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Abstract 
 
The paper addresses the development of neural observer 
schemes for process fault diagnosis. The design is based on a 
generalised functional-link neural network with internal 
dynamics. An evolutionary search of genetic type and multi-
objective optimisation in the Pareto-sense is used to 
determine the optimal architecture of the dynamic network. 
Symptoms characterising the current state of the process are 
obtained based on prediction errors. The latter are further 
evaluated by a static artificial network. Experimental results 
regarding the detection and isolation of artificial sensor faults 
in an evaporation station from a sugar factory illustrate the 
approach. 
 
1 Introduction 
 
Artificial Neural Networks (ANNs) have been suggested as a 
possible data-based technique to cope with the robustness 
problem in Fault Detection and Isolation (FDI) [5,8,9]. The 
robustness of a diagnosing system implies the maximisation 
of detectability and isolability of faults, under the constraint 
of minimisation of the false alarm rate [4]. ANNs are 
currently used as both predictors of dynamic non-linear 
models for symptom generation and pattern classifiers for the 
evaluation of symptoms. However, in the framework of real 
applications [6], it is necessary to perform an updating of the 
designed neural diagnosing systems when there is either a 
variation of the operation point of the plant and (or) a change 
in the process configuration. 
 

The identification of dynamic systems requires models with 
adequate memory. Therefore, the ANNs have to be provided 
with dynamic elements and appropriate learning methods [5]. 
A first approach refers to neural networks with external 
dynamics, e.g. static ANNs equipped with tapped delay lines 
[5,12]. A better approach is achieved by providing the ANN 
with internal dynamics [5]. This kind of network processes 
multi-inputs and does not require past values of process 
measurements as current inputs. Such a neural net is referred 
to as a dynamic network in the present paper. The experience 

gained using the dynamic ANN architectures [8,9,11] has 
evidenced the considerable computational effort that is 
involved in the design stage when the selection of the optimal 
structure of an ANN is based on a trial-and-error approach. 
 

In the mentioned context, the paper first suggests a 
generalised version of several Dynamic Functional-Link 
Neural Networks (DFLNNs) [8,11]. That generalised network 
is used to approximate non-linear models of a plant. The 
design is formulated as a problem of multi-objective 
optimisation. Genetic algorithms are used to find out the 
optimal dynamic architecture of the network. The optimality 
refers to the approximation accuracy and net complexity. The 
neural design of an FDI system is next presented. A neural 
variant to the generalised observer scheme [4] is used to 
generate symptoms reflecting the current state of a process. 
The symptoms are given by the prediction errors obtained by 
using the DFLNN genetically evolved. The generated 
symptoms are further evaluated by means of a static multi-
layer perceptron [2,12] used as pattern classifier. The 
presented methodology is illustrated with a case study based 
on real data supplied by industry [15]. Finally, certain 
conclusions regarding the suggested approach are included. 
 
2 Generalised dynamic functional-link network 
 
The Functional-Link Neural Network (FLNN) has a feed-
forward architecture with no hidden layer(s). Instead, a 
number of non-linear enhancement nodes, referred to as 
functional links, are used to provide supplementary inputs 
within the network [13,14]. In the following, the functional 
expansion given by a sub-set of orthogonal trigonometric 
functions is considered. This provides a more compact 
representation of the function to be approximated, in the 
mean-square sense, than other orthogonal basis functions 
[14]. A so-called flat network results for which only the 
connection weights and bias term(s) must be learned. The 
Back-Propagation (BP) learning method [2,12], used for 
adapting the FLNN’s parameters, therefore becomes very 
simple. 
 

A generalised version of previously developed Dynamic 
FLNNs (DFLNNs) [8,11] is characterised by a variable set of 
functional links and integrates conveniently dynamic 
elements into a static FLNN. This is suggested in the 
following and illustrated generally by Fig. 1. 
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Figure 1: The structure of the generalised dynamic 

functional-link neural network: N inputs, M functional 
expansion terms, local activation feedback (iLAF=1), local 
output feedback (iLOF=1), one non-linear activation unit 
and one output; q-1 stands for the linear operator of time 
shifting; A,B,C,D are polynomials. 

 

The initial inputs of the net Nnun ,...,1, = , are functionally 
expanded to constitute the actual inputs of the non-linear 
neuron, MNmvm += ,...,1, , given by the following set: 
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where, for each initial input nu , 
nui indicates the presence 

(value of 1) or absence (value of 0) of the functional 
expansion, cos

nS  and sin
nS  are the orders of functional 

expansion corresponding to the cosine and sine terms, 
respectively, and maxS  denotes a pre-specified maximum 
order of the functional expansion. At least one initial input of 
the net has to be subject of the non-linear enhancement, i.e. 

Nni
nu ,...,1,1 ==∃ . The present consideration of the 

functional inputs generalises the previous approaches 
[8,11,14], where a fixed order of functional expansion has 
been considered cos

nS = sin
nS = maxS , n=1,...,N. 

 

In order to provide the FLNN with adequate internal memory, 
an Auto-Regressive Moving Average (ARMA) filter can be 
placed: either before the non-linear activation unit of the 
neuron, the resulting network being a DFLNN with Local 
Activation Feedback (DFLNN_LAF) [8]; or on the back 
connection from the network output to the neuron’s input, the 
resulting network being a DFLNN with Local Output 
Feedback (DFLNN_LOF) [8]; or on both places, the resulted 
network being a DFLNN with MIXed structure 
(DFLNN_MIX) [11]. For the Generalised DFLNN 
(GDFLNN), the implementation is realised in such a manner 
that one can select one of the three considered variants based 
on the specified architecture’s parameters iLAF and iLOF . 
 

The following equations describe the propagation of the 
actual inputs of the network, through the GDFLNN (Fig.1), 

providing the output ŷ  of the considered hyperbolic tangent 
neuron: 
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where [k] represents the sampling time instant k and the 
following notations are used: 
• FLNN: wm, m=1,...,N+M, represent the connection 

weights, oθ  denotes the bias term, and zo is the input of 
the activation unit of the neuron; 

• LAF filter: mB represents the numerator order, nA denotes 
the denominator order, bj, j=0,...,mB are the numerator 
coefficients and ai, i=1,...,nA are the denominator 
coefficients, },...,1{},,...,1,0{ maxAmaxB nnmm ∈∈ ; 

• LOF filter: mD denotes the numerator order, nC represents 
the denominator order, dj, j=1,...,mD are the numerator 
coefficients and ci, i=1,...,nC are the denominator 
coefficients, },...,1{},,...,1{ maxCmaxD nnmm ∈∈ , 

where mmax and nmax, respectively, are maximal orders for the 
polynomials of ARMA filter(s). 
 

The parameters characterising the architecture of GDFLNN 
are given by the following sets: 

},;{};,;{;},;{ CDLOFABLAF,...,1
sincos nminmiSSi Nnnnun =  

All these parameters have been provided, for the previous 
approaches [8,11] characterised by certain restrictions, by a 
trial-and-error process in a pre-defined space. 
 

For a given architecture, the parameters of the GDFLNN are 
the connection weights, the coefficients of filter(s), and the 
bias term. These parameters are determined with an extended, 
Dynamic BP (DBP) algorithm [8,9,11]. The latter minimises 
the sum of squared errors between the training data and the 
approximating values provided by the ANN. 
 

The design of the GDFLNN is based on three sets of 
representative process data as follows [2,12]: a training data 
set used for model identification, different models’ 
architectures and parameters being determined; a data set for 
validation used to select the best identified model(s); a data 
set for model testing used to evaluate the quality of the 
validated model(s). For the DBP learning, the batch learning 
mode [2] is applied, i.e. the net parameters are adapted after 
an entire pass of the training data through the network (one 
epoch). The mechanisms of variable parameter of learning 
rate and momentum term are considered as well [2]. 
 



3 Genetic evolving of GDFLNN 
 
The specification of the optimal GDFLNN architecture and 
related parameters is a rather difficult task when a trial-and-
error approach is considered [8,11]. Therefore, a Genetic 
Algorithm (GA) is used to solve this problem. Since the 
remaining parameters of the GDFLNN (connection weights, 
filters’ coefficients, and bias term) have meaning only for a 
pre-defined dynamic architecture, they are determined by 
means of the extended DBP algorithm. The latter is integrated 
into the genetic search, when the potential solutions are 
evaluated for their fitness to the application specific design. 
 

Evolutionary algorithms of genetic type are principally based 
on computational models of fundamental processes, such as 
selection, recombination and mutation [1,3,7]. An algorithm 
of this type begins with a set (population) of parameters’ 
estimates (genes), called individuals (chromosomes) 
appropriately encoded. Each one is evaluated for its fitness in 
solving a given optimisation task. At each iteration (algorithm 
time-step), the most fit individuals are allowed to mate and 
bear offspring. 
 
3.1 Neural architecture encoding 
 
The GDFLNN is encoded using a structured formulation of 
the chromosome in a hierarchical fashion [7,9]. The resulted 
hierarchical GA has the following main features: the 
chromosome has a multi-level genetic structure, i.e. a directed 
graph, and consists of multiple level control genes and 
parametric genes; genes at any level can be either active (the 
value of ‘1’ is assigned) or passive (the value of ‘0’ is 
assigned); the inactive genes remain within the chromosome 
structure and can be carried forward for further generations; 
“high level” (control) genes activate or deactivate the “low 
level” (parametric) genes according to their current values; 
the standard genetic operations of recombination and 
mutation are applied independently to each level of genes. 
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Figure 2: Hierarchical formulation of chromosome for the 

design of the generalised dynamic functional-link neural 
network. 

 

Fig. 2 presents the hierarchical structure of the chromosome 
that is used for the design of GDFLNN, as described in the 

previous section of the paper. The highest level 1 controls the 
presence or absence of the functional expansion for each 
network’s initial input, and of the dynamic elements. The 
involved parameters are binary coded. The lowest (second) 
level contains the parameters of the functional expansion, i.e. 
the orders of activated cosine and sine terms, and of the 
dynamic internal structures, i.e. the orders of activated 
ARMA filter(s). These parameters are coded as integer 
values. 
 

The search space is defined by assigning certain maximal 
values for the orders of functional expansion, Smax, and orders 
of ARMA filter(s), mmax and nmax, respectively (section 2 of 
the paper). These values determine the maximal length of the 
chromosomes as well.  
 
3.2 Objective functions 
 
A multi-objective approach is adopted for the design of an 
optimal GDFLNN. Two categories of objectives are 
considered to be minimised. They characterise the 
approximation accuracy of the network and its complexity. 
Since the first distinction is of paramount importance, the 
associated objectives have different priorities. The following 
objective functions are considered in the present approach, as 
they refer to items of different meaning: 
• 1O = the Sum of Squared Errors (SSE) that characterise a 

certain architecture of GDFLNN and its training data set; 
• 2O  = the sum of squared errors that characterise a 

certain architecture of GDFLNN (as for the objective 
function 1O ) and its validation data set; 

• NnSSO nnn ,...,1;sincos
2 =+=+  = the number of active 

functional expansions corresponding to each net’s input; 
• AB3 nmON +=+  = the number of coefficients of active 

LAF filter; 
• CD4 nmON +=+  = the number of coefficients of active 

LOF filter. 
The following priority assignment is considered: objectives 

1O  and 2O  have the same priority of high level; objectives 
NnO n ,...,1;2 =+ , 3+NO  and 4+NO  have the same priority 

of low level. 
 

Multi-objective Optimisation based on GA (MOGA) seeks to 
optimise the components of a vector-valued cost function. 
The solution is not a single point, but a family of points 
known as the Pareto-optimal set [3,7]. Each point in this 
surface is optimal in the sense that no improvement can be 
achieved in one component of the objectives’ vector without 
degradation in at least one of the remaining components. The 
process of optimisation is seen as the result of the interaction 
between an artificial selector, referred to as a Decision Maker 
(DM), and an evolutionary search process of genetic type 
(GA). Thus, the search process generates a new set of 
candidate solutions according to the utility assigned by the 
DM to the current set of candidates. This approach permits 
accommodation of goal and priority information available 
from the problem formulation. 



3.3 MOGA Procedure 
 
For the genetic evolving of the GDFLNN, the following 
procedure is adopted and sketched out in the sequel, based on 
the work previously reported [3, 9]: 
 

• Initialisation: 
Create an initial hierarchical population; Check consistency 
of the initial population (with remedy actions if necessary); 
Apply extended DBP to GDFLNN architectures 
corresponding to initial population; Calculate objective 
functions for population; Calculate goals for population; 
Calculate Pareto-ranking values for population; Select initial 
best individual(s). 
 

• Evolutionary loop: 
loop over a number of MAX_GEN generations: 
• GA Stage: Fitness assignment to whole population; Select 
individuals from population (stochastic universal sampling); 
Recombination and mutation; Check consistency of offspring 
(with remedy actions if necessary); Apply extended DBP to 
GDFLNN architectures corresponding to offspring; Calculate 
objective functions for offspring; Calculate Pareto-ranking 
values for offspring; Insert best offspring into population 
replacing worst parents (Elitist Strategy); 
• DM Stage: Adapt goals; Calculate Pareto-ranking values 
for new population; Select best individual(s). 
 

• Exit: 
Determine best individual(s) over all performed generations, 
including post-training analysis (linear regression and 
correlation) applied to the response of identified model(s) [2]. 
 

The mentioned remedy actions are applied to maintain 
feasible dynamic architectures of GDFLNN into a population. 
The corrective actions are made by means of repeated 
application of the mutation operator in the corresponding 
fields of the control and (or) parametric genes. The DBP is 
applied for a reasonable low number of epochs to investigate 
efficiently the search space. Finally, the DBP is applied for a 
greater number of epochs to the best individual(s) found at 
exit. The adaptation of goal values (used in the Pareto 
ranking) is achieved such that the search is uniformly directed 
towards the middle region of the trade-off surface of 
objectives. 
 
4 Neural design of an FDI system 
 
For the generation of symptoms, the neural networks replace 
the analytical model that describes the process. An ANN 
model for each system output is identified by using both 
inputs and outputs of the process as inputs to the network for 
a known class of process behavior, usually the normal 
operation. This way, the resulted models are used for the 
separate estimation of process output signals in observer-like 
arrangement [8,9]. Process symptoms, i.e. residuals, are then 
obtained by subtracting the approximations of the neural 
observer from the corresponding process measurements. 
 

With respect to the application described in the next section 
of the paper, the GDFLNN is used to design an extended 

version of the Generalized Observer Scheme (GOS) [4,9]. 
This is applied to detect and isolate sensor and (or) actuator 
faults. All networks are trained using data corresponding to 
the normal behavior of the process. In the following, a Multi-
Input Single Output (MISO) process is considered, having I 
measured inputs Iiku i ,...,1],[,P =  and one output ][P ky , all 
known at sampling time k. 
 

The considered process is first identified by one GDFLNN. 
This is driven by all inputs and the output of the system. The 
network estimates the output of the process: 
 

 Iii kukkykfky ,...,1,PPPP00 ]][[:][]);1[],[(][ˆ ==−= uu      (1) 
 

where 0f  denotes the mapping performed by the GDFLNN. 
Secondly, the Neural GOS (NGOS) is developed. It consists 
of as many GDFLNNs as process inputs are available. Each 
such network of NGOS is driven by the process output and all 
inputs but one input. The output of the MISO process is 
approximated by the mappings jf  of the GDFLNNs: 
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The residuals are generated by means of the extended NGOS 
given by the relationships (1) and (2). One step-ahead 
prediction errors are obtained as: 
 

Ilkykykr ll ,...,1,0],[ˆ][][ P =−=        (3) 
 

The residual 0r  is affected by all process variables. Instead, 
each residual Ilrl ,...,1, =  is sensitive to the process output 
and all inputs but the l-th input. In case of an input variable 
affected by a fault, the decoupled residual remains small, 
while the others are influenced. All these patterns of change 
are further used to locate the faults. 
 

The next stage of symptom evaluation can be seen as a 
classification problem. This means to match each pattern of 
the symptom vector (3) with one of the pre-assigned classes 
of faulty behaviour, if available, and the fault-free class, 
respectively. An ANN classifier used for FDI has as inputs 
the residual signals and must produce pre-assigned outputs 
characteristic to each known class of process behaviour. A 
static Multi-Layer Perceptron (MLP) with sigmoid neurons 
and BP rule of learning is considered in the present approach 
[2], to assess the quality with respect to FDI (i.e., sensitivity) 
of residuals generated by different dynamic ANNs. 
 
5 Application 
 
The presented methodology was under assessment by using 
real process data from the evaporation station of Lublin sugar 
factory in Poland [15]. The investigated process is a five-
stage industrial system characterised by high complexity. No 
process models from the sugar factory are available. Instead, 
the knowledge of the technological flux and measurement 
values in a huge database do exist. All these justify the black-
box approach of applying neural networks to modelling and 
monitoring of the process. To implement the presented neural 



approach, the following were used and extended: the MATLAB 
programming environment [10], the Neural Network Toolbox 
[2], and the standard GA Toolbox (GAT) [1]. 
 
5.1 Process Description 
 
The evaporation process reduces the water content of sucrose 
juice. The liquor goes through a series of five sections. In 
each passage, the sucrose concentration is increased. The 
juice steam recovered from one stage is used as a heating 
source for the next section. Data from the heater and first 
section of the evaporation section (Fig. 3) have been 
considered for a case study [15]. 
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Figure 3: Heater and first section of evaporation station from 

a sugar factory. 
 

The factory is equipped with a Supervisory Control And Data 
Acquisition system (SCADA) that allows the registration and 
storage of all set-point, control and process variables. The 
faults are rather exceptional, due to the careful inspection of 
installation before starting the three-months long production 
period. The fault-free data stored by SCADA during one 
month, every TS=10 s, were used to extract the training and 
validation data sets for developing the residual generators. 
 

For testing and benchmarking purpose, 3000 rows of 
measurements (corresponding to approximately 8 hours) from 
another month of plant exploitation were used. Another 
testing set was created by introducing artificial single faults in 
the first testing data set. Faults were generated by adding or 
subtracting 5, 10 and 15 percent of the whole possible range 
of variation to each measurement, respectively, in different 
periods of time. According to the benchmark [15], those 
simulated faults had to be detected and isolated. 
 
5.2 Experimental Results 
 
The results corresponding to FDI of the “Evaporator” Sub-
system (ES, Fig.3) are only reported here due to space 
restrictions. Similar results were obtained for the other sub-
systems of “control valve”, “heater”, “steam”, and “vapours” 
(Fig.3) considered in that case study [15]. The GDFLNNs 
were used to design an NGOS for that ES. The inputs of the 
models (1) and (2) are: uP,1 – the steam flow to the input of 
ES, uP,2 – the steam temperature at the input of ES, and uP,3 – 
the juice temperature after heater. The modelled output is yP – 
the juice temperature after section 1 of ES. Artificial faults 
affect all four variables. To develop a model, isolated missing 

and uncertain measurements were replaced by means of linear 
interpolation. A spectral analysis was then performed and a 
low-pass filtering (by means of appropriate discrete-time 
Butterworth filters) was applied to reduce the noise and the 
amount of data used in the ANN learning. The training and 
validation data, each containing 3000 rows of measurements, 
were decimated (using each 10th sampled value). 
 

The search space for the genetic procedure was defined by 
setting the following parameters (section 2): Smax=5, and 
mmax=nmax=3. The parameters for different GAT functions [1] 
were considered as (section 3): MAX_GEN=30 generations, 
30 individuals in a population, selection rate of 0.8 for 
recombination, discrete recombination rate of 0.7 (uniform 
crossover), mutation rate of 0.01, offspring reinsertion rate of 
0.8. During the genetic search, the GDFLNNs were trained 
for 500 epochs. The best architecture of GDFLNN found at 
exit was trained again for 3000 epochs. The resulted 
GDFLNNs are characterised by a simple structure (e.g. not all 
network inputs are functionally expanded), and a performance 
given by SSE of order of 10-2 over the reduced testing data set 
of 300 points. However, the most sensitive residuals and best 
FDI performance are obtained with GDFLNNs having all 
inputs functionally expanded (i.e. it was necessary to restrict 
the search space), the resulted networks having the same 
accuracy performance over the testing data set without faults. 
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Figure 4: Evaporator, residuals obtained with the GDFLNNs. 



The generated residuals (3) corresponding to the finally 
resulted GDFLNNs are presented in Fig.4, the case of testing 
data with faults. All residuals are influenced by the faults on 
the output signal (samples 2100...2400). The second residual, 
r1, is almost not influenced by the faults on the first process 
input (samples 300...600). The third residual, r2, is almost not 
influenced by the faults on the second process input (samples 
1500...1800). Finally, the fourth residual, r3, is almost not 
influenced by the faults affecting the third process input 
(samples 2400...2700). 
 

For each faulty signal, two classes were considered. 
Altogether nine classes of sub-process behaviour are 
diagnosed: normal behaviour, and positive and negative 
deviations of each of four process variables, respectively. To 
train an MLP/BP classifier with two layers of sigmoid 
neurons [2], the residuals obtained from testing data with 
faults (Fig.4) were used. A supplementary criterion of 
decision was considered to eliminate isolated false and wrong 
alarms [9]: a fault is validated if the classifier recognises a 
certain class at least three diagnosis cycles of TS=10 s each. 
The best results of initial classification and final decision 
(“diagnosis”) are included in Table 1, fourth row. 
 

Table 1: Evaporator, performance of diagnosing systems 
 

NGOS Recognition rate 
(generated residuals) classification diagnosis 
DFLNN_LAF (r0, r1, r2, r3)  96.00% 96.06% 
DFLNN_LOF (r0, r1, r2, r3) 91.12% 91.89% 
DFLNN_MIX (r0, r1, r2, r3) 95.93% 96.33% 
GDFLNN 
(LAF: r0; LOF: r1, r3; MIX: r2) 

 

96.90% 
 

98.03% 

GDMLP (r0, r1, r2, r3) 98.57% 98.87% 
 

Table 1 presents comparatively the results of fault 
classification and diagnosis of the ES based on the NGOS 
designed with the previously developed DFLNN_LAF, 
DFLNN_LOF [8], and DFLNN_MIX [11], the suggested 
GDLFNN genetically evolved, and a Generalised Dynamic 
MLP (GDMLP) genetically evolved [9]. The results obtained 
with the GDFLNN genetically evolved are quite close to the 
best ones obtained with the GDMLP. However, the GDFLNN 
is characterised by a much simpler architecture, and a reduced 
training and evaluation time. 
 
6 Conclusions 
 
The paper suggests a multi-objective genetic approach to the 
design of a generalised functional-link neural network with 
internal dynamics. This is used to develop a generalised 
observer scheme. The latter provides structured sets of 
residuals, in order to perform a robust diagnosis of process 
faults. The obtained symptoms are classified by a static neural 
net. Diagnosing systems were designed to detect and isolate 
incipient sensor and actuator faults in an evaporation process. 
 

The developed genetic procedure represents a semi-automatic 
method of selecting the appropriate network architecture for 
the task of non-linear system identification. The user must 
assign certain parameters of the genetic search. This seems to 

be easier than manually selecting the network architecture. 
The design time is reduced, for the presented application this 
meant a reduction from several days to several hours for each 
designed neural network. Such an approach seems to be 
appropriate for an efficient re-design of a neural diagnosing 
system, in the face of changing operating conditions of the 
monitored process. Current research refers to the application 
of the presented methodology to other types of processes [6]. 
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