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Abstract 
 
Fault diagnosis based on artificial intelligence techniques 
often deals with uncertain knowledge and incomplete input 
data. Probability reasoning is a method to deal with uncertain 
information, and Bayesian network is a tool that brings it into 
the real world applications. This paper describes the 
application of Bayesian network for diagnosing faulty 
components from engineered systems. A general procedure 
for constructing the Bayesian network structure on the basis 
of a bond graph model is proposed. We demonstrate how the 
resulting Bayesian network can be applied to fault diagnosis 
in an engineered system. 
 
1 Introduction 
 
The complexity and sophistication of modern engineering 
systems, and the growing demand for system’s safety and 
reliability; motivate the development of robust fault diagnosis 
algorithm. Early approaches to fault diagnosis are inherently 
rule-based. They are proved to be inflexible, incomplete, and 
required comprehensive a prior knowledge of the fault 
characteristics, rather than actually deducing the fault 
themselves. Most advanced fault diagnosis algorithms now 
concern of using model that is derived from system’s 
structure and behavior in order to establish the cause of 
system malfunction. These model-based fault diagnosis 
algorithms [2, 9, 13] enables more complex cause-effect 
reasoning and hence a more robust diagnostic system can be 
developed. 
 
A number of different model-based fault diagnosis algorithms 
had been proposed in the past decades, capable of dealing 
with different diagnostic problems. Quantitative and 
qualitative were the two major approaches to model-based 
fault diagnosis. In quantitative fault diagnosis, precise 
mathematical model was used to monitor system states, detect 
abnormal behaviors and diagnose the failures. The main 
problems with such methodologies are the intricacy and 
overheads of obtaining precise numerical models and the 
sensitivity of the diagnostic system to modeling error. Usually, 
the effects of modeling errors obscure the effects of faults and 

cause false alarms [8, 13]. Qualitative fault diagnosis which 
dominates in the AI community, without the use of precise 
numerical model and capable of dealing incomplete 
information, alleviate some problems encountered by 
quantitative approach. However, the lack of precision in the 
representation, and ambiguities introduced during the 
inference process, limit the application of the qualitative 
approach to complex systems [4]. 
 
Fault diagnosis based on AI techniques often deals with 
uncertain knowledge and incomplete input data. Probability 
reasoning is a method to deal with uncertain information, and 
Bayesian network is a tool that brings it into the real world 
applications. In this paper, we proposed an alternative 
approach to model-based fault diagnosis, where Bayesian 
network is adopted to model the system and diagnose the 
failures. Bayesian network is a directed, acyclic graph (DAG), 
which embeds cause-effect relationship between variables 
(nodes). The representation framework of Bayesian network 
allows reasoning under uncertainty. Component failure 
probability of a system is computed by sequential 
evidence-propagation inference among conditional 
probability distributions that have been specified at each 
variable (node) [3]. 
 
The goal of the model-based fault diagnosis is to detect and 
localize faulty components in a system. Hence, the model 
used should incorporate structural information about the 
system and bond graph was such a representation. In this 
paper, a general procedure for constructing a Bayesian 
network structure on the basis of a bond graph model is 
proposed. Some researchers have proposed to learn the 
Bayesian network structure from data [5, 10]. However, the 
accuracy of the learned Bayesian network is largely affected 
by the ‘richness’ of the data and the prior knowledge of the 
network ordering. There are several advantages of using bond 
graph model as the skeleton to construct the Bayesian 
network for fault diagnosis. The task of identifying system 
variables to construct Bayesian network is completed and the 
localization of faulty components from Bayesian network is 
enhanced since they are already represented in the bond graph 
model. Bayesian network based fault diagnosis contributes to 
the possibility of ranking possible failures, handling multiple 
simultaneous failures and uncertainty symptoms of certain 
faults. 



The paper is organized as follows. In Section 2, fundamental 
knowledge of Bayesian network is reviewed. Section 3 
describes the construction issues of a Bayesian network on 
the basis of a bond graph model. In Section 4, fault diagnostic 
scheme based on Bayesian network and its result are 
presented. Finally, the paper is concluded in Section 5. 
 
2 Bayesian Network 
 
Bayesian network, also known as probability network or 
belief network [5], are well established as a representation of 
relations among a set of random variables that are connected 
by edges and given conditional probability distribution at 
each variable. Bayesian network is a directed, acyclic graph 
(DAG) where nodes represent random variables. Causal 
relations are represented as a directed edge between variables, 
leading from the cause variable to the effect variable. As 
shown in Figure 1, an edge from B to A indicates that B 
causes A.  
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Figure 1: A simple Bayesian network. 

 
Conditional probability distribution (CPD) is specified at each 
node that has parents, while prior probability is specified at 
node that has no parents (the root node). As shown in Figure 1, 
the CPDs of variables A and C, are P(A|B) and P(C|B) 
respectively; and the prior probability of B is P(B). The edges 
in the Bayesian network represent the joint probability 
distribution of the connected variables. For example, the joint 
probability distribution for the edge (B, A) is P(A, B) which 
represents the probability of joint event A ٨ B. The 
fundamental rule of probability calculus shown that, 

P(A, B) = P(A|B) ⋅ P(B).      (1) 
,and in general, the joint probability distribution for any 
Bayesian network, given nodes X = X1, …, Xn, is, 
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,where parents(Xi) is the parent set of node Xi. Equation (2) is 
known as the chain rule, which indicates the joint probability 
distribution of all variables in the Bayesian network as the 
product of the probabilities of each variable given its parents’ 
values. 
 
Inference in the Bayesian network is the task of computing 
the probability of each variable when other variables’ values 
are known. That means once some evidence about variables’ 
states are asserted into the network, the effect of evidences 
will be propagated through the network and in every 
propagation the probabilities of adjacent nodes are updated. 

The situation is mathematically formalized as the Baye’s 
theorem, 
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,which represents the probability of node X given evidence Y. 
The term P(X|Y) denotes the posterior probability of node X 
and can be computed when the likelihood (P(Y|X)) and prior 
probability (P(X)) are known; and P(Y) denotes a normalizing 
factor, which is determined as follow, 

P(Y) = P(Y|X) ⋅ P(X) + P(Y|¬X) ⋅ P(¬X).  (4) 
,where ¬X denotes the complement of variable X. In fault 
diagnosis application, variable X may be interpreted as the 
hypotheses of fault and evidence Y is the observed symptoms. 
 
Fault diagnosis in a qualitative sense is the reasoning of the 
cause-effect or fault-symptom relations and in almost all 
cases single symptom will be caused by several faults, while 
single fault will exhibit several symptoms [7]. This is also the 
case in the medical diagnosis. In this situation, Bayesian 
network provides an alternative approach to tackle the 
diagnosis problem. Every fault and even symptom is modeled 
by a random variable in the network with a probability 
distribution. When observed symptoms (evidences) are input 
to the network, probabilities of every fault are computed 
according to the Baye’s rule, Equation (3). So, ranking of 
different faults with the given symptoms is possible and the 
possibility of eliminating possible fault candidates as in the 
case of qualitative reasoning is reduced. 
 
3 Building Model 
 
The performance of model-based fault diagnosis will be 
greatly impaired when a poor model is used. Traditionally, the 
construction of Bayesian network is by intuition. The 
resulting network model will be incomplete and the causal 
relations will be incorrect. Recently, some researchers 
proposed to automate the construction process by learning the 
network structure through data [5, 10]. However, the accuracy 
of the learned Bayesian network is largely affected by the 
‘richness’ of the data and the prior knowledge of the network 
ordering. Moreover, when the number of variables in the 
network is increased, the learning algorithm rapidly becomes 
computationally infeasible and ‘enormous’ data is necessary 
[10]. To overcome this problem, bond graph model is 
proposed to generate the required Bayesian network. Before 
discussing this construction process, basic procedures for 
constructing a Bayesian network are briefly reviewed. 
 
2.1 Modeling elements 
 
The construction of a Bayesian network consists of the 
following procedures 
1. Identify hypothesis events and achievable information to 

the network and represent them into a set of random 
variables, i.e., hypothesis variables and information 



variables, respectively. 
2. Establish directed links between variables for a causal 

network. Mediating variables (neither hypothesis 
variables nor information variables) are often introduced 
to facilitate the acquisition of CPDs, reflecting 
independence properties in the domain, or other purposes 
[5]. 

3. Specify the conditional probability distributions (CPDs) 
at each variable. 

 
The purpose of Bayesian network is to estimate certainties of 
events that are unobservable or costly to observe (i.e., 
hypothesis variables) when evidences (i.e., information 
variables) are given. The variables in Bayesian network may 
be discrete, having a finite number of states, or they may be 
continuous. Mediating variables are introduced in order to 
have a more refined network model of the domain. If the 
introduction of mediating variables serves no purpose, we 
should eliminate them from the model or they may menace 
performance [5]. Historical data and expert knowledge are 
employed to specify the conditional probabilities at each node. 
Figure 2 shows the Bayesian network model constructed from 
the above procedures. 
 

Hypothesis Variables
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Causal Link
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Figure 2: Typical Bayesian network model. 

 
2.2 Bond graph 
 
Bond graph provides a systematic and unified framework to 
model systems in different energy domain. It simply consists 
of subsystems linked together by lines representing power 
bonds. Power variable is the product of effort (e) and flow (f). 
A half arrow indicates positive energy flow from one variable 
to other. Usually, effort represents either: force, voltage or 
pressure; and flow represents either: current, flow or velocity. 
Each bond in the bond graph is numbered so as their 
corresponding flow and effort. The construction of bond 
graph is based on nine primitive entities: three are 1-port 
elements, namely, resistance (R), capacitance (C) and inertia 
(I); two are 2-port elements, transformer (TF) and gyrator 
(GY); two are 3-port elements, parallel junction (0-junction) 
and serial junction (1-junction); and the rest are the ideal 
effort (Se) and flow (Sf) sources. Extensive review of bond 
graph theory can be found in [6]. 
 
As mentioned in the previous subsection, hypothesis and 
information variables are necessary for the construction of 

Bayesian network and they can be readily identified in a bond 
graph model. Any efforts or flows in a bond graph that are 
observed can be identified as information variables. For 
example, the liquid level in a tank (hydraulic domain), the 
input flow rate to a tank (hydraulic domain), and the voltage 
of a capacitor (electrical domain), can be information 
variables once they are observed. The state of hypothesis 
variables is what we are interested in when giving the state of 
information variables. They can be represented in bond graph 
as C, I, or R elements or any effort and flow variables that 
their states are of interest. The directed links between 
variables in Bayesian network can be obtained from a set of 
qualitative equations that are derived from bond graph model. 
The detailed formulation of qualitative equations is omitted 
here and interested readers can find the information in [13]. 
 
2.3 Implementation 
 
The structure of a Bayesian network has some similarities to a 
bond graph model. Hence in this section, the transformation 
from bond graph model to Bayesian network will be 
discussed and the tank system is used as an illustration. 
Figure 3 shows the structure of the tank, with an input flow 
source Qin, an output control valve R and the capacity of the 
tank C. The measured variable is the height h of the tank 
(liquid level) which is related to the pressure as P = f (h). In 
this example, volume flow rate and pressure are the flow and 
effort variables respectively. The qualitative bond graph 
equations are derived from Figure 3 and described as follow: 

e1 = e2 = e3                              
f1 = f2 + f3                               
f2(t) = C × (e2(t) – e2(t–1))    

e3 = R × f3       (5) 
All power variables are considered at time t unless specified. 
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Figure 3: A tank system and its bond graph. 
 
Following the procedures of constructing a Bayesian network 
as aforementioned, we are first to identify the information and 
hypothesis variables. From Equation (5), the only information 
variable is e2 (the liquid level in tank) and the hypothesis 
variables are elements C and R; since in a diagnostic 
application, the state of a component in the system is of 
concern. A mediating variable, f2, is also necessary in order to 
express the causal relation between variables f2 and e2. Hence, 
the resulting Bayesian network describing the diagnosis 
process of the tank system is shown in Figure 4. 
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Figure 4: Bayesian network constructed from bond graph in 

Figure 3 to effect fault diagnosis. 
 
In order to construct a simple Bayesian network that still 
captures all the necessary information to perform fault 
diagnosis, the unnecessary variables like, f1, e2(t–1), f3, are 
omitted in the network. Whenever an information variable is 
on the R.H.S. of the equation (such as the third one in 
Equation (5)), a variable on the L.H.S. (in this case, f2) should 
be introduced as a mediating variable to represent the causal 
relation as shown in Figure 4. Bayesian network constructed 
from bond graph model is nowready for fault diagnosis 
application. 
 
4 Fault Diagnosis Scheme and Results 
 
Fault diagnosis scheme based on Bayesian network proposed 
in this paper is designed to localize the faulty components that 
cause the abnormal behaviors of a system or process. Rather 
than generating an initial fault candidates’ set, such as in [13], 
a probability distribution, which is computed through the 
Bayesian network with given evidence, is attached to each 
component. Hence, ranking of faulty components can be 
achieved. Faulty components to be localized are represented 
as hypothesis variables in the network and system 
measurements are input to the network through the 
corresponding information variables. This has a close relation 
with bond graph model. Components in the bond graph are 
represented as C, I, or R, elements, while system 
measurements are represented as corresponding effort or flow 
variables in the bond graph. As a result, the structure of a 
Bayesian network for performing fault diagnosis can be 
readily derived from a bond graph model as mentioned in 
Section 3. 
 
Figure 5 illustrates the fault diagnosis scheme based on 
Bayesian network. A bond graph model from a system 
concerned is used to construct a Bayesian network for 
localizing faulty components. Once the structure of the 
diagnostic Bayesian network is known and the necessary 
CPDs are acquired from either historical data or expert 
knowledge or both, the Bayesian fault diagnosis module is 
now ready to infer probabilities of faulty components. System 
measurements are provided to the Bayesian fault diagnosis 
module as evidences input to the network. Evidences are 
propagated through the network and the probability 
distributions for each hypothesis variable are inferred. 
Subsequent advices through ranking the faulty components by 
their corresponding probability distributions can be given to 

the system operators. The proposed approach is better than 
traditional fault diagnosis approaches [2, 9, 13] because 
probability distribution is computed for each component. This 
can provide the system operators a priority checking and 
maintenance schedule for system components. Also, the 
approach can be applied to localize multiple faulty 
components that will be correlated to exert a single symptom 
since it is the strength of Bayesian network.  
 

Bond Graph Model

Structure of Bayesian
Network

Expert Knowledge or
Historical Data

Bayesian Fault
DiagnosisEvidence Probabilities of faulty

components
 

Figure 5: The fault diagnosis scheme based on Bayesian 
network. 

 
4.1 Results 
 
The performance of the fault diagnosis based on Bayesian 
network is evaluated by simulation. Exact inference is used 
for propagating evidences through the network. In the 
literatures [1, 5, 11, 12], there are many inference algorithms, 
such as, junction tree, variable elimination, Monte Carlo, 
Gibbs sampling, etc and each has its advantage over other in 
different situation. Discrete probability is adopted as the prior 
probabilities and CPDs for variables in the network and it can 
be extended to deal with continuous probability. 
 
The single tank system is firstly used to evaluate the 
performance of the proposed fault diagnosis algorithm. 
Figures 3 and 4 show the tank system and its Bayesian 
network derived from bond graph model respectively. The 
information variable is only the measured liquid level in the 
tank (e2) and its state is either true (T: maintain at the desired 
level) or false (F: deviate from desired level). Component 
faults, such as, R and C, are identified as the cause of the 
abnormality which are represented as hypothesis variables in 
the network. The state of components R and C is either true (T: 
no fault) or false (F: faulty). The prior probability for 
hypothesis variables R and C are both [0.5 (T), 0.5 (F)]. 
Figure 6 shows the result of the proposed diagnosis algorithm 
to the tank system. When information variable e2 is observed 
to be abnormal (with state: F), the probabilities for both 
hypotheses R and C decreases below the prior. The 
probability of R is lower than C because R has a direct causal 
relation with e2 and it is not the case for C component, and it 
has already reflected in the Bayesian network shown in 
Figure 4. A direct causal relation shows that R component will 



have a greater influence to the system rather than component 
C. When information variable e2 is observed to be normal 
(with state: T), probabilities for both hypotheses R and C 
increases above the prior. Correct localization of faulty 
component can be achieved in this simulation. 
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Figure 6: Fault diagnosis result for the tank system. 
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Figure 7: The coupled-tank system and its bond graph. 
 

R1C1 R2C2

f2

e2

f6

e6
 

Figure 8: Bayesian network of the coupled-tank system for 
fault diagnosis. 

 
Next, localization of faulty components for the coupled-tank 
system will be studied. Figure 7 shows the structure of the 
coupled-tank system and its bond graph. The bond graph 

model derived from the system is transformed to the Bayesian 
network which is shown in Figure 8. In this case, two 
information variables are identified and they are e2 and e6 that 
represent the liquid level in tank 1 and tank 2 respectively. 
Four hypothesis variables are recognized as R1, C1, R2 and C2. 
The prior probability for hypothesis variables is all set to [0.5 
(T), 0.5 (F)]. Figure 9 shows the diagnosis result for the 
coupled-tank system. All combinations for different states of 
information variables are simulated. As before, the diagnosis 
algorithm can localize faulty component accurately. When e2 
is F and e6 is T (the second case in Figure 9), the probabilities 
of R1 and C1 at T is much lower than R2 and C2. It indicates 
that the influence of components R1 and C1 to tank 1 is higher 
than component R2 and C2. Similar argument can be applied 
to the situation when e2 is T and e6 is F (the third case in 
Figure 9). In both cases, the probabilities for R elements (R1 
and R2) to be normal are lower than C elements (C1 and C2), it 
shows that the state of R elements have a direct influence 
towards the liquid level. When both the observed vraibles are 
faulty, i.e., e2 = F and e6 = F, the probabilities for all elements 
to be normal are lower than the priors. The probabilities for 
R1 and C1 to be normal are lower than the other two because 
these two elements have a large influence towards both faulty 
liquid levels in Tank 1 and Tank 2. For elements R2 and C2, 
their effects are relatively confined and local to Tank 2 and 
only show a small influence toward the liquid level in Tank 1. 
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Figure 9: Fault diagnosis result for the coupled-tank system. 

 
From simulation studies, the proposed fault diagnosis 
algorithm based on Bayesian network is feasible. 
Construction of Bayesian network used to be a difficult task is 
now alleviated with the help of bond graph model. Bond 
graph provides a formal, systematic and unified approach to 
model systems in different energy domain. Similarities can be 
found between Bayesian network and bond graph model 
especially when applied to fault diagnosis. The hypothesis 
variables in the Bayesian network can be readily identified 
from a bond graph model as the elements R, C, and I. 



Qualitative interpretation among the set of qualitative 
equations after identifying information and hypothesis 
variables generates the required Bayesian network. Mediating 
variablesare sometimes inserted to the Bayesian network for 
its completeness and correctness. The property of Bayesian 
network in reasoning under uncertainty resolves the problems 
of uncertainty and ambiguity that may be encountered during 
fault localization. The proposed algorithm can be applied to 
refine a set of fault candidates that is generated from 
qualitative reasoning without extra measurements [13]. 
 
5 Conclusions 
 
This contribution presents a novel approach on constructing a 
Bayesian network from a bond graph model. Information and 
hypothesis variables are first identified. The causal links 
between variables are generated from qualitative 
interpretation through the set of qualitative equations. 
Specification of prior and CPDs can be completed by expert 
knowledge and learning from historical data. Simulation 
studies on the single tank and coupled-tank systems show that 
the proposed fault diagnosis based on Bayesian network is 
feasible. Faulty components can be localized correctly 
without extensive computation which is a major criteria for 
on-line fault diagnosis. 
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