area method. It results: K1 = 1, T1 = 1.84,
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Figure 5: Process outputs with the new scheme - example 1.
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Figure 6: Reference signal r2 with the new scheme - example
1.
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Figure 7: Process outputs with the classic scheme - example 1.
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Figure 8: Reference signal r2 with the classic scheme - exam-
ple 1.

L1 = 1.92, K2 = 1, T2 = 1.39, L2 = 1.57. It appears
that these processes are quite difficult to be controlled as they
have a large normalised dead time (i.e. the ratio between the
dead time and the time constant of the process). The tuning
procedure described in Section 4 has been applied by consid-
ering the estimated process models, resulting in Kp1 = 0.51,
Ti1 = 1.92, Kp2 = 0.77, Ti2 = 1.39, and

F (s) = 0.48e−0.35s.

A unit step has been applied to the setpoint signal at time
t = 0 s and then to the load disturbance signals d1 and d2

at time t = 30 s and t = 70 s respectively. The two pro-
cess outputs are reported in Figure 9, whilst the reference sig-
nal r2 of the second closed-loop system is shown in Figure
10. It turns out that, despite the two processes are not FOPDT,
and therefore a perfect ratio control cannot be achieved, per-
formances are still satisfactory. Again, a comparison with the
classic scheme of Figure 1 has been performed. Related results
are shown in Figures 11 and 12. The same considerations done
for the example 1 applies also in this case.

6 Conclusions

In this paper a new ratio control architecture has been proposed.
A tuning procedure has been presented so that no tuning effort
from the user is needed. The methodology is easy to implement
(note that no extra measurements are required with respect to
the standard ratio controllers) and it is based on the use of clas-
sical PI controllers, so that it can be easily understood by op-
erators, who retain their know-how. Thus, the overall method-
ology appears to be suitable to be implemented in DCS for use
in the industrial context.
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Figure 9: Process outputs with the new scheme - example 2.
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Figure 10: Reference signal r2 with the new scheme - example
2.

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

time [s]

pr
oc

es
s 

ou
tp

ut

y
1

y
2

Figure 11: Process outputs with the classic scheme - example
2.
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Figure 12: Reference signal r2 with the classic scheme - exam-
ple 2.
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