
DYNAMIC FUNCTIONAL – LINK NEURAL NETWORKS
GENETICALLY EVOLVED APPLIED TO FAULT DIAGNOSIS

T. Marcu*, B. Köppen-Seliger, P.M. Frank, S.X. Ding

University of Duisburg-Essen, Institute of Automatic Control and Complex Systems (AKS)
Bismarckstrasse 81 (BB), D-47057 Duisburg, Germany
*Phone: +49-203-3794293; Fax: +49-203-3792928;

e-mail: {t.marcu, bks, p.m.frank, s.x.ding}@uni-duisburg.de

Keywords: fault diagnosis; dynamic neural networks; non-
linear system identification; genetic algorithms; multi-
objective optimisation.

Abstract

The paper addresses the development of neural observer
schemes for process fault diagnosis. The design is based on a
generalised functional-link neural network with internal
dynamics. An evolutionary search of genetic type and multi-
objective optimisation in the Pareto-sense is used to
determine the optimal architecture of the dynamic network.
Symptoms characterising the current state of the process are
obtained based on prediction errors. The latter are further
evaluated by a static artificial network. Experimental results
regarding the detection and isolation of artificial sensor faults
in an evaporation station from a sugar factory illustrate the
approach.

1 Introduction

Artificial Neural Networks (ANNs) have been suggested as a
possible data-based technique to cope with the robustness
problem in Fault Detection and Isolation (FDI) [5,8,9]. The
robustness of a diagnosing system implies the maximisation
of detectability and isolability of faults, under the constraint
of minimisation of the false alarm rate [4]. ANNs are
currently used as both predictors of dynamic non-linear
models for symptom generation and pattern classifiers for the
evaluation of symptoms. However, in the framework of real
applications [6], it is necessary to perform an updating of the
designed neural diagnosing systems when there is either a
variation of the operation point of the plant and (or) a change
in the process configuration.

The identification of dynamic systems requires models with
adequate memory. Therefore, the ANNs have to be provided
with dynamic elements and appropriate learning methods [5].
A first approach refers to neural networks with external
dynamics, e.g. static ANNs equipped with tapped delay lines
[5,12]. A better approach is achieved by providing the ANN
with internal dynamics [5]. This kind of network processes
multi-inputs and does not require past values of process
measurements as current inputs. Such a neural net is referred
to as a dynamic network in the present paper. The experience

gained using the dynamic ANN architectures [8,9,11] has
evidenced the considerable computational effort that is
involved in the design stage when the selection of the optimal
structure of an ANN is based on a trial-and-error approach.

In the mentioned context, the paper first suggests a
generalised version of several Dynamic Functional-Link
Neural Networks (DFLNNs) [8,11]. That generalised network
is used to approximate non-linear models of a plant. The
design is formulated as a problem of multi-objective
optimisation. Genetic algorithms are used to find out the
optimal dynamic architecture of the network. The optimality
refers to the approximation accuracy and net complexity. The
neural design of an FDI system is next presented. A neural
variant to the generalised observer scheme [4] is used to
generate symptoms reflecting the current state of a process.
The symptoms are given by the prediction errors obtained by
using the DFLNN genetically evolved. The generated
symptoms are further evaluated by means of a static multi-
layer perceptron [2,12] used as pattern classifier. The
presented methodology is illustrated with a case study based
on real data supplied by industry [15]. Finally, certain
conclusions regarding the suggested approach are included.

2 Generalised dynamic functional-link network

The Functional-Link Neural Network (FLNN) has a feed-
forward architecture with no hidden layer(s). Instead, a
number of non-linear enhancement nodes, referred to as
functional links, are used to provide supplementary inputs
within the network [13,14]. In the following, the functional
expansion given by a sub-set of orthogonal trigonometric
functions is considered. This provides a more compact
representation of the function to be approximated, in the
mean-square sense, than other orthogonal basis functions
[14]. A so-called flat network results for which only the
connection weights and bias term(s) must be learned. The
Back-Propagation (BP) learning method [2,12], used for
adapting the FLNN’s parameters, therefore becomes very
simple.

A generalised version of previously developed Dynamic
FLNNs (DFLNNs) [8,11] is characterised by a variable set of
functional links and integrates conveniently dynamic
elements into a static FLNN. This is suggested in the
following and illustrated generally by Fig. 1.

Functional
Expansion

M

M

M

M

w1

wn

wN

wN+1

wm

wN+M

θo

u1[k]

un[k]

uN[k]

v1[k]

vn[k]

vN[k]

vN+1[k]

vm[k]

vN+M[k]

M

M

M

M

M

M

Σ

D(q-1) (mD)

C(q-1) (nC)

]k[x~]k[ŷ

]k[y~ o

B(q-1) (mB)

A(q-1) (nA)

x[k]

iLOF

iLAF

Figure 1: The structure of the generalised dynamic

functional-link neural network: N inputs, M functional
expansion terms, local activation feedback (iLAF=1), local
output feedback (iLOF=1), one non-linear activation unit
and one output; q-1 stands for the linear operator of time
shifting; A,B,C,D are polynomials.

The initial inputs of the net Nnun ,...,1, = , are functionally
expanded to constitute the actual inputs of the non-linear
neuron, MNmvm += ,...,1, , given by the following set:

)}}sin({)},cos({,{ nnunnun uπkiuπjiu
nn

⋅⋅⋅⋅⋅⋅

NnSSS

SkSj

nn

nnnn

,...,1};,...,1{,

;,...,1;,...,1

max
sincos

sincos

=∈

==

∑
=

⋅⋅≤+=
N

n
nn NSSSM

1
max

sincos 2)(

where, for each initial input nu ,
nui indicates the presence

(value of 1) or absence (value of 0) of the functional
expansion, cos

nS and sin
nS are the orders of functional

expansion corresponding to the cosine and sine terms,
respectively, and maxS denotes a pre-specified maximum
order of the functional expansion. At least one initial input of
the net has to be subject of the non-linear enhancement, i.e.

Nni
nu ,...,1,1 ==∃ . The present consideration of the

functional inputs generalises the previous approaches
[8,11,14], where a fixed order of functional expansion has
been considered cos

nS = sin
nS = maxS , n=1,...,N.

In order to provide the FLNN with adequate internal memory,
an Auto-Regressive Moving Average (ARMA) filter can be
placed: either before the non-linear activation unit of the
neuron, the resulting network being a DFLNN with Local
Activation Feedback (DFLNN_LAF) [8]; or on the back
connection from the network output to the neuron’s input, the
resulting network being a DFLNN with Local Output
Feedback (DFLNN_LOF) [8]; or on both places, the resulted
network being a DFLNN with MIXed structure
(DFLNN_MIX) [11]. For the Generalised DFLNN
(GDFLNN), the implementation is realised in such a manner
that one can select one of the three considered variants based
on the specified architecture’s parameters iLAF and iLOF .

The following equations describe the propagation of the
actual inputs of the network, through the GDFLNN (Fig.1),

providing the output ŷ of the considered hyperbolic tangent
neuron:

][~][][LOF
1

kyikvwkx oMN

m
mm ⋅+⋅= ∑

+

=

∑∑
==

−⋅−−⋅=
CD

11
][~][ˆ][~ n

i

o
i

m

j
j

o ikycjkydky

}][~][{][][~ B A

1 1
AF0 ∑ ∑

= =
−⋅−−⋅⋅+⋅=

m

j

n

i
ijL ikxajkxbikxbkx

if 0LAF =i , then 10 ≡b and][][~ kxkx ≡
oo θkxkz +=][~][

)/()(][ˆ][][][][kzkzkzkz oooo
eeeeky −− +−=

where [k] represents the sampling time instant k and the
following notations are used:
• FLNN: wm, m=1,...,N+M, represent the connection

weights, oθ denotes the bias term, and zo is the input of
the activation unit of the neuron;

• LAF filter: mB represents the numerator order, nA denotes
the denominator order, bj, j=0,...,mB are the numerator
coefficients and ai, i=1,...,nA are the denominator
coefficients, },...,1{},,...,1,0{ maxAmaxB nnmm ∈∈ ;

• LOF filter: mD denotes the numerator order, nC represents
the denominator order, dj, j=1,...,mD are the numerator
coefficients and ci, i=1,...,nC are the denominator
coefficients, },...,1{},,...,1{ maxCmaxD nnmm ∈∈ ,

where mmax and nmax, respectively, are maximal orders for the
polynomials of ARMA filter(s).

The parameters characterising the architecture of GDFLNN
are given by the following sets:

},;{};,;{;},;{ CDLOFABLAF,...,1
sincos nminmiSSi Nnnnun =

All these parameters have been provided, for the previous
approaches [8,11] characterised by certain restrictions, by a
trial-and-error process in a pre-defined space.

For a given architecture, the parameters of the GDFLNN are
the connection weights, the coefficients of filter(s), and the
bias term. These parameters are determined with an extended,
Dynamic BP (DBP) algorithm [8,9,11]. The latter minimises
the sum of squared errors between the training data and the
approximating values provided by the ANN.

The design of the GDFLNN is based on three sets of
representative process data as follows [2,12]: a training data
set used for model identification, different models’
architectures and parameters being determined; a data set for
validation used to select the best identified model(s); a data
set for model testing used to evaluate the quality of the
validated model(s). For the DBP learning, the batch learning
mode [2] is applied, i.e. the net parameters are adapted after
an entire pass of the training data through the network (one
epoch). The mechanisms of variable parameter of learning
rate and momentum term are considered as well [2].

3 Genetic evolving of GDFLNN

The specification of the optimal GDFLNN architecture and
related parameters is a rather difficult task when a trial-and-
error approach is considered [8,11]. Therefore, a Genetic
Algorithm (GA) is used to solve this problem. Since the
remaining parameters of the GDFLNN (connection weights,
filters’ coefficients, and bias term) have meaning only for a
pre-defined dynamic architecture, they are determined by
means of the extended DBP algorithm. The latter is integrated
into the genetic search, when the potential solutions are
evaluated for their fitness to the application specific design.

Evolutionary algorithms of genetic type are principally based
on computational models of fundamental processes, such as
selection, recombination and mutation [1,3,7]. An algorithm
of this type begins with a set (population) of parameters’
estimates (genes), called individuals (chromosomes)
appropriately encoded. Each one is evaluated for its fitness in
solving a given optimisation task. At each iteration (algorithm
time-step), the most fit individuals are allowed to mate and
bear offspring.

3.1 Neural architecture encoding

The GDFLNN is encoded using a structured formulation of
the chromosome in a hierarchical fashion [7,9]. The resulted
hierarchical GA has the following main features: the
chromosome has a multi-level genetic structure, i.e. a directed
graph, and consists of multiple level control genes and
parametric genes; genes at any level can be either active (the
value of ‘1’ is assigned) or passive (the value of ‘0’ is
assigned); the inactive genes remain within the chromosome
structure and can be carried forward for further generations;
“high level” (control) genes activate or deactivate the “low
level” (parametric) genes according to their current values;
the standard genetic operations of recombination and
mutation are applied independently to each level of genes.

Level 1 : GDFLNN Structure - CONTROL Genes

functional expansions dynamics

0 - absent;
1 - present

0 - absent;
1 - present

0 - absent;
1 - present

Level 2 : GDFLNN Structure - PARAMETRIC Genes

LAF LOF

dynamicsfunctional expansions

1u Nunu

LAF LOF1u nu Nu

nui LAFi LOFi

cos
1S cos

nS cos
NSsin

1S sin
nS sin

NS Bm DmAn Cn

Level 1 : GDFLNN Structure - CONTROL Genes

functional expansions dynamics

0 - absent;
1 - present

0 - absent;
1 - present

0 - absent;
1 - present

Level 2 : GDFLNN Structure - PARAMETRIC Genes

LAF LOF

dynamicsfunctional expansions

1u Nunu

LAF LOF1u nu Nu

nui LAFi LOFi

LAF LOF1u nu Nu

nui LAFi LOFi
nui LAFi LOFi

cos
1S cos

nS cos
NSsin

1S sin
nS sin

NS Bm DmAn Cncos
1S cos

nS cos
NSsin

1S sin
nS sin

NS Bm DmAn Cn

Figure 2: Hierarchical formulation of chromosome for the

design of the generalised dynamic functional-link neural
network.

Fig. 2 presents the hierarchical structure of the chromosome
that is used for the design of GDFLNN, as described in the

previous section of the paper. The highest level 1 controls the
presence or absence of the functional expansion for each
network’s initial input, and of the dynamic elements. The
involved parameters are binary coded. The lowest (second)
level contains the parameters of the functional expansion, i.e.
the orders of activated cosine and sine terms, and of the
dynamic internal structures, i.e. the orders of activated
ARMA filter(s). These parameters are coded as integer
values.

The search space is defined by assigning certain maximal
values for the orders of functional expansion, Smax, and orders
of ARMA filter(s), mmax and nmax, respectively (section 2 of
the paper). These values determine the maximal length of the
chromosomes as well.

3.2 Objective functions

A multi-objective approach is adopted for the design of an
optimal GDFLNN. Two categories of objectives are
considered to be minimised. They characterise the
approximation accuracy of the network and its complexity.
Since the first distinction is of paramount importance, the
associated objectives have different priorities. The following
objective functions are considered in the present approach, as
they refer to items of different meaning:
• 1O = the Sum of Squared Errors (SSE) that characterise a

certain architecture of GDFLNN and its training data set;
• 2O = the sum of squared errors that characterise a

certain architecture of GDFLNN (as for the objective
function 1O) and its validation data set;

• NnSSO nnn ,...,1;sincos
2 =+=+ = the number of active

functional expansions corresponding to each net’s input;
• AB3 nmON +=+ = the number of coefficients of active

LAF filter;
• CD4 nmON +=+ = the number of coefficients of active

LOF filter.
The following priority assignment is considered: objectives

1O and 2O have the same priority of high level; objectives
NnO n ,...,1;2 =+ , 3+NO and 4+NO have the same priority

of low level.

Multi-objective Optimisation based on GA (MOGA) seeks to
optimise the components of a vector-valued cost function.
The solution is not a single point, but a family of points
known as the Pareto-optimal set [3,7]. Each point in this
surface is optimal in the sense that no improvement can be
achieved in one component of the objectives’ vector without
degradation in at least one of the remaining components. The
process of optimisation is seen as the result of the interaction
between an artificial selector, referred to as a Decision Maker
(DM), and an evolutionary search process of genetic type
(GA). Thus, the search process generates a new set of
candidate solutions according to the utility assigned by the
DM to the current set of candidates. This approach permits
accommodation of goal and priority information available
from the problem formulation.

3.3 MOGA Procedure

For the genetic evolving of the GDFLNN, the following
procedure is adopted and sketched out in the sequel, based on
the work previously reported [3, 9]:

• Initialisation:
Create an initial hierarchical population; Check consistency
of the initial population (with remedy actions if necessary);
Apply extended DBP to GDFLNN architectures
corresponding to initial population; Calculate objective
functions for population; Calculate goals for population;
Calculate Pareto-ranking values for population; Select initial
best individual(s).

• Evolutionary loop:
loop over a number of MAX_GEN generations:
• GA Stage: Fitness assignment to whole population; Select
individuals from population (stochastic universal sampling);
Recombination and mutation; Check consistency of offspring
(with remedy actions if necessary); Apply extended DBP to
GDFLNN architectures corresponding to offspring; Calculate
objective functions for offspring; Calculate Pareto-ranking
values for offspring; Insert best offspring into population
replacing worst parents (Elitist Strategy);
• DM Stage: Adapt goals; Calculate Pareto-ranking values
for new population; Select best individual(s).

• Exit:
Determine best individual(s) over all performed generations,
including post-training analysis (linear regression and
correlation) applied to the response of identified model(s) [2].

The mentioned remedy actions are applied to maintain
feasible dynamic architectures of GDFLNN into a population.
The corrective actions are made by means of repeated
application of the mutation operator in the corresponding
fields of the control and (or) parametric genes. The DBP is
applied for a reasonable low number of epochs to investigate
efficiently the search space. Finally, the DBP is applied for a
greater number of epochs to the best individual(s) found at
exit. The adaptation of goal values (used in the Pareto
ranking) is achieved such that the search is uniformly directed
towards the middle region of the trade-off surface of
objectives.

4 Neural design of an FDI system

For the generation of symptoms, the neural networks replace
the analytical model that describes the process. An ANN
model for each system output is identified by using both
inputs and outputs of the process as inputs to the network for
a known class of process behavior, usually the normal
operation. This way, the resulted models are used for the
separate estimation of process output signals in observer-like
arrangement [8,9]. Process symptoms, i.e. residuals, are then
obtained by subtracting the approximations of the neural
observer from the corresponding process measurements.

With respect to the application described in the next section
of the paper, the GDFLNN is used to design an extended

version of the Generalized Observer Scheme (GOS) [4,9].
This is applied to detect and isolate sensor and (or) actuator
faults. All networks are trained using data corresponding to
the normal behavior of the process. In the following, a Multi-
Input Single Output (MISO) process is considered, having I
measured inputs Iiku i ,...,1],[,P = and one output][P ky , all
known at sampling time k.

The considered process is first identified by one GDFLNN.
This is driven by all inputs and the output of the system. The
network estimates the output of the process:

 Iii kukkykfky ,...,1,PPPP00]][[:][]);1[],[(][ˆ ==−= uu (1)

where 0f denotes the mapping performed by the GDFLNN.
Secondly, the Neural GOS (NGOS) is developed. It consists
of as many GDFLNNs as process inputs are available. Each
such network of NGOS is driven by the process output and all
inputs but one input. The output of the MISO process is
approximated by the mappings jf of the GDFLNNs:

Ijkuk

kykfky

jiIiij

jjj

,...,1;]],[[:][

]);1[],[(][ˆ

;,...,1,P,P

P,P

==

−=

≠=u

u
 (2)

The residuals are generated by means of the extended NGOS
given by the relationships (1) and (2). One step-ahead
prediction errors are obtained as:

Ilkykykr ll ,...,1,0],[ˆ][][P =−= (3)

The residual 0r is affected by all process variables. Instead,
each residual Ilrl ,...,1, = is sensitive to the process output
and all inputs but the l-th input. In case of an input variable
affected by a fault, the decoupled residual remains small,
while the others are influenced. All these patterns of change
are further used to locate the faults.

The next stage of symptom evaluation can be seen as a
classification problem. This means to match each pattern of
the symptom vector (3) with one of the pre-assigned classes
of faulty behaviour, if available, and the fault-free class,
respectively. An ANN classifier used for FDI has as inputs
the residual signals and must produce pre-assigned outputs
characteristic to each known class of process behaviour. A
static Multi-Layer Perceptron (MLP) with sigmoid neurons
and BP rule of learning is considered in the present approach
[2], to assess the quality with respect to FDI (i.e., sensitivity)
of residuals generated by different dynamic ANNs.

5 Application

The presented methodology was under assessment by using
real process data from the evaporation station of Lublin sugar
factory in Poland [15]. The investigated process is a five-
stage industrial system characterised by high complexity. No
process models from the sugar factory are available. Instead,
the knowledge of the technological flux and measurement
values in a huge database do exist. All these justify the black-
box approach of applying neural networks to modelling and
monitoring of the process. To implement the presented neural

approach, the following were used and extended: the MATLAB
programming environment [10], the Neural Network Toolbox
[2], and the standard GA Toolbox (GAT) [1].

5.1 Process Description

The evaporation process reduces the water content of sucrose
juice. The liquor goes through a series of five sections. In
each passage, the sucrose concentration is increased. The
juice steam recovered from one stage is used as a heating
source for the next section. Data from the heater and first
section of the evaporation section (Fig. 3) have been
considered for a case study [15].

LC51_01

R
LC51_03

R

TC51_05 ?C

R

PC51_01

 kPa

T51_07 ?C
P51_03 kPa

T51_06 ?C
F51_02 t/h

P51_04
kPa

T51_02 ?C T51_03 ?C T51_04 ?C

T51_01 ?C

F51_03 t/h

F51_01 m3/h T51_08 ?C

R

Evaporator

steam temperature

steam flow

juice temperature

juice temperaturethin juice flow

juice level

Control Valve

Heater

Steam

Vapours

Figure 3: Heater and first section of evaporation station from

a sugar factory.

The factory is equipped with a Supervisory Control And Data
Acquisition system (SCADA) that allows the registration and
storage of all set-point, control and process variables. The
faults are rather exceptional, due to the careful inspection of
installation before starting the three-months long production
period. The fault-free data stored by SCADA during one
month, every TS=10 s, were used to extract the training and
validation data sets for developing the residual generators.

For testing and benchmarking purpose, 3000 rows of
measurements (corresponding to approximately 8 hours) from
another month of plant exploitation were used. Another
testing set was created by introducing artificial single faults in
the first testing data set. Faults were generated by adding or
subtracting 5, 10 and 15 percent of the whole possible range
of variation to each measurement, respectively, in different
periods of time. According to the benchmark [15], those
simulated faults had to be detected and isolated.

5.2 Experimental Results

The results corresponding to FDI of the “Evaporator” Sub-
system (ES, Fig.3) are only reported here due to space
restrictions. Similar results were obtained for the other sub-
systems of “control valve”, “heater”, “steam”, and “vapours”
(Fig.3) considered in that case study [15]. The GDFLNNs
were used to design an NGOS for that ES. The inputs of the
models (1) and (2) are: uP,1 – the steam flow to the input of
ES, uP,2 – the steam temperature at the input of ES, and uP,3 –
the juice temperature after heater. The modelled output is yP –
the juice temperature after section 1 of ES. Artificial faults
affect all four variables. To develop a model, isolated missing

and uncertain measurements were replaced by means of linear
interpolation. A spectral analysis was then performed and a
low-pass filtering (by means of appropriate discrete-time
Butterworth filters) was applied to reduce the noise and the
amount of data used in the ANN learning. The training and
validation data, each containing 3000 rows of measurements,
were decimated (using each 10th sampled value).

The search space for the genetic procedure was defined by
setting the following parameters (section 2): Smax=5, and
mmax=nmax=3. The parameters for different GAT functions [1]
were considered as (section 3): MAX_GEN=30 generations,
30 individuals in a population, selection rate of 0.8 for
recombination, discrete recombination rate of 0.7 (uniform
crossover), mutation rate of 0.01, offspring reinsertion rate of
0.8. During the genetic search, the GDFLNNs were trained
for 500 epochs. The best architecture of GDFLNN found at
exit was trained again for 3000 epochs. The resulted
GDFLNNs are characterised by a simple structure (e.g. not all
network inputs are functionally expanded), and a performance
given by SSE of order of 10-2 over the reduced testing data set
of 300 points. However, the most sensitive residuals and best
FDI performance are obtained with GDFLNNs having all
inputs functionally expanded (i.e. it was necessary to restrict
the search space), the resulted networks having the same
accuracy performance over the testing data set without faults.

0 500 1000 1500 2000 2500 3000
-30

-20

-10

0

10

20
Evaporator: GDFLNN (LAF), residual r0 [o C]

0 500 1000 1500 2000 2500 3000
-30

-20

-10

0

10

20
Evaporator: GDFLNN (LOF), residual r1 [o C]

sample (Ts = 10 s)

effects of faults

effects of faults

on uP,1 (x 5) on uP,2 on yP on uP,3

(x 5) on uP,2 on yP on uP,3

0 500 1000 1500 2000 2500 3000
-30

-20

-10

0

10

20
Evaporator: GDFLNN (MIX), residual r2 [o C]

0 500 1000 1500 2000 2500 3000
-30

-20

-10

0

10

20
Evaporator: GDFLNN (LOF), residual r3 [o C]

sample (Ts = 10 s)

effects of faults

effects of faults

on uP,1 (x 5) on yP on uP,3

on uP,1 (x 5) on uP,2 on yP

Figure 4: Evaporator, residuals obtained with the GDFLNNs.

The generated residuals (3) corresponding to the finally
resulted GDFLNNs are presented in Fig.4, the case of testing
data with faults. All residuals are influenced by the faults on
the output signal (samples 2100...2400). The second residual,
r1, is almost not influenced by the faults on the first process
input (samples 300...600). The third residual, r2, is almost not
influenced by the faults on the second process input (samples
1500...1800). Finally, the fourth residual, r3, is almost not
influenced by the faults affecting the third process input
(samples 2400...2700).

For each faulty signal, two classes were considered.
Altogether nine classes of sub-process behaviour are
diagnosed: normal behaviour, and positive and negative
deviations of each of four process variables, respectively. To
train an MLP/BP classifier with two layers of sigmoid
neurons [2], the residuals obtained from testing data with
faults (Fig.4) were used. A supplementary criterion of
decision was considered to eliminate isolated false and wrong
alarms [9]: a fault is validated if the classifier recognises a
certain class at least three diagnosis cycles of TS=10 s each.
The best results of initial classification and final decision
(“diagnosis”) are included in Table 1, fourth row.

Table 1: Evaporator, performance of diagnosing systems

NGOS Recognition rate
(generated residuals) classification diagnosis
DFLNN_LAF (r0, r1, r2, r3) 96.00% 96.06%
DFLNN_LOF (r0, r1, r2, r3) 91.12% 91.89%
DFLNN_MIX (r0, r1, r2, r3) 95.93% 96.33%
GDFLNN
(LAF: r0; LOF: r1, r3; MIX: r2)

96.90%

98.03%

GDMLP (r0, r1, r2, r3) 98.57% 98.87%

Table 1 presents comparatively the results of fault
classification and diagnosis of the ES based on the NGOS
designed with the previously developed DFLNN_LAF,
DFLNN_LOF [8], and DFLNN_MIX [11], the suggested
GDLFNN genetically evolved, and a Generalised Dynamic
MLP (GDMLP) genetically evolved [9]. The results obtained
with the GDFLNN genetically evolved are quite close to the
best ones obtained with the GDMLP. However, the GDFLNN
is characterised by a much simpler architecture, and a reduced
training and evaluation time.

6 Conclusions

The paper suggests a multi-objective genetic approach to the
design of a generalised functional-link neural network with
internal dynamics. This is used to develop a generalised
observer scheme. The latter provides structured sets of
residuals, in order to perform a robust diagnosis of process
faults. The obtained symptoms are classified by a static neural
net. Diagnosing systems were designed to detect and isolate
incipient sensor and actuator faults in an evaporation process.

The developed genetic procedure represents a semi-automatic
method of selecting the appropriate network architecture for
the task of non-linear system identification. The user must
assign certain parameters of the genetic search. This seems to

be easier than manually selecting the network architecture.
The design time is reduced, for the presented application this
meant a reduction from several days to several hours for each
designed neural network. Such an approach seems to be
appropriate for an efficient re-design of a neural diagnosing
system, in the face of changing operating conditions of the
monitored process. Current research refers to the application
of the presented methodology to other types of processes [6].

Acknowledgements. The authors would like to acknowledge
the support for this work by the EU-IST-2000-30009 project
“Multi-Agents-Based Diagnostic Data Acquisition and
Management in Complex Systems” (MAGIC).

References

[1] Chiepperfield, A.J., P.J. Fleming, H. Pohlheim and C.M.

Fonseca, Genetic Algorithm Toolbox for Use with MATLAB,
University of Sheffield, UK, (1996).

[2] Demuth, H. and M. Beale, Neural Network Toolbox, The
MathWorks Inc., Natick, MA, (2002).

[3] Fonseca, C.M., Multiobjective Genetic Algorithms with
Application to Control Engineering Problems, Ph.D. Thesis,
University of Sheffield, UK, (1995).

[4] Frank, P.M., “Enhancement of Robustness in Observer-based
Fault Detection”, Int. Journal of Control, 59, 4, pp. 955-981,
(1994).

[5] Isermann, R., S. Ernst and O. Nelles, “Identification with
Dynamic Neural Networks”, Prep. IFAC Symposium SYSID,
Fukuoka, Japan, Vol.3, pp. 997-1022, (1997).

[6] Köppen-Seliger, B., S.X. Ding and P.M. Frank, “MAGIC –
IFATIS: EC-Research Projects”, CD-ROM Proc. IFAC World
Congress, Barcelona, Spain, (2002).

[7] Man, K.F., K.S. Tang and S. Kwong, Genetic Algorithms:
Concepts and Designs, Springer-Verlag, London, (1999).

[8] Marcu, T., L. Mirea, P.M. Frank and H.D. Kochs, “System
Identification and Fault Diagnosis Using Functional-Link
Neural Networks”, CD-ROM Proc. EUCA European Control
Conference, Porto, Portugal, pp. 1618-1623, (2001).

[9] Marcu, T. and P.M. Frank, “Process Fault Detection and
Isolation Using Dynamic Multilayer Perceptrons Genetically
Evolved”, Int. Journal of Differential Equations and Dynamical
Systems, 10, 1-2, pp. 169-200, (2002).

[10] MathWorks, MATLAB – The Language of Technical
Computing, The MathWorks Inc., Natick, MA, (2002).

[11] Mirea, L. and T. Marcu, “System Identification Using
Functional-Link Neural Networks with Dynamic Structure”,
CD-ROM Proc. IFAC World Congress, Barcelona, Spain,
(2002).

[12] Nørgaard, M., O. Ravn, N.K. Poulsen and L.K. Hansen, Neural
Networks for Modelling and Control of Dynamic Systems,
Springer-Verlag, London, (2000).

[13] Pao, Y.H., G.H. Park and D.J. Sobajic, “Learning and
Generalisation Characteristics of the Random Vector
Functional-Link Net”, Neurocomputing, 6, pp. 163-180, (1994).

[14] Patra, J.C., R.N. Pal, B.N. Chatterji and G. Panda,
“Identification of Non-linear Dynamic Systems Using
Functional-Link Artificial Neural Networks”, IEEE Trans. on
Systems, Man, and Cybernetics – part B: Cybernetics, 29, 2, pp.
254-262, (1999).

[15] Syfert, M. (Organiser), “Research on Quantitative and
Qualitative FDI Methods based on Data from Lublin Sugar
Factory” (Invited Session), Prep. IFAC Symp. SAFEPROCESS,
Budapest, Hungary, Vol.1, pp. 331-363, (2000).

	Session Index
	Author Index

