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Abstract

Selection of inputs and outputs for stabilizing an open-loop
unstable process is discussed in this paper. The procedure
includes decomposition of the process into multiple
projections in order to isolate its unstable poles. Several
projected subsystems are produced in state-space form
indicating pure integrators, slow and fast modes as their only
poles. By examining the numerical values of these state-space
matrices, one can identify the outputs and inputs, which have
strong connections with unstable pole(s). Tennessee-Eastman
test-bed problem [4] has been chosen for the case study due to
its umpteen I/O combinations. The process, linearized around
its base case operating point, shows six unstable poles
(including two pure integrators), which are separated as three
antistable projections of the overall process. Analysis shows
that by closing three loops, it is possible to stabilize the entire
plant. PI controllers are designed for the TE plant and
simulation results confirm the closed-loop stability of the
plant.

1 Introduction

Control structure selection has been a challenging research
topic among control engineers during the last decade.
Plantwide processes are usually nonsquare and they comprise
of an excess number of manipulated and measured variables.
Therefore, structural decisions i.e. the choice of inputs and
outputs in the control structure affects the performance,
complexity and costs of the resulting control system. Due to
the combinatorial nature of selection problem, systematic
methods are needed to complement one’s intuition, experience
and physical insight. Van de Wal and Jager [12] reviewed the
currently known I/O selection methods, which aids the control
engineer in picking a suitable method for the problem at hand.

However, the most available selection methods do not
explicitly address the issue of feedback stability of open-loop
unstable processes. Sometimes, closed loop stabilization is
performed based on a plant model and a proposed set of
candidate actuators and sensors [9]. Reasons for not using all
the available devices could be the reduction of control system
complexity. These decisions are made on the basis of

engineering understanding while quantitative justifications are
seldom available.
A technique is proposed in this work to identify the particular
unit operation(s) of the process which is contributing unstable
poles to the entire processes. The method involves isolation of
unstable poles through decomposition of entire process into
multiple projections of smaller subsystems. Useful
information can be obtained from the state space matrices of
these subsystems which indicate the inputs and outputs having
greatest influence on the unstable poles. Tennessee-Eastman
test-bed problem [4] has been chosen for a case study due to
its umpteen I/O combinations (41 measurements out of which
22 are potential outputs; 12 manipulated variables). Effort has
been made to stabilize the process with less control effort than
given by previous researchers [9]. The paper has been
organized as follows. Section 2 provides the theoretical
background of the multi-projected systems including its
relation with pole direction method as well as its usage to
calculate steady state gain of the process. Section 3 presents
brief description about the Tennessee-Eastman test bed
problem. Simulation and data analysis is done in the Section
4, whereas design and implementation of stabilizing PID
controller is discussed in section 5. Finally the conclusion is
reached in the section 6.

2 Theoretical background

A transfer function is anti-stable if it has no poles in the closed
left half plane. A transfer function G which may have poles
both on the open left and right half planes can be decomposed
as us GGG += where sG  and uG are called stable and anti-
stable projections of G. Necessary and sufficient condition for
robust stability to G is the stabilization of its anti-stable
projection [5]. It is possible to decompose anti-stable uG

further into several projections according to the unstable pole
locations, such as

)1(...... 2121 uquuipiis GGGGGGGG ++++++++=

where },...2,1{ pjGij =  and },...2,1{ qjGuj =  are state space

realization of projections on p pure integrators and q non-zero
unstable poles (pole pairs) respectively. Algorithms for these
projections can be found elsewhere [11].



A subsystem ),,(: CBAG =∗ , having m inputs and n outputs,

will have the following state space form (A=0, for pure
integrators):
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Relative importance of the inputs and outputs, in terms of

influence over the pole associated with *G , can be quantified
by input and output effectiveness [2][3] calculated as

)(2 BBdiagI
+=η  and )(2 += CCdiagOη  where +•)(  denotes

the pseudo inverse [6]  and 22 and OI ηη  are 1×m  and 1×n
vectors respectively, containing square of input and output
effectiveness as their elements. Higher value indicates greater
influence.

2.1 Relation between projected subsystem and pole
direction method

Havre [7] suggested a method for computation of pole
directions for multivariable systems in terms of standard
eigenvalue problem. Pole direction can be used as a
controllability measure for control structure selection. For a
system on state-space form with a pole located at s = p, the

input and output pole vectors are computed as pi
H

p xBu =

and pop Cxy =  respectively, where n
popi Cxx ∈, are

normalized eigenvectors corresponding to the two eigenvalue

problems H
pi

H
pi pxAx =  and popo pxAx = . The corresponding

pole directions are obtained by normalizing the pole vectors,
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The above computation method takes the whole system into
account i.e. all the poles are taken into consideration
simultaneously.
The demerits of this method are
• The computations are relatively vast i.e. calculations

involving certain poles (such as stable poles) could be
unnecessary.

• The effect of certain input(s) or output(s) towards a
particular pole is not understood explicitly.

On the other hand, method of multiple projection can isolate
poles in several independent subsystems where dimensions of

pix and pox would be one (or two for complex poles). In other

words, projected subsystem of a particular pole will contain
the characteristic information of that pole only. Thus the pole
direction of the projected subsystem will be equal to the pole
direction of the entire system. This is confirmed by the
following theorem.

Assume 21 GGG += ,where ),,,(: CBAG = and

),,(: iiii CBAG = . Then
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Let p be a pole of G and G1 and its pole directions linking with

G and G1 be ( pix , pox , pu , py ) and ( pix1 , pox1 , pu1 , py1 )

respectively. Then the following theorem is ready to be
proved.

Theorem 1: Pole directions associated with the same pole of
G and G1 have the following relations:
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If p is a real distinct pole of G, i.e. p is the only pole of G1,

then the pole directions of p are 111 == popi xx , H
p Bu 11 =

and 11 Cy p = .

In cases of complex poles and repeated poles, pole subspaces
of a group of such poles are more meaningful than single pole
directions. In the multiple projection method, each subsystem
contains only a real distinct pole, or a pair of distinct poles, or
a group of identical poles/ pole pairs. Therefore, the input pole
subspace of the poles in a subsystem, Gi, is spanned by the
rows of Bi whilst the output pole subspace is spanned by the
columns of Ci.

As a result of the above theorem, input(s) and output(s)
affecting that particular pole can be explicitly identified
through suitable controllability measures such as input (or
output) effectiveness factors. Analysis will certainly differ in
presence of repeated poles. However, it would still be
confined within a certain pole space. The implication of this
fact is that attention can be focused only on the troublesome
poles while analyzing the process without losing important
information.

2.2 Calculation of steady state gain in presence of
integrating poles

Multiple projected subsystems can be useful to compute
steady state gains for processes with pure integrators. Usually
steady state gains of state space model can be calculated by
transforming the model into transfer function form as

( ) )4(
)(

)(
)( 1BAsIC

su

sy
sG −−==



and setting 0=s , to get

)5()0( 1BCAG −−=

However, if there are integrators in the process, A becomes
singular and 1−A does not exist. Arkun and Downs [1]
presented an approach where gains are calculated for rate of
change of these integrating variables through singular value
decomposition of matrix A. McAvoy [8] successfully
implemented this approach for Tennessee-Eastman test bed
problem. Following their approach G(s) can be reformatted
with separate transfer functions for integrating and non-
integrating terms as )()()( sGsGsG nii += . Unlike Arkun and
Downs [1], steady state values of the above two terms can be
directly calculated from the state space matrices of projected
subsystems, preventing any extra computation effort for the
same. The steady state gain for )(sGni can be calculated as

nininini BACG 1)0( −−= . However, for integrating process,

iii BCssG 1)( −= . The rate of change of integrating variable
can be expressed as

)6()()()()()()()( ' susGsuBCsussGssysy iiiiii ====� .

Hence, iii BCG =)0(' . The final gain matrix, K, to be used for

interaction analysis consists of rows of )0(niG and

)0('iG appropriately placed in K.

3 Tennessee-Eastman Process

The Tennessee Eastman test-bed problem [4] involves the
control of five unit operations: an exothermic two-phase
reactor, a water-cooled condenser, a centrifugal compressor, a
flash drum and a reboiler stripper. The simulated plant has 41
process variables and 12 manipulated variables as illustrated
in Figure 1, which are modeled with 50 state variables. The
twelve manipulated variables (Fig. 1) are the four feed rates,
the purge rate, the agitation rate, steam rate, condenser coolant
rate, reactor coolant rate, compressor recycle, flash drum
discharge rate and the stripper production rate. Out of 41
process variables there are 22 controllable outputs including
level, pressure, temperature, flow and 19 composition
indicators as illustrated in Fig. 1.

The chemical reactions are irreversible and occur in the vapor
space of the reactor. The chemical reactions are:

]Byproduct[)(2)(3

Byproduct][)()()(

]2Product[)()()()(

]1Product[)()()()(

liqFgD

liqFgEgA

liqHgEgCgA

liqGgDgCgA

→
→+
→++
→++

The formation of an inert byproduct, F, is undesirable. The
products G and H accumulate in the reactor. Product may thus
only be removed via the vapor stream leaving for the
condenser. The rate of heat removal owing to the exothermic
reactions is dictated by the agitation speed and the cooling
water flow rate to the cooling coils in the reactor. Should the
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Figure 1: Schematic diagram of Tennessee-Eastman process



liquid level in the reactor fall below 50% the loss of heat-
transfer surface area for cooling becomes pronounced. For the
reactor pressure, Ricker [10] has indicated that the optimal
steady state conditions for the various operating modes are in
near proximity to the upper shutdown limit of 3000 kPa. The
ability to operate in close proximity to the upper shutdown
limit is dictated by the ability of the controller to maintain
high performance in the presence of disturbances.

The vapor discharge from the reactor is fed to a partial
condenser. The flash drum serves to separate the liquid and
vapor phase fed from the condenser. The liquid fraction is fed
to the reboiled stripper and the vapor fraction is returned to the
reactor via a centrifugal compressor as a recycle stream. The
liquid feed to the stripper is distilled to remove impurities in
the bottoms product and the vapor stream is recycled to the
reactor. A purge is necessary to prevent the unacceptable
accumulation of the inert B.

In this paper the desired set point is 50% G and 50% H on a
mass basis. By-product F may be present in the product with
97.5% of the product being composed of G and H. A model of
the process is generated in Simulink software. Details of the
process data are available elsewhere[4]. Open loop simulation
of model indicates that the process is unstable in nature. The
control objective is to identify the unit operation(s) as well as
the inputs & outputs associated with them which are

responsible for the instability and finally to stabilize the
complete system.

4 Simulation and Data Analysis

The entire analysis has been carried out through MATLAB

software. The process is first linearized around its base case
operating point and resulting state space linear model is
obtained through LINMOD function. Due to wide range of the
numerical values of the base case I/O variables, proper scaling
is essential for reliable analysis. The manipulated inputs are
already scaled between 0 to 100%, therefore no further scaling
is required. On the other hand, outputs are scaled by dividing
by their respective nominal steady state values. Resulting
scaled process is decomposed into stable and antistable
subsystems using STABPROJ subroutine of the Robust
Control Toolbox. The antistable subsystem has two pairs of
positive complex poles, 3.0648 ± 5.0837i & 0.024973 ±
0.15521i and two pure integrators (numerical value is of the
order of 10-9). The antistable subsystem is further decomposed
into three subsystems using SLOWFAST subroutine. Resulting
subsystems are
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Figure 2: Input effectiveness and Output effectiveness of the TE process analyzed for unstable pole including pure integrators.



Following the theory in section 2, the numerical values of B &
C matrices of the above subsystems are calculated. The input
and output effectiveness factors are calculated and drawn in a
bar chart in Figure 2. It clearly indicates that outputs 12 & 15,
i.e. the liquid levels inside separator and stripper pots, are
responsible for contributing four non-negative poles (two pure
integrators and the pair of low value complex poles) out of
total six. However, similar conclusive statement cannot be
made for the case of remaining positive poles just by
analyzing the data because they are contributed jointly by the
outputs 9, 12, and 19. Nevertheless, it will be wise not to
choose output 19 since it generates a RHP zero in the closed
loop system. Thus output 9, viz. Reactor temperature, is
selected as the third controlled variable. By closing three
loops, it is possible to shift all the poles to the left hand side of
real axis in the closed loop plant. For input selection, the
graph (second column of Fig 2) suggests that inputs, feeds D,
A & C, contribute significantly for generating the non-
negative poles. However, further analysis suggests that inputs
1-4 generates right half plane zeros (non-minimum phase
behaviour), if chosen as manipulated variables. Thus if we
omit the effects of feed streams from the graphs, then the next
possible candidates are inputs 7, 8 and 10 viz., separator pot
liquid flow, stripper liquid product flow and reactor cooling
water flow because these three inputs are showing prominent
influence on all the poles as shown in the third column of Fig

2. From the engineering understanding, it is quite justified as
these inputs are having direct influence on outputs 12, 15 & 9
respectively.

5 Controller design

The graphical user interface SISOTOOL is a design tool in
MATLAB software which allows one to design single-
input/single-output (SISO) compensators by interacting with
the root locus, Bode, and Nichols plots of the open-loop
system. PI controllers are designed for TE process using this
tool by closing one loop at a time and tabulated below.

Controller settings
Loops

Gain Reset
Output 12 vs. Input 7 -0.1 10
Output 15 vs. Input 8 -0.1 10
Output 9 vs. Input 10 -7.2 720

Table 1: Controller settings for TE plant

The controller renders the desired stability (Figure 3).
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Figure 3: Closed loop response of TE plant using stabilizing PI controller



6 Conclusion

It is possible to identify the unit operations and associated
inputs and outputs in an open-loop unstable process which are
principle contributors to the non-negative poles of the process
by using multi-projected subsystems. Simulation results with
Tennessee-Eastman test-bed problem supports this theory.
Control structure with only three closed loops, selected using
this theory, is able to provide the desired stability to the
system.
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