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Abstract

In this paper, problems related to the design of fault de-
tection filters (FDF) for dynamic systems with unknown
inputs are studied. Core of our study is to consider
the design problems under two different residual evalu-
ation functions, the H2-norm and the peak amplitude
of the residual signals. The background of this study is
the fault detection strategy of using multi-residual eval-
uation functions, which is widely adopted in practice.
Based on the above-mentioned two residual evaluation
functions, different design schemes for FDF are formu-
lated as multiobjective optimization problems, which are
then solved using the well-established LMI-technique.

1 Introduction and background

In this contribution, we consider fault detection (FD)
problems for linear time-invariant (LTI) dynamic sys-
tems described by

ẋ = Ax+Bu+Edd+Eff (1)

y = Cx+Du+ Fdd+ Fff (2)

where u(t) ∈ Rku and y(t) ∈ Rm denote the process
input and output vectors, f(t) ∈ Rkf fault vector that
has to be detected and d(t) ∈ Rkd vector of unknown
and bounded inputs, matrices A,B,C,D,Ed, Ef , Fd and
Ff are known and of appropriate dimensions.

For our purpose, the following assumptions are made
throughout the paper:

A1. (C,A) is detectable;

A2.
�
A− jωI Ed
C Fd

�
has full row rank for all ω

A3. sup ndn2 ≤ δd,2, sup
t≥0
nd(t)n ≤ δd,peak, where

ndn2 =

�] ∞
0

dA(t)d(t)dt
�1/2

nd(t)n =

#
kd[
i=1

d2i (t)

$1/2
and δd,2, δd,peak are bounds on the unknown inputs.

A typical FD system consists of a residual generator and
a residual evaluation stage [1], [4], [5], [6], [7], [10]. For
the purpose of residual generation, we use the so-called
fault detection filter (FDF) [1], [7], [10] of the form

dx̂

dt
= Ax̂+Bu+ L(y −Cx̂−Du) (3)

r = V (y − ŷ) = V (y −Cx̂−Du) (4)

where r ∈ Rkr is the residual signal and L,V are the
design parameter matrices.

Let e = x− x̂, then we have
ė = Āe+ Ēdd+ Ēff (5)

r = V (Ce+ Fdd+ Fff) (6)

Ā = A− LC, Ēd = Ed − LFd, Ēf = Ef − LFf
To evaluate residual signal r, the H2-norm of r is often
used:

nrn2 =
�] ∞

0

rA(t)r(t)dt
�1/2

(7)

In the past, we learnt from different industrial appli-
cations that it is very popular in practice to evaluate
residual signals using multi-evaluation functions in or-
der to reduce missing detection and false alarm rate. A



typical combination is the evaluation of energy change
and peak amplitude of the residual signals. The latter
can be described by

nrnpeak := sup
t≥0
nr(t)n , nr(t)n =

#
kr[
i=1

r2i (t)

$1/2
(8)

In this contribution, we are going to study residual eval-
uation schemes based on a combined use of nrn2 and
nrnpeak evaluation functions.
The last step to a successful fault detection is the estab-
lishment of a decision unit. For this purpose, we first in-
troduce two thresholds corresponding the above-defined
two residual evaluation functions:

Jth,2 = sup
f=0,d

nrn2 (9)

Jth,peak = sup
f=0,d

nrnpeak (10)

Having introduced two different residual evaluation
functions, we can form different decision logic depend-
ing on the requirements on the performance of fault de-
tection systems, in order to improve the system perfor-
mance from the viewpoint of a suitable trade-off between
the false alarm rate and missing detection rate, for in-
stance,

Logic 1 : if nrn2 > Jth,2 and nrnpeak > Jth,peak,then
alarm (a fault is detected), otherwise no alarm (no
fault)

Logic 2: if nrn2 > Jth,2 or nrnpeak > Jth,peak,then
alarm (a fault is detected), otherwise no alarm (no
fault)

Logic 3: if w1nrn2 + w2nrnpeak > w1Jth,2 +
w2Jth,peak,then alarm (a fault is de-
tected),otherwise no alarm (no fault), where
w1 > 0 and w2 > 0 are known weighting factors.

It is evident that Logic 1 ensures a higher robustness
to the unknown inputs and thus reduces the false alarm
rate on the one side but increase the missing detection
rate on the other side, while using Logic 2 the FD system
becomes more sensitive to the faults and thus has a lower
missing detection rate but at cost of a higher false alarm
rate. By a suitable selection of weighting factors w1 and
w2, we are able to use Logic 3 to achieve a suitable trade-
off between the false alarm rate and missing detection
rate, as desired by the application.

Considering that a fault detection system consists of
both the residual generator and the residual evalua-
tor including the residual evaluation functions and the
thresholds, an integrated design of the residual genera-
tor and the residual evaluator is needed to achieve an

optimized FD performance [2], [6]. The main objec-
tive of this paper is to approach the integrated design
of FDF (3)-(4) under consideration of residual evalua-
tion functions (7)-(8). To this end, we first introduce
an approach to the integrated design of FDF under H2-
evaluation function and then give an algorithm for the
calculation of Jth,peak. The main attention of this pa-
per will be devoted to the formulation of different FDF
design problems and their solutions.

2 An integrated design of FDF
under H2 evaluation function

In this section, we shall briefly describe the so-called
unified solution that is used to design an FDF with H2-
norm as residual evaluation function.

Consider the following optimization problem: Given sys-
tem (1)-(2) and FDF (3)-(4), find L, V such that for all
ω and σi(V (Ff +C(jωI − Ā)−1Ēf )) 9= 0

J → min ,J =

��V (Fd +C(sI − Ā)−1Ēd))��∞
σi(V (Ff +C(jωI − Ā)−1Ēf ) (11)

where σi(·) denoting a non-zero singular value of a trans-
fer function matrix. The following theorem provides
a solution to the above-defined optimization problem
whose proof is given in [2].

Theorem 1 Given system (1)-(2) and suppose As-
sumptions A1-A2 hold, then

L∗ = (EdFd + Y C )Q−1 (12)

V ∗ = Q−1/2 (13)

solve optimization problem (11), where Q = FdFd and
Y ≥ O is a solution of Riccati equation

ÃTY + Y Ã− Y C Q−1CY +EdRETd = 0
Ã = A−EdFdQ−1C
R = I − FdQ−1Fd

The optimal value is given by

1

σi(V ∗(Ff +C(jωI −A+ L∗C)−1(Ef − L∗Ff ))

Remarks

• The transfer function matrix
V ∗(Fd +C(sI −A+ L∗C)−1(Ed − L∗Fd))

is a co-inner matrix [16]. Thus, Jth,2 = sup
f=0,d

nrn2 =
δd,2.



• The above solution not only gives an optimal so-
lution to the optimization problem defined by (11)
but also provides an optimal trade-off between the
missing detection rate and the false alarm rate.

• The above solution is called unified solution, be-
cause the well known H∞/∞- and H∞/min- opti-
mization problems [1], [5], [6] are only two special
cases of the optimization problem defined by (11).
This result is the basis of the following study.

3 Determination of Jth,peak

In this section, an LMI algorithm will be derived for the
calculation of Jth,peak defined by (10).

For our purpose, we first decompose system (5)-(6) into
two parts:

r1 = V C(sI − Ā)−1(Ēdd+ Ēff)
r2 = V Fdd+ V Fff

It follows from (8) that for f = 0

nrnpeak = sup
t≥0
nr(t)n ≤ sup

t≥0
nr1(t)n+ sup

t≥0
nr2(t)n

= sup
t≥0
nr1(t)n+ sup

t≥0
nV Fdd(t)n

= sup
t≥0
nr1(t)n+ σmax(F̄d)δd,peak

Considering that r1 describes the dynamic part of the
FDF, it is thus reasonable to evaluate the influence of
the unknown inputs at a certain energy level instead of
evaluating the influence of the peak amplitude of d on
r1. Under this consideration, we now introduce the so-
called generalized H2-norm for our purpose: For a given
system y(s) = Gw(s)w(s) with xw denoting the state
vector, the generalized H2-norm is defined by [14]

nGwng := sup

ny(T )n : xw(0) = 0, T ≥ 0

TU
0

nw(t)n2 dt ≤ 1


According to this definition, we have

sup
t≥0
nr1(t)n = nGr1dng δd,2
Gr1d(s) = V C(sI − Ā)−1Ēd

In order to calculate nGr1dng , we now introduce the fol-
lowing theorem [14] which provides us with an effec-
tive algorithm for the calculation of nGr1dng and thus
Jth,peak.

Theorem 2 Given system Gr1d(s) and a constant α (>
0), then

nGr1dn2g < α

iff there exists a symmetric matrix P satisfying the fol-
lowing two LMI’s�

ĀTP + PĀ PĒd
ĒTd P −I

�
< 0 (14)�

P CTV T

V C αI

�
> 0 (15)

To get nGr1dng , we can solve the following optimization
problem in an iterative way:

minα subject to (14)− (15)
Using this solution we are able to set the threshold
Jth,peak as follows:

Jth,peak = sup
f=0,d

nrnpeak
= nGr1dng δd,2 + σmax(F̄d)δd,peak

4 FDF design

4.1 Basic idea and problem formulation

The basic idea of the below study can be described as
follows. Considering that the unified solution presented
in Section 2 leads to an optimal trade-off between the
false alarm rate and missing detection rate if H2-norm is
used as residual evaluation function, we shall start from
this solution and modify it (slightly) such that the re-
quirements on the residual evaluation function nrnpeak
could also be satisfied but without strongly affecting the
system performance achieved by using the unified solu-
tion.

Suppose that L∗, V ∗ are the solution of the optimal FDF
with H2-norm as residual evaluation function, as given
in Theorem 1. Let L = L∗ +∆L. Then we have

ė = (Ā−∆LC)e+ Ẽdd+ Ẽff (16)

r = C̄e+ F̄dd+ F̄ff (17)

Ā = A− L∗C, C̄ = V ∗C, F̄d = V ∗Fd
F̄f = V ∗Ff , Ẽd = Ēd −∆LFd, Ẽf = Ēf −∆LFf
Ēd = Ed − L∗Fd, Ēf = Ef − L∗Ff

Note that

C̄
�
sI − Ā+∆LC�−1 Ẽd + F̄d

=

�
I − C̄

�
sI − Ã

�−1
∆L̄

��
Gr1d(s) + F̄d

�
C̄sI − Ā+∆LC)−1Ẽf + F̄f

=

�
I − C̄

�
sI − Ã

�−1
∆L̄

��
Gr1f (s) + F̄f

�
Ã = Ā−∆L̄C,∆L̄ = ∆LV ∗−1
Gr1f (s) = V

∗C(sI − Ā)−1Ēf



It leads to

r =

�
I − C̄

�
sI − Ã

�−1
∆L̄

�
r∗(s) (18)

r∗ = F̄dd+ F̄ff + C̄
�
sI − Ā�−1 �Ēdd+ Ēff�

where r∗ is the residual signal delivered by the optimal
FDF with H2-norm as residual evaluation function. Re-
member that the objective of FDF design consists in
the selection of the residual generator parameters that
results in a suitable compromise between the evaluation
functions (7) and (8). This may be well approached if
we design the residual generator so that the generated
residual signals r(s) is not strongly different from r∗(s)
on the one side and the threshold established based on
the evaluation function (8), Jth,peak, is smaller than a
certain value on the other side. Following this idea, we
formulate the following design problems:

• Design problem 1: For given constants 0 < α1 << 1
and α̂2 > 0, find ∆L such that the residual genera-
tor (16)-(17) is stable and

nr − r∗n2
nr∗n2

≤ α1 (19)

Jth,peak ≤ α̂2 (20)

Note that

nr − r∗n2
nr∗n2

≤ α1 ⇔
����C̄ �sI − Ã�−1∆L̄����

∞
≤ α1

Jth,peak ≤ α̂2 ⇒
nGr1dng δd,2 + σmax(F̄d)δd,peak ≤ α̂2

⇔
����C̄ �sI − Ã�−1 (Ēd −∆L̄F̄d)����

g

≤ �α̂2 − σmax(F̄d)δd,peak
�
/δd,2 = α

1/2
2

Thus, this design problem can be re-formulated as find-
ing ∆L̄ such that����C̄ �sI − Ã�−1∆L̄����

∞
≤ α1 (21)����C̄ �sI − Ã�−1 (Ēd −∆L̄F̄d)����2

g

≤ α2 (22)

It is evident that (19) describes the requirement on
the residual generator under consideration of H2-norm
evaluation function, while (20) indicates that threshold
Jth,peak should be limited to a desired value.

Depending on the requirements in applications, Design
problem 1 can also be modified and re-formulated into
the following two problems.

• Design problem 2: For a given constant α2 > 0,
find ∆L̄ such that the residual generator (16)-(17)
is stable and����C̄ �sI − Ã�−1∆L̄����

∞
→ min subject to����C̄ �sI − Ã�−1 (Ēd −∆L̄F̄d)����2

g

≤ α2

• Design problem 3: For a given constant 0 < α1 <<
1, find ∆L̄ such that the residual generator (16)-
(17) is stable and����C̄ �sI − Ã�−1 (Ēd −∆L̄F̄d)����2

g

→ min

subject to
����C̄ �sI − Ã�−1∆L̄����

∞
≤ α1

Corresponding to fault detection Logic 3 described in
Section 2, we further formulate the following design
problem.

• Design problem 4: Given constants w1 > 0, w2 > 0,
find ∆L̄ such that the residual generator (16)-(17)
is stable and

w1Jth,2 +w2Jth,peak → min

Note that

Jth,2 = sup
f=0,d

nrn2

=

����I − C̄ �sI − Ã�−1∆L̄����
∞
δd,2

Jth,peak =

����C̄ �sI − Ã�−1 (Ēd −∆L̄F̄d)����
g

δd,2 + σmax(F̄d)δd,peak

Thus,

w1Jth,2 +w2Jth,peak → min⇒
w1

����I − C̄ �sI − Ã�−1∆L̄����
∞
+ (23)

w2

����C̄ �sI − Ã�−1 (Ēd −∆L̄F̄d)����
g

→ min

It is evident that reducing the threshold under fault de-
tection Logic 3 will increase the system sensitivity to the
faults and thus reduce the missing detection rate.

4.2 Solutions

In this sub-section, solutions will be derived for the de-
sign problems formulated above. For this purpose, the



results of Theorem 2 and the following well-known rela-
tionship are needed.

Given system Gw(s) = Dw + Cw(sI − Aw)−1Bw, then
Gw is stable and satisfies nGwn∞ < α(> 0) iff there
exists a symmetric matrix P with ATwP + PAw PBw CTw

BTwP −αI DTw
Cw Dw −αI

 < 0, P > 0 (24)

Solution of design problem 1

Following Theorem 2 and relation (24), Design problem
1 described by (21)-(22) can be re-formulated as find∆L̄
such that there exist symmetric matrices P1, P2 with ÃTP1 + P1Ã P1∆L̄ C̄T

∆L̄TP1 −α1I O
C̄ O −α1I

 < 0,

�
ÃTP2 + P2Ã P2Ẽd
ẼTd P2 −I

�
< 0�

P2 C̄T

C̄ α2I

�
> 0, P1 > 0

Set
∆L̄ = P−1Y,P1 = P2 = P (25)

then we have Q Y C̄T

Y T −α1I O
C̄ O −α1I

 < 0 (26)

�
Q PĒd − Y F̄d

ĒTd P − F̄Td Y T −I
�
< 0 (27)�

P C̄T

C̄ α2I

�
> 0 (28)

Q = ĀTP − C̄TY T + PĀ− Y C̄
As a result, we claim that Design problem 1 can be
solved if there exist matrices P and Y solving LMI’s
(26)-(28). The solution for ∆L̄ is given by (25).

Solutions for Design problems 2 and 3 follow directly
from the above discussion.

Solution of design problem 2 is given by solving the
following optimization problem: finding matrices P and
Y such that

minα1 subject to Q Y C̄T

Y T −α1I O
C̄ O −α1I

 < 0

�
Q PĒd − Y F̄d

ĒTd P − F̄Td Y T −I
�
< 0�

P C̄T

C̄ α2I

�
> 0

Solution of design problem 3 is given by solving the
following optimization problem: finding matrices P and
Y such that

minα2 subject to Q Y C̄T

Y T −α1I O
C̄ O −α1I

 < 0

�
Q PĒd − Y F̄d

ĒTd P − F̄Td Y T −I
�
< 0�

P C̄T

C̄ α2I

�
> 0

Similar to the solutions given above, the solution of the
following optimization problem provides us with a solu-
tion to the Design problem 4 described by (23): Finding
matrices P and Y such that

min
�
w1α1 +w2α

1/2
2

�
subject to Q Y C̄T

Y T −α1I −I
C̄ −I −α1I

 < 0

�
Q PĒd − Y F̄d

ĒTd P − F̄Td Y T −I
�
< 0�

P C̄T

C̄ α2I

�
> 0

5 Concluding remarks

In this contribution, we have studied the problems of
designing FDF under two different residual evaluation
functions. The background of this study is the observa-
tion that in practice the fault detection strategy of using
multi-residual evaluation functions is widely used. The
two residual evaluation functions considered in this pa-
per are the H2-norm, which evaluates the energy level of
the residual signal, and the peak amplitude of the resid-
ual signal. Based on the two residual evaluation func-
tions mentioned above, different design schemes for FDF
are formulated as multiobjective optimization problems,
which are then solved using the LMI-technique.

Different academic examples of designing FDF have
been successfully solved using the methods presented in
this paper. As next step, these methods will be used in
different laboratory systems.
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